
Introduction to NLP
Neural models

Compressed out of NLP courses from Dan Jurafsky (Stanford), & David Bamman (Berkeley), 

Michael Collins (MIT & Columbia), and some online (Udemy) courses

Book: Speech and Language Processing by Jurafsky & Martin (3rd edition)



A Neuron

● Basically a Logistic Regression

○ also used in NLP a lot

inputs

weights

activation

non-linearity



Computational graph: logistic regression
source: https://ufal.mff.cuni.cz/ 

jindrich-libovicky

https://ufal.mff.cuni.cz/


Feed-Forward Neural Networks

● Stacking the neurons into “hidden” layers

○ with which we move to matrix notation

● You are already familiar with these models from RPZ, SSU, UI, …



Feed-Forward Neural Networks
source: https://ufal.mff.cuni.cz/ 

jindrich-libovicky

https://ufal.mff.cuni.cz/


Activations

● Sigmoid non-linearity has some problems in practice
○ deviation + saturation

● Some better choices:

saturation

saturation

centered



Feed-Forward Neural Networks

● To obtain multi-class probabilities, we should normalize the values



Feed-Forward Neural Networks

● Such neural networks can be readily applied to a range of NLP tasks



Deep Learning

● Deep Learning idea - instead of crafting features, we learn from raw text -

aka representation learning - with our word embeddings!

these can be pretrained!



Neural models

- revisiting Language Modelling



Neural Language Models

● Predict (upcoming) word given some (previous) context



Lanuage modelling with n-grams



Neural Language Models

● Predict (upcoming) word given some (previous) context

● We already did this with the n-gram counting Markov models

● However, neural LMs:
+ handle longer histories

+ generalize over similar words

+ are generally more accurate

- less interpretable

- slower to train

I have to make sure that the cat gets fed

vs.

I have to make sure that the dog gets fed



One-hot vectors & embeddings

● A vector of length |V| 

● 1 for the target word and 0 for other words

● So if “apple” is vocabulary word 5 the one-hot vector is
● [0 0 0 0 1 0 0 ... 0 0 0 0] 

1 2 3 4 5 6 7 ... … ...|V|

● Embedding matrix E

● stores embeddings

of all words in vocab



Revisiting word2vec

Word2vec = possibly the simplest “neural” LM
● 2 variants of the model training:

● Skip-gram
○ Predict each neighboring word

from a given “middle” word

● CBOW  (Continuous Bag Of Words)
○ Predict the “missing” middle word

from its neighbors



Word2vec skip-gram: visual

a “hidden” 

layer h = W(j)

an output 

layer o=Cxh

C

C

ok= ck∙h

ok= ck∙wj

there is no

non-linearity!

+sigmoid applied on 

top (SGNS) 



LM window of 

size = 3



we train with 

cross-entropy

aka negative 

log-likelihood

θ = E,W,U



Neural Language models: training

● We initialize all the parameters θ = E,W,U randomly

○ good to start with zero mean and unit variance

● We iteratively move through the text, predicting each word wt  at a time

○ given the context of N previous words wt-1 .…wt-n

○ Note that the embeddings are shared for all the N positions

● This is essentially a multi-class |V| classification problem

● We train against cross-entropy

● And optimize with gradient-descent

○ + tricks such as dropout



Neural models

- CNNs for text



Language modelling with CNNs
source: lena-voita.github.io/ 

nlp_course.html



CNNs : receptive field

Close connection to 

our Markov models

source: lena-voita.github.io/ 

nlp_course.html



1D Convolutions on text
source: lena-voita.github.io/ 

nlp_course.html



Classification with CNNs

Equivariance → invariance

● via pooling

source: lena-voita.github.io/ 

nlp_course.html



Neural models

- NLP with Sequential Models



Sequential models

● Language is inherently sequential
○ so far we either ignored this completely (BoW)

○ or restricted to a small-size history (Markov, sliding window)

each window 

position is an 

independent pattern



Sequential models

● Language is inherently sequential
○ so far we either ignored this completely (BoW)

○ or restricted to a small-size history (Markov, sliding window)

● Many linguistic phenomena require longer distance interactions

○ “The computer which I had just put into the machine room on the fifth floor crashed.”

● Modern neural models address this:

1. Recurrent Neural Networks

2. Transformer Networks

remember?



Recurrent Neural Networks

● Recurrent Neural Networks (RNN) = contain cycles

○ introduces dependency on earlier inputs/outputs

● The most simple RNN model: Elman Networks

● Compute with hidden value 

from the preceding item

● We process one item (word) at a time

○ no fixed-length limit on the prior context!

○ In contrast to the window-based approaches



Recurrent Neural Networks

● Recurrent Neural Networks (RNN) = contain cycles

● These can be unrolled to make them feed-forward



Recurrent Neural Networks

● Recurrent Neural Networks (RNN) = contain cycles

● These can be unrolled to make them feed-forward

○ at each (time) step i

the weights are 

shared across all 

the timesteps!



RNN Training: forward unrolling

after unrolling, we have 

a “normal” feedforward 

network with shared 

weights

but different length 

for each sentence!



RNN Training

Training RNNs is also similar to what we have already seen:

1. Choose a loss function

2. Calculate gradients for all the parameters:

○ W: input-to-hidden layer

○ U: previous-to-current hidden layer

○ V: hidden-to-output layer

3. Train with gradient descent

Some differences in gradient computation:

● computing loss at time t requires ht-1

“Backpropagation 

Through Time”



RNNs as Language Models: weight tying

The input (E) and output (V) embedding matrices serve similar purpose

● just as in the word embedding models

E

V



RNNs as Language Models: weight tying

The input (E) and output (V) embedding matrices serve similar purpose

● just as in the word embedding models

Idea: weight tying

E

ET



RNNs as Language Models

RNN language models (T. Mikolov, again)

● work analogically to the window-based LMs

● but don’t have the limited context problem

Goal: predict

Train with cross-entropy

RNN Language 

model



RNNs as Language Models



Neural models

- RNN applications



Sequence Labeling

Assign a label to each element of a sequence (e.g., part-of-speech tagging)



Sequence Classification

Assign a class to the whole sequence

● topic classification, spam detection, sentiment analysis…

Here we fold the whole sequence into a single embedding

● that can then be used for any downstream task

Alternative: pooling of all the outputs

“end-to-end training”



Text Generation

Just like with n-grams. Here called autoregressive generation (non-linear)



Text Generation

Just like with n-grams. Here called autoregressive generation (non-linear)

This simple idea actually forms basis for sophisticated tasks!

● machine translation, text summarization, question answering

There we prime the generation with an appropriate context

● instead of using just dummy <s>

● e.g., the original text (for translation or summarization)



RNNs as Language Models

Train with teacher forcing:

In training, at each step t 

we feed the model 

the correct sequence w1:t-1

source: https://ufal.mff.cuni.cz/ 

jindrich-libovicky

https://ufal.mff.cuni.cz/


Text Generation: Practice

● Greedy Decoding
○ At each time step, select the most probable word

● Random Sampling
○ Just sample randomly

● Top-k Sampling
○ Sample, but only from the top-k most likely tokens

● Nucleus sampling
○ Sample from top-p probability mass tokens



Neural models

- RNN extensions



Stacked RNNs

= hidden layer output can be fed as input to another hidden layer (deep RNNs)



Bi-directional RNNs

We commonly have the entire sequence for training

● no need to use just the “left” context

● we can also utilize the “right” context

And combine these 2 representations

● into a bi-directional one:

○ via concatenation, element-wise addition, multiplication…



Bi-directional RNNs for sequence labeling



Bi-directional RNNs for sentence classification

This can be also used for sentence classification
● combining information from “start & end” of a sentence



Neural models

- Long-Short Term Memory (LSTM)



Long dependencies in text

Distant information is critical to many language applications:

○ “The computer which I had just put into the machine room on the fifth floor crashed.”

RNN can theoretically process unlimited context, but:

● need to reflect current & future information at the same time

● long sentences (deep unrolled NNs) lead to vanishing gradients

Consequently, the information contained in the hidden states tend to be fairly local



Long short-term memory (LSTM) network

Divide the latent context management into 2 sub-problems

● removing information when no longer needed

● adding information likely to be needed later

Approached by:

1. adding an explicit context representation layer
a. in addition to the common hidden layer representation

2. introduce new units: neural gates
a. to control the flow of information



Gating Intuition

source: courses.cs.washington 

.edu/courses/cse517/



Long short-term memory (LSTM) network

Gate units share common design:

1. feed-forward layer

2. followed by sigmoid fcn

3. follower by pointwise multiplication with the gated layer

The sigmoid serves as a soft “binary” mask

● values aligned with ~1 pass through

● values aligned with ~0 are deleted

Each LSTM cell (“neuron”) contains 3 of these gates



Long short-term memory (LSTM) network

prev. context

prev. hidden

current input

current hidden

current context



Long short-term memory (LSTM) network

forget gate - purpose: delete information from the context

● mask calculation:

● mask gating: 

+ standard RNN hidden unit: 

input gate - purpose: add information to the current context

● mask calculation:

● mask gating: 

element-wise 

(Hadamard) product



Long short-term memory (LSTM) network cont’d

Next, we add this to the (“masked”) context vector

● to obtain new context at time t

Finally, there’s an output gate

● decides solely what to output for 

the current hidden state

add-gate masking

of input+hidden

forget-gate masking

of prev. context



Long short-term memory (LSTM) network

prev. context

prev. hidden

current input

current hidden

current context

forget gate mask

output gate mask

add gate mask



source: https://colah.github.io/

posts/2015-08-Understanding-LSTMs

https://colah.github.io/


RNNs interface

In practice, you are nicely interfaced from all this complexity

● and can just plug LSTM everywhere we have seen RNN so far… 



Recursive NNs (TreeNNs)

Operate over regular trees instead of sequences



Neural models

- Attention and Transformers



Transformers

…LSTM are great, but the sequential processing can be problematic in practice

Next idea: Transformers

● maps sequences (x1,...,xn) directly to sequences (y1,...,yn)

● no recurrent connections (similar to feed-forward NNs)

● the sequence is processed at once in parallel

Comprised of transformer blocks made of 

● simple linear layers

● feedforward networks 

● self-attention layers



Causal (masked) Self-Attention

● The units are connected to reflect the sequentiality (causality)

● But can be processed in parallel, as there is no intermediate state



Self-Attention

Core: we match an item to a collection of related items

● revealing (pair-wise) relevance in the current context

How to score relevance? Dot-product (again)

● we then take softmax 

over all the comparisons

And output a weighted sum

● weighted by the relevance scores

Remember 

word2vec?



Query, Key, Value

The input embeddings xi take on different roles here:

as a Query: qi the current focus of attention

● will be projected as : qi=WQxi

as a Key: ki the preceding input used for matching

● will be projected as : ki=WKxi

as a Value: vi used for computing the output

● will be projected as : vi=WVxi

a notation adopted from 

information retrieval 

(or memory networks)

W ∈ R 
d×d



Query, Key, Value

Given these roles/projections:

● for the relevance score we use 

the query and key vectors

● for the output calculation we use

the value vectors

● additionally, we normalize the dot-products

○ by the dimensionality of the vectors



Example: computing the 3rd position

The input embeddings’ xi roles:

Query: qi - the current focus

● qi=WQxi

Key: ki - the preceding input

● ki=WKxi

Value: vi - the output role

● vi=WVxi



Self-Attention: Query, Key, Value

Since the calculations are independent for each position, we can vectorize this

● all input embeddings x1..xN form an input matrix X

● and the Query, Key, Value projections: Q = XWQ; K = XWK; V = XWV

● all the query-key comparisons come from QKT   (+softmax)

● and finally multiply the result by V

- we have to limit these to the preceding pairs only

Note that attention is quadratic in the input sequence size N



Transformer blocks

Additionally, we include

● feed-forward layer

● residual connections
○ just skip a layer

● layer normalization

○ layer-wise z-score

○ + linear projection

■ Lnorm= 𝛾x + 𝛽

These can be stacked

● just like the RNNs



Multihead Attention 

Problem: there can be multiple relationships between a pair of words

● syntactic, semantic, discourse…

Idea: Multi-head self-attention

● sets of parallel attention layers

● each with its own WQ; WK; WV

The rest of the transformer block remains the same



Multihead Attention 



Modeling word order

How about word positions?

● in RNNs, these were implicit in the model structure

● here we are invariant to their positions!

Idea: combine words with positional embeddings

● just like words, we can embed positions

● e.g. position 3 = some learnable vector

● up to some max. N

In the model, we just sum with the words 



Modeling word order

Positional embeddings:

problem:

● higher positions will 

receive fewer updates



Positional encoding

Better idea: use a static ℕ → ℝd function instead

E.g. sin + cos with varying frequencies 

- from the original “Attention is all you need” paper

Source: 

https://kazemnejad.com/blog/transfor

mer_architecture_positional_encoding



Complete Transformer block

source: Attention is all you need 

https://arxiv.org/abs/1706.03762



Neural models

- Some more applications with Transformers



Transformers as Language Models

all in parallel!



Contextual Generation

Idea: use context to prime the autoregressive generation

● underlies a number of practical applications!



Text summarization

One practical application of the context-based autoregressive generation

Supervised training regime (data e.g. from news):

● full articles + their summaries

● (x1,..., xm) +  (y1,..., yn) 

With transformers, we simply concatenate these: (x1,..., xm,δ, y1,...yn)

● and train a standard (!) autoregressive language model

○ with teacher forcing, exactly as we did before!

Abstractive version



Text summarization

The same regime used for other advanced tasks!

● e.g. machine translation or question answering



Transformers summary

Transformers are used extensively across all NLP tasks now

● sequence labeling: part-of-speech, named entities, …

● sequence classification: sentiment, spam, …

We commonly use pre-training on large textual corpora

● in a self-supervised manner as a standard LM

And then fine-tune on top of the learned representations

● This was the key to the many recent breakthroughs in NLP…



NLP journey overview



Things we did not cover…

● All of linguistics
○ Parsing

■ Dependency

■ Constituency

○ Grammars

○ Lexicons, corpora

● Text preprocessing
○ Regular expressions

○ Edit distance

● Applications
○ Basic: Part of speech tagging, NER, RE, …

○ Advanced: machine translation, QA, dialog systems, …


