Introduction to NLP

Neural models

Compressed out of NLP courses from **Dan Jurafsky** (Stanford), & David Bamman (Berkeley), Michael Collins (MIT & Columbia), and some online (Udemy) courses

Book: **Speech and Language Processing** by Jurafsky & Martin (3rd edition)

A Neuron

- Basically a Logistic Regression
 - also used in NLP a lot

$$y = \sigma(\mathbf{w} \cdot \mathbf{x} + b) = \frac{1}{1 + \exp(-(\mathbf{w} \cdot \mathbf{x} + b))}$$

source: https://ufal.mff.cuni.cz/ jindrich-libovicky

Computational graph: logistic regression

Logistic regression:

$$y = \sigma(\mathbf{w} \cdot \mathbf{x} + b)$$

Computation graph:

Feed-Forward Neural Networks

$$\mathbf{h} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$$

- Stacking the neurons into "hidden" layers
 - with which we move to matrix notation
- You are already familiar with these models from RPZ, SSU, UI, ...

Feed-Forward Neural Networks

source: https://ufal.mff.cuni.cz/ jindrich-libovicky

Activations

- Sigmoid non-linearity has some problems in practice
 - deviation + saturation
- Some better choices:

Feed-Forward Neural Networks

• To obtain multi-class probabilities, we should **normalize** the values

$$\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2, ... \mathbf{x}_N]$$
 $\mathbf{h} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$
 $\mathbf{z} = \mathbf{U}\mathbf{h}$
 $\hat{\mathbf{y}} = \operatorname{softmax}(\mathbf{z})$

$$\operatorname{softmax}(\mathbf{z}_i) = \frac{\exp(\mathbf{z}_i)}{\sum_{j=1}^d \exp(\mathbf{z}_j)} \ 1 \le i \le d$$

Feed-Forward Neural Networks

Such neural networks can be readily applied to a range of NLP tasks

Deep Learning

 Deep Learning idea - instead of crafting features, we learn from raw text aka representation learning - with our word embeddings!

Neural models

- revisiting Language Modelling

Neural Language Models

Predict (upcoming) word given some (previous) context

$$P(w_t|w_1,...,w_{t-1}) \approx P(w_t|w_{t-N+1},...,w_{t-1})$$

Lanuage modelling with n-grams

Neural Language Models

Predict (upcoming) word given some (previous) context

$$P(w_t|w_1,...,w_{t-1}) \approx P(w_t|w_{t-N+1},...,w_{t-1})$$

- We already did this with the n-gram counting Markov models
- However, neural LMs:
 - + handle longer histories
 - + generalize over similar words
 - + are generally more accurate
 - less interpretable
 - slower to train

I have to make sure that the **cat** gets fed **vs.**

I have to make sure that the **dog** gets fed

One-hot vectors & embeddings

- A vector of length |V|
- 1 for the target word and 0 for other words
 - So if "apple" is vocabulary word 5 the one-hot vector is
 - [0 0 0 0 1 0 0 ... 0 0 0 0] 1 2 3 4 5 6 7 |V|
- Embedding matrix E
 stores embedding
 - stores embeddings of all words in vocab

Revisiting word2vec

Word2vec = possibly the simplest "neural" LM

• 2 variants of the model training:

- Skip-gram
 - Predict each neighboring word from a given "middle" word

- CBOW (Continuous Bag Of Words)
 - Predict the "missing" middle word from its neighbors

Word2vec skip-gram: visual

an output

Neural Language models: training

- We initialize all the parameters $\theta = E,W,U$ randomly
 - o good to start with zero mean and unit variance
- We iteratively move through the text, predicting each word w_t at a time
 - given the context of N previous words W_{t-1} ... W_{t-n}
 - Note that the embeddings are shared for all the N positions
- This is essentially a multi-class |V| classification problem
- We train against **cross-entropy** $L_{\text{CE}} = -\log p(w_t|w_{t-1},...,w_{t-n+1})$
- And optimize with gradient-descent
 - + tricks such as dropout

$$\theta^{s+1} = \theta^s - \eta \frac{\partial \left[-\log p(w_t|w_{t-1},...,w_{t-n+1})\right]}{\partial \theta}$$

Neural models

- CNNs for text

Language modelling with CNNs

source: lena-voita.github.io/ nlp_course.html

condition on the previous tokens

CNNs: receptive field

like the cat on a red mat <eos> Close connection to our Markov models source: lena-voita.github.io/ nlp_course.html <pad> <pad> <bos> I like the cat on red mat receptive field

1D Convolutions on text

like the cat

. <eos>

source: lena-voita.github.io/ nlp_course.html

. <eos><pad><pad>

. <eos>.<pad>,

<pad><pad>I like the cat

<pad> I like the cat

Classification with CNNs

source: lena-voita.github.io/ nlp_course.html

Equivariance → invariance

via pooling

Then why don't we process all these cats similarly?

We don't care where the cat is.

we care that it is somewhere.

Label: cat

Label: cat

Neural models

- NLP with Sequential Models

Sequential models

- Language is inherently sequential
 - so far we either ignored this completely (BoW)
 - or restricted to a small-size history (Markov, sliding window)

Sequential models

- Language is inherently sequential
 - so far we either ignored this completely (BoW)
 - or restricted to a small-size history (Markov, sliding window)
- Many linguistic phenomena require longer distance interactions
 - "The computer which I had just put into the machine room on the fifth floor crashed."
- Modern neural models address this:
 - 1. Recurrent Neural Networks
 - 2. Transformer Networks

Recurrent Neural Networks

- Recurrent Neural Networks (RNN) = contain cycles
 - o introduces dependency on earlier inputs/outputs
- The most simple RNN model: **Elman Networks**
- Compute with hidden value from the **preceding** item
- We process one item (word) at a time
 - no fixed-length limit on the prior context!
 - In contrast to the window-based approaches

Recurrent Neural Networks

- Recurrent Neural Networks (RNN) = contain cycles
- These can be unrolled to make them feed-forward

Recurrent Neural Networks

- Recurrent Neural Networks (RNN) = contain cycles
- These can be unrolled to make them feed-forward
 - at each (time) step i

function FORWARDRNN(**x**, network) **returns** output sequence **y**

```
\begin{array}{l} \mathbf{h}^0 \leftarrow 0 \\ \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ \mathsf{LENGTH}(\mathbf{x}) \ \mathbf{do} \\ \mathbf{h}_i \leftarrow g(\mathbf{Uh}_{i-1} \ + \ \mathbf{Wx}_i) \\ \mathbf{y}_i \leftarrow f(\mathbf{Vh}_i) \\ \mathbf{return} \ y \\ \end{array} \quad \begin{array}{c} \mathbf{the} \ \mathsf{weights} \ \mathsf{are} \\ \mathsf{shared} \ \mathsf{across} \ \mathsf{all} \\ \mathsf{the} \ \mathsf{timesteps!} \end{array}
```


RNN Training: forward unrolling

RNN Training

Training RNNs is also similar to what we have already seen:

- 1. Choose a loss function
- 2. Calculate gradients for all the parameters:
 - W: input-to-hidden layer
 - U: previous-to-current hidden layer
 - V: hidden-to-output layer
- 3. Train with gradient descent

Some differences in gradient computation:

computing loss at time t requires h_{t-1}

"Backpropagation Through Time"

RNNs as Language Models: weight tying

The input (E) and output (V) embedding matrices serve similar purpose

just as in the word embedding models

RNNs as Language Models: weight tying

The input (E) and output (V) embedding matrices serve similar purpose

just as in the word embedding models

Idea: weight tying

RNN language models (T. Mikolov, again)

- work analogically to the window-based LMs
- but don't have the limited context problem

RNN Language model

 $\mathbf{e}_t = \mathbf{E}\mathbf{x}_t$

 $\mathbf{h}_t = g(\mathbf{U}\mathbf{h}_{t-1} + \mathbf{W}\mathbf{e}_t)$

 $\mathbf{y}_t = \operatorname{softmax}(\mathbf{V}\mathbf{h}_t)$

Goal: predict
$$P(w_{t+1} = i | w_1, \dots, w_t) = \mathbf{y}_t[i]$$

Train with cross-entropy

$$L_{CE} = -\sum_{w \in V} \mathbf{y}_t[w] \log \hat{\mathbf{y}}_t[w]$$

$$L_{CE}(\hat{\mathbf{y}}_t, \mathbf{y}_t) = -\log \hat{\mathbf{y}}_t[w_{t+1}]$$

RNNs as Language Models

Neural models

- RNN applications

Sequence Labeling

Assign a label to **each element** of a sequence (e.g., part-of-speech tagging)

Sequence Classification

Assign a class to the whole sequence

topic classification, spam detection, sentiment analysis...

Here we fold the whole sequence into a single embedding

that can then be used for any downstream task

Alternative: pooling of all the outputs

Text Generation

Just like with n-grams. Here called **autoregressive generation** (non-linear)

Text Generation

Just like with n-grams. Here called **autoregressive generation** (non-linear)

This simple idea actually forms basis for sophisticated tasks!

machine translation, text summarization, question answering

There we prime the generation with an appropriate context

- instead of using just dummy <s>
- e.g., the original text (for translation or summarization)

RNNs as Language Models

source: https://ufal.mff.cuni.cz/ jindrich-libovicky

Train with **teacher forcing**:

In training, at each step t we feed the model the **correct** sequence w_{1:t-1}

Text Generation: Practice

- Greedy Decoding
 - At each time step, select the most probable word
- Random Sampling
 - Just sample randomly
- Top-k Sampling
 - Sample, but only from the top-k most likely tokens
- Nucleus sampling
 - Sample from top-p probability mass tokens

thought

Neural models

- RNN extensions

Stacked RNNs

= hidden layer output can be fed as input to another hidden layer (deep RNNs)

Bi-directional RNNs

We commonly have the entire sequence for training

- no need to use just the "left" context $\mathbf{h}_t^f = RNN_{forward}(\mathbf{x}_1, \dots, \mathbf{x}_t)$
- we can also utilize the "right" context $\mathbf{h}_t^b = RNN_{backward}(\mathbf{x}_t, \dots \mathbf{x}_n)$

And combine these 2 representations

- into a bi-directional one: $\mathbf{h}_t = [\mathbf{h}_t^f; \mathbf{h}_t^b]$
 - via concatenation, element-wise addition, multiplication...

Bi-directional RNNs for sequence labeling

Bi-directional RNNs for sentence classification

Neural models

- Long-Short Term Memory (LSTM)

Long dependencies in text

Distant information is critical to many language applications:

• "The **computer** which I had just put into the machine room on the fifth floor **crashed**."

RNN can theoretically process unlimited context, but:

- need to reflect current & future information at the same time
- long sentences (deep unrolled NNs) lead to vanishing gradients

Consequently, the information contained in the hidden states tend to be fairly local

Divide the latent context management into 2 sub-problems

- removing information when no longer needed
- adding information likely to be needed later

Approached by:

- 1. adding an explicit **context** representation layer
 - a. in addition to the common hidden layer representation
- 2. introduce new units: neural gates
 - a. to control the flow of information

source: courses.cs.washington
______.edu/courses/cse517/

Gating Intuition

Gate units share common design:

- 1. feed-forward layer
- 2. followed by sigmoid fcn
- 3. follower by pointwise multiplication with the gated layer

The sigmoid serves as a soft "binary" mask

- values aligned with ~1 pass through
- values aligned with ~0 are deleted

Each LSTM cell ("neuron") contains 3 of these gates

forget gate - purpose: delete information from the context

- mask calculation: $\mathbf{f}_t = \sigma(\mathbf{U}_f \mathbf{h}_{t-1} + \mathbf{W}_f \mathbf{x}_t)$
- mask gating: $\mathbf{k}_t = \mathbf{c}_{t-1} \odot \mathbf{f}_t$
- + standard RNN hidden unit: $\mathbf{g}_t = \tanh(\mathbf{U}_g \mathbf{h}_{t-1} + \mathbf{W}_g \mathbf{x}_t)$

input gate - purpose: add information to the current context

- mask calculation: $\mathbf{i}_t = \sigma(\mathbf{U}_i \mathbf{h}_{t-1} + \mathbf{W}_i \mathbf{x}_t)$
- mask gating: $\mathbf{j}_t = \mathbf{g}_t \odot \mathbf{i}_t$

element-wise (Hadamard) product

Next, we add this to the ("masked") context vector

 $\mathbf{c}_t = \mathbf{j}_t + \mathbf{k}_t$

to obtain new context at time t

Finally, there's an output gate

add-gate masking of input+hidden

forget-gate masking of prev. context

decides solely what to output for the current hidden state
$$\mathbf{o}_t = \sigma(\mathbf{U}_o\mathbf{h}_{t-1} + \mathbf{W}_o\mathbf{x}_t)$$
 $\mathbf{h}_t = \mathbf{o}_t\odot anh(\mathbf{c}_t)$

You can think of the LSTM equations visually like this: source: https://colah.github.io/ \mathbf{n}_{t} posts/2015-08-Understanding-LSTMs Write some new cell content Forget some cell content C_{t-1} -Output some cell content Compute the to the hidden state tanh forget gate h_{t-1} _ (X_t) Compute the Compute the Compute the new cell content input gate output gate A A **Neural Network** Pointwise Vector Concatenate Copy Operation Transfer Layer

RNNs interface

In practice, you are nicely interfaced from all this complexity

and can just plug LSTM everywhere we have seen RNN so far...

Recursive NNs (TreeNNs)

Operate over regular trees instead of sequences

Neural models

- Attention and Transformers

Transformers

...LSTM are great, but the sequential processing can be problematic in practice

Next idea: Transformers

- maps sequences (x₁,...,x_n) directly to sequences (y₁,...,y_n)
- no recurrent connections (similar to feed-forward NNs)
- the sequence is processed at once in parallel

Comprised of transformer blocks made of

- simple linear layers
- feedforward networks
- self-attention layers

Causal (masked) Self-Attention

- The units are connected to reflect the sequentiality (causality)
- But can be processed in parallel, as there is no intermediate state

Self-Attention

Core: we match an item to a collection of related items

Remember word2vec?

revealing (pair-wise) relevance in the current context

How to score relevance? Dot-product (again)

$$score(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i \cdot \mathbf{x}_j$$

 we then take softmax over all the comparisons

$$\alpha_{ij} = \operatorname{softmax}(\operatorname{score}(\mathbf{x}_i, \mathbf{x}_j)) \ \forall j \leq i$$

$$= \frac{\exp(\operatorname{score}(\mathbf{x}_i, \mathbf{x}_j))}{\sum_{k=1}^{i} \exp(\operatorname{score}(\mathbf{x}_i, \mathbf{x}_k))} \ \forall j \leq i$$

And output a weighted sum

weighted by the relevance scores

$$\mathbf{y}_i = \sum_{j \leq i} \alpha_{ij} \mathbf{x}_j$$

Query, Key, Value

The input embeddings \mathbf{x}_i take on different roles here:

as a **Query**: **q**_i the current focus of attention

will be projected as: q_i=W^Qx_i

as a Key: ki the preceding input used for matching

will be projected as: k_i=W^Kx_i

as a Value: v_i used for computing the output

will be projected as: v_i=W^vx_i

a notation adopted from information retrieval (or memory networks)

 $W \in R^{d \times d}$

Query, Key, Value

Given these roles/projections:

 for the relevance score we use the query and key vectors

$$score(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{q}_i \cdot \mathbf{k}_j$$

 for the output calculation we use the value vectors

$$\mathbf{y}_i = \sum_{j \leq i} \alpha_{ij} \mathbf{v}_j$$

- additionally, we normalize the dot-products
 - by the dimensionality of the vectors

$$score(\mathbf{x}_i, \mathbf{x}_j) = \frac{\mathbf{q}_i \cdot \mathbf{k}_j}{\sqrt{d_k}}$$

Example: computing the 3rd position

The input embeddings' $\mathbf{x_i}$ roles:

Query: q_i - the current focus

• $q_i = W^Q x_i$

Key: **k**_i - the preceding input

• $k_i = W^K x_i$

Value: v_i - the output role

• $V_i = W^V X_i$

Self-Attention: Query, Key, Value

Since the calculations are independent for each position, we can vectorize this

- all input embeddings x₁...x_N form an input matrix X
- and the Query, Key, Value projections: Q = XWQ; K = XWK; V = XWV
- all the query-key comparisons come from QK^T (+softmax)
- and finally multiply the result by V

$$SelfAttention(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = softmax\left(\frac{\mathbf{Q}\mathbf{K}^{\mathsf{T}}}{\sqrt{d_k}}\right)\mathbf{V}$$

- we have to limit these to the **preceding** pairs only

Note that attention is quadratic in the input sequence size N

q1•k1	-∞	-∞	-∞	-∞
q2•k1	q2•k2	-∞	-∞	-∞
q3•k1	q3•k2	q3•k3	-∞	-∞
q4•k1	q4•k2	q4•k3	q4•k4	-∞
q5•k1	q5•k2	q5•k3	q5•k4	q5•k5

N

Transformer blocks

Additionally, we include

- feed-forward layer
- residual connections
 - just skip a layer
- layer normalization
 - layer-wise z-score
 - + linear projection
 - \blacksquare $L_{norm} = \gamma \mathbf{x} + \beta$

These can be stacked

just like the RNNs

Multihead Attention

Problem: there can be multiple relationships between a pair of words

syntactic, semantic, discourse...

Idea: Multi-head self-attention

- $MultiHeadAttn(\mathbf{X}) = (\mathbf{head}_1 \oplus \mathbf{head}_2... \oplus \mathbf{head}_h)\mathbf{W}^O$
 - $\mathbf{Q} = \mathbf{X}\mathbf{W}_i^{\mathcal{Q}} \; ; \; \mathbf{K} = \mathbf{X}\mathbf{W}_i^K \; ; \; \mathbf{V} = \mathbf{X}\mathbf{W}_i^V$
 - $head_i = SelfAttention(\mathbf{Q}, \mathbf{K}, \mathbf{V})$

- sets of parallel attention layers
- each with its own W^Q; W^K; W^V

The rest of the transformer block remains the same

Multihead Attention

Modeling word order

How about word positions?

- in RNNs, these were implicit in the model structure
- here we are invariant to their positions!

Idea: combine words with positional embeddings

- just like words, we can embed positions
- e.g. position 3 = some learnable vector
- up to some max. N

In the model, we just sum with the words

Modeling word order

Positional embeddings:

problem:

higher positions will receive fewer updates

Positional encoding

Better idea: use a static $\mathbb{N} \to \mathbb{R}^d$ function instead

E.g. sin + cos with varying frequencies

- from the original "Attention is all you need" paper

$$P(k, 2i) = \sin\left(\frac{k}{n^{2i/d}}\right)$$
$$P(k, 2i + 1) = \cos\left(\frac{k}{n^{2i/d}}\right)$$

Source: https://kazemnejad.com/blog/transfor mer_architecture_positional_encoding

source: Attention is all you need https://arxiv.org/abs/1706.03762

Complete Transformer block

Neural models

- Some more applications with Transformers

Transformers as Language Models

Contextual Generation

Idea: use context to prime the autoregressive generation Completion Text underlies a number of practical applications! the ML. Sample from Softmax linear layer Transformer **Blocks** Input Embeddings So thanks for long and **Prefix Text**

Abstractive version

Text summarization

One practical application of the context-based autoregressive generation Supervised training regime (data e.g. from news):

- full articles + their summaries
- $(x_1,...,x_m) + (y_1,...,y_n)$

With transformers, we simply concatenate these: $(x_1,...,x_m,\delta, y_1,...y_n)$

- and train a standard (!) autoregressive language model
 - with teacher forcing, exactly as we did before!

Text summarization

Transformers summary

Transformers are used extensively across all NLP tasks now

- sequence labeling: part-of-speech, named entities, ...
- sequence classification: sentiment, spam, ...

We commonly use **pre-training** on large textual corpora

in a self-supervised manner as a standard LM

And then **fine-tune** on top of the learned representations

This was the key to the many recent breakthroughs in NLP...

NLP journey overview

Things we did not cover...

- All of linguistics
 - Parsing
 - Dependency
 - Constituency
 - Grammars
 - Lexicons, corpora
- Text preprocessing
 - Regular expressions
 - Edit distance
- Applications
 - Basic: Part of speech tagging, NER, RE, ...
 - Advanced: machine translation, QA, dialog systems, ...