Introduction to NLP

Neural models

Compressed out of NLP courses from Dan Jurafsky (Stanford), & David Bamman (Berkeley),
Michael Collins (MIT & Columbia), and some online (Udemy) courses

Book: Speech and Language Processing by Jurafsky & Martin (3™ edition)

A Neuron

e Basically a Logistic Regression
o also used in NLP a lot

=0o(w-x+b)=
_— y=ol)= T exp(—(wx+))
non-linearity
weights

source: https://ufal.mff.cuni.cz/

: . . : : jindrich-libovicky
Computational graph: logistic regression =5
Logistic regression:

y=0(w-x+b)
Computation graph:

forward graph backward graph

https://ufal.mff.cuni.cz/

Feed-Forward Neural Networks
h=0c(Wx+b)
e Stacking the neurons into “hidden” layers
o with which we move to matrix notation
e You are already familiar with these models from RPZ, SSU, UI, ...

input layer hidden layer output layer

source: https://ufal.mff.cuni.cz/

Feed-Forward Neural Networks i
(veeseccccosce) T

L1 ! 1
(eeesescscccscccsce) hl — f(Wlx‘l‘bl)

L1 ! 1
(BESSSSeeeeeesesss®) hy = f(Whhy + by)

L1 !

L1 !
G ., = (W, h, ,+b,)

https://ufal.mff.cuni.cz/

Activations

e Sigmoid non-linearity has some problems in practice

o deviation + saturation
saturation

e Some better choices:
1.0 10

0.5

U

saturation

0.0

tanh(z)

y=max(2,0)
o

y =
|
o
9]
|
9]

10

Feed-Forward Neural Networks

e To obtain multi-class probabilities, we should normalize the values

- X = [x1,X2,...Xy]
X~ ’//" z = Uh
: ‘ y = softmax(z)
nO ~\' softmax(z;) = exp(z:) 1<i<d

>4 jexp(z;) ~

input layer hidden layer output layer

Feed-Forward Neural Networks

e Such neural networks can be readily applied to a range of NLP tasks

dessert wordcount X4
=3

ositive lexicon
was P X

words = 1
t f 19 2
great coun =00 no X4
Input words X

[nx1] [dyxn]

[3 xdh] [3x1]

[dy,x1]

Input layer Hidden layer Output layer
n=3 features softmax

Deep Learning

o) idea - instead of crafting features, we learn from raw text -
aka representation learning - with our word !
embedding for [@) @
dessert— ‘“dessert” —'3 @
___embedding for __:2
was “was” ©) : @
areas— 3 s
Input words X \%\% h U
[dx1] [d}xd] [d, x1] [3xdy] [3x1]
Input layer Hidden layer Output layer
these can be pretrained! pooled softmax
embedding

Neural models
- revisiting Language Modelling

Neural Language Models

e Predict (upcoming) word given some (previous) context

P(W;‘Wl,...,wl‘_l) %P(W;‘W;_N+1,...,Wr_1)

Lanuage modelling with n-grams

Google

Sparsity Problem 1

Problem: What if “students
opened their w” never

(Partial) Solution: Add small §

to the count for every w € V.

what is the |

{=

what is the weather

what is the meaning of life occurred in data? Then w has .. .
what is the dark web . This is called smoothing.
what s the xfl probability 0!

what is the doomsday clock
what is the weather today
what is the keto diet

what is the american dream
what is the speed of light
what is the bill of rights

count(students opened their w
P(w|students opened t.he;“)\zhl (£ -)
,{cmmt(st.udeni.s opened their)|

Google Search I'm Feeling Lucky

Sparsity Problem 2

Problem: What if “students

© limeetyou at the o > opened their” never occurred in
data? Then we can’t calculate
probability for any w!

(Partial) Solution: Just condition
on “opened their” instead.
This is called backoff.

airport

Note: Increasing n makes sparsity problems worse.
Typically, we can’t have n bigger than 5.

Neural Language Models

e Predict (upcoming) word given some (previous) context

P(W;‘Wh...jwt_l) %P(WI‘WI—N—I—la---aWI—l)

e \We already did this with the n-gram counting Markov models

e However, neural LMs:

+ handle longer histories | have to make sure that the cat gets fed
VS.
+ are generally more accurate | have to make sure that the dog gets fed

- less interpretable
- slower to train

One-hot vectors & embeddings

e A vector of length |V|
e 1 for the target word and O for other words

e Soif “apple” is vocabulary word 5 the one-hot vector is
® [0000100..0000]
Vi

e Embedding matrix E
e stores embeddings d E X
of all words in vocab

Revisiting word2vec

Word2vec = possibly the simplest “neural” LM
e 2 variants of the model training:

Projection layer

Input layer
p Y embedding for wy

e Skip-gram X

o Predict each neighboring word |

from a given “middle” word 1<ivi

Input layer

1-hot input vectors
for each context word

e CBOW (Continuous Bag Of Words) T o ——
o Predict the “missing” middle word L I
from its neighbors i

Output layer
probabilities of
context words

W a5 vy

00) (000 v 0

@0 e ~

Output layer

probability of w

KM%
a N =

Word2vec skip-gram: visual Sl

2 “hidden” Output layer
layer h = W, probabilities of
context words

Ok= Ck'h
Y2 —
) Ox= C'W;

Projection layer
embedding for w;

') ..J
=

Input layer

1-hot input vector

Xy ;‘\ ? Yo Wil
X, @ 'E ; :
. : . . .
Wi oxlo| W o LAY AN
. VIxd . @] v, +sigmoid applied on
o ® ® vy, top (SGNS)
® L C ol :
Xy 9 _——— dx|V]| :
_ A\ oy, Wi+l
IX|V] there is no . .
non-linearity! ol °
@y

and 0 p(aardvark|...)

thanks ’I L.M window of
,{{ 0 v size =3
for v) %" ' — p(do|...) \/
:Z | }\“?’ : e = [Ex¢-3;Ex;2;Ex; 1]
4 WW“:E ”g > p(fish]...) h = o(We+b)
e ZX\ z = Uh
the '/, y = softmax(z)

p(zebral...)

for

all

the

L]

. we train with
p(aardvark]...) *, cross-entropy

-

L]
]

K
TR Lep(§.y) =~) wiloghi
: k=1

L

; " p(fish|...) 4 LCE(S?,y) _ —logj‘lc

_——
aka negative
o~ log-likelihood
p(zebral...)
E
X x|V 3dx1 dpx3d dpx1 VIxdy y exp(z)
A C
VIx3 VX1 Lce(y,y) = —log —%
input layer ~ embedding hidden output layer z j=1 CXp (ZJ)
one-hot layer layer softmax

vectors

Neural Language models: training

e We initialize all the parameters 6 = E,W,U randomly

o good to start with zero mean and unit variance

e We iteratively move through the text, predicting each word w;, at a time

o given the context of N previous words W;_; ...W;_,

o Note that the embeddings are shared for all the N positions
e This is essentially a multi-class |V| classification problem
e We train against cross-entropy Leg = —logp(wy|wi—1,ccox Wy 1)
e And optimize with gradient-descent

o +tricks such as dropout

d[—logp(wi|wi—1, ..oy wi—pn+1)]

s+1 _ s
""" =0"—n 50

Neural models
- CNNs for text

source: lena-voita.github.io/

: : nlp_course.html
Language modelling with CNNs =

predict the
next token
I like the cat on a red <eos>
No pooling between
convolutions: do not want to 00
lose positional information \ convolution T
OO D U O D Cl D EI 00
convolution
O mm O
Padding to shift tokens: we convolution
Stack several

need to prevent information 0]
flow from future tokens O
of |o

000
[coool\
[ccoo)\
[coool\
[cooo)
[Coo ol
[ccoo)
[SIeYexe] §
[coo0]
[0000]

convolutions

<pad> <pad> <bos> I like the cat on a red|mat

condition on the previous tokens

CNNs : receptive field

Close connection to I like the cat on a red|mat|<eos>
our Markov models é é} [l] é é é é é
O O
O 00000 o OJ

source: lena-voita.github.io/ l;
nlp_course.html C] [:] D %/L— /[‘
ey . o

@) @) O

@) @) @)

O O O
O @)

<pad> <pad> <bos> I like the cat on

@N\\’h

o [[cooo
[ccoo
[0000]

3

[0000]
[0000]
[0000]
[c000]

red| mat

receptive field

source: lena-voita.github.io/

1D Convolutions on text np_course him!
T
kernel size=2 kernel size=3 kernel size=4
D?DDDDD D?DDE]E] DiDDD
O U0 00 O OO0 000 OO0 0 O U0 0O
<pad> I like the cat . <eos><pad> <pad> I like the cat . <eos><pad> <pad> I like the cat . <eos><pad>
stride=1 (default) stride=2 stride=3
O0O000 O O O O O O O O
O0O000 00 O O0000 0000 O0000 0 00 O
<pad> I like the cat . <eos><pad> <pad> I like the cat . <eos> <pad><pad> <pad> I like the cat . <eos><pad> <pad>
padding=0 (default) padding="1 padding=2
Ee8e S BB RN B E B BEEE D
O000 OO EE e e @ 00000 00 0 0

I like the cat . <eos> <pad> I like the cat . <eos> <pad> <p0d><p0d>lI like the cat . <eos><pad><pad>

Classification with CNNSs

Equivariance — invariance

e Vvia pooling

Typical usage
CNNs for texts

To be continued
depending on the task

——

|

o]
o}
=
=

Q

(ecoo)={ |
[oooo]an_;.
[man_)

[oooo]»n_)
(eece)l>{{—

0000}
0000
[co0 0]
0000

like the cat on

(-

[oooo]—>n—>
[oooo]—an_,_J

O

0000]
0000]

O

mat<eos> <pad>

<—— pooling <—{ over positions

<—— convolution <—

O)
o <— word

H
A

H

o

Label: cat Label: cat

Label: cat

Label: cat

Label: cat

source: lena-voita.github.io/
nlp_course.html

-

Aggregate matches

(locally or globally)

<— non-linearity (aka “we don't care

(ReLU) where the cat is”)

Find matches
with patterns
(aka “find acat”)

embeddings

We don't care where the cat s,
we care thatitis somewhere.

Then why don't we process all
these cats similarly?

Neural models
- NLP with Sequential Models

Sequential models

e Language is inherently sequential
o so far we either ignored this completely (BoW)
o or restricted to a small-size history (Markov, sliding window)

p(ant]...) p(doe]...) p(fish|...) p(zebral...)
t t t t
wniiasers (@D - @ - @ ~ @)
U
hidden layer h (h j each window
position is an
w independent pattern
embedding layer e E| @ E| 7
.| and Jthanks for | all | the ? |3
Wi-3 W2 We-1 Wi

Sequential models

e Language is inherently sequential
o so far we either ignored this completely (BoW)
o or restricted to a small-size history (Markov, sliding window)

e Many linguistic phenomena require longer distance interactions
o “The computer which | had just put into the machine room on the fifth floor crashed.”

o
@)

e Modern neural models address this:
remember?
1. Recurrent Neural Networks

2. Transformer Networks

Recurrent Neural Networks

e Recurrent Neural Networks (RNN) = contain cycles

o introduces dependency on earlier inputs/outputs —

e The most simple RNN model: EIman Networks

e Compute with hidden value X4

¥

from the preceding item

e \We process one item (word) at a time
o no fixed-length limit on the prior context!

o In contrast to the window-based approaches

Recurrent Neural Networks

e Recurrent Neural Networks (RNN) = contain cycles

e These can be unrolled to make them feed-forward

Y

Xt

Y

Yt

C Yt)
h, = g(Uh,—; +Wx,) \ Vv /
r = Vhr
y: = f(Vh,) (- S

Recurrent Neural Networks

e Recurrent Neural Networks (RNN) = contain cycles
e These can be unrolled to make them feed-forward
o ateach (time) step |

function FORWARDRNN(x, network) returns output sequence y

h' 0)
for i< 1 to LENGTH(x) do
hi<g(Uh;_; + Wx;) X4

yi < f(Vh;) I

the weights are

return
y shared across all —

the timesteps!

RNN Training: forward unrolling

C V3)
after unrolling, we have
a “normal” feedforward U
network with shared
weights (yo)
\ \'"/ U / w
h
C Y1) < C X3)

/ w but different length
for each sentence!

RNN Training

Training RNNs is also similar to what we have already seen:

1. Choose a loss function

2. Calculate gradients for all the parameters:
o W: input-to-hidden layer
o U: previous-to-current hidden layer
o V: hidden-to-output layer

3. Train with gradient descent

Some differences in gradient computation: “Backpropagation
Through Time”

e computing loss at time t requires h,_;

RNNs as Language Models: weight tying

The input (E) and output (V) embedding matrices serve similar purpose

e just as in the word embedding models

e = EX; C Yt)
h, = g(Uh,_| +We,) \ Y /
y; = softmax(Vh,) (>)

RNNs as Language Models: weight tying

The input (E) and output (V) embedding matrices serve similar purpose

e just as in the word embedding models

Idea: weight tying e, = Ex, (vy)
h, = g(Uh;_; +We,) \ ET /
yt — SOftmaX(‘EThr) (ht)

RNN Language

RNNs as Language Models

model

e, = Ex
RNN language models (T. Mikolov, again) ! d L

h, = g(Uh,_; +We
e work analogically to the window-based LMs ! g((—17 r)
e Dbut don’t have the limited context problem Y = SOftmaX(Vh;)
Goal: predict P(Wr+l = I'|W1,,...,wf) = Y [.r,]

Lee = —) yi[w]log§:[w]

Train with cross-entropy

Lee(Yr,y:) = —logy:(wigi]

RNNs as Language Models

Next word long and thanks for all
\) 1 T
Loss [—108 Yiong] [=10€ Yand l—log:fjthanksl [—Iog ytor] [—10g Yan =2 Ler
A \ 1 t=1
y
c p
oo (1) (L) () () G
ocabulary vh1 X Y Y y
h
RNN > > .
\ 7} . . X X j
Input o
Embeddings

P —ce®
cee
—0Q0®
—00®
—00®

long and thanks for

Neural models
- RNN applications

Sequence Labeling

Assign a label to each element of a sequence (e.g., part-of-speech tagging)

k_y

womex NNP MD VB DT NN
y
sl [L aale J()
A A A A A
RNN v h
Layer(s) \ h A A A A

Embeddings o [? % [% % [?

Words Janet will back the bill

Sequence Classification

Assign a class to the whole sequence

e topic classification, spam detection, sentiment analysis...
Here we fold the whole sequence into a single embedding

e that can then be used for any downstream task

Alternative: pooling of all the outputs

“‘end-to-end training”

[- RNN
X X

g

Text Generation

Just like with n-grams. Here called autoregressive generation (non-linear)

—_— —_— —

long
ong

(o)

-
-

Sampled Word S‘O

Softmax (..)

N

gé]
So
P4

-~
“ “

Embedding ?]

Input Word <S>

|

|

|

|

|

|

|

|

|

I
RNN :
S
|

|

|

|

|

|

|

|

Text Generation

Just like with n-grams. Here called autoregressive generation (non-linear)
This simple idea actually forms basis for sophisticated tasks!

e machine translation, text summarization, question answering

There we prime the generation with an appropriate context

e Iinstead of using just dummy <s>
e e.g., the original text (for translation or summarization)

source: https://ufal.mff.cuni.cz/

jindrich-libovicky
RNNs as Language Models =
Train with teacher forcing: runtime: U/ ; wecou) X training: Yj wouma

In training, at each step t
we feed the model
the correct sequence wy..;

https://ufal.mff.cuni.cz/

Text Generation: Practice
thought B

had
saw ||
-y . did

e Greedy Decoding
o At each time step, select the most probable word shesaid . " 1 never said I

. wanted [

e Random Sampling told

liked |

o Just sample randomly got B

e Top-k Sampling

o Sample, but only from the top-k most likely tokens I I w?ront*l-_

. cooling i

e Nucleus sampling —om__ _ BB/ g

,, o}

warming |

burning |

o Sample from top-p probability mass tokens
cooking |

Neural models
- RNN extensions

Stacked RNNs

= hidden layer output can be fed as input to another hidden layer (deep RNNSs)

Bi-directional RNNs

We commonly have the entire sequence for training

e no need to use just the “left” context h{ = RNNfoma,.d(xl,,...

e we can also utilize the “right” context hﬁ = RNNbackward(xh“-

And combine these 2 representations

e into a bi-directional one: h, = [h{; hf;]

o via concatenation, element-wise addition, multiplication...

Bi-directional RNNSs for sequence labeling

2 Yo Y3 Yn
- O‘W concatenated B
—> »U outputs
[B B RNN 2
- - RNN 1

Bi-directional RNNs for sentence classification

(Softmax)

This can be also used for sentence classification
e combining information from “start & end” of a sentence /5 FFN l\
C C)

A
«— —
h, T h,

[‘h}- - - RNN 2 J

51

[N - RNN 1 -

\)|

Neural models
- Long-Short Term Memory (LSTM)

Long dependencies in text

Distant information is critical to many language applications:

o “The computer which | had just put into the machine room on the fifth floor crashed.”

RNN can theoretically process unlimited context, but:

e need to reflect current & future information at the same time
e |ong sentences (deep unrolled NNs) lead to vanishing gradients

Consequently, the information contained in the hidden states tend to be fairly local

Long short-term memory (LSTM) network

Divide the latent context management into 2 sub-problems

e removing information when no longer needed
e adding information likely to be needed later

Approached by:

1. adding an explicit context representation layer
a. in addition to the common hidden layer representation

2. Introduce new units: neural gates
a. to control the flow of information

Gating Intuition

Outputs ’

Hidden
Layer

Inputs '

Time 1 2 3 4

Output
gate

Forget gat

Input gate

Outputs

Hidden
Layer

Inputs

Time

-

source: courses.cs.washington

.edu/courses/cse517/

woq @

St
)

%9%
O @@

@ O
o O_H,oﬂ

‘oo

Long short-term memory (LSTM) network

Gate units share common design:

1. feed-forward layer
2. followed by sigmoid fcn
3. follower by pointwise multiplication with the gated layer

The sigmoid serves as a soft “binary” mask

e values aligned with ~1 pass through
e values aligned with ~0 are deleted

Each LSTM cell (“neuron”) contains 3 of these gates

Long short-term memory (LSTM) network

-

Y

prev. context

Ct-1

R

Rk
prev. hidden
7%

current input

current context

current hidden

Long short-term memory (LSTM) network

forget gate - purpose: delete information from the context

e mask calculation: f, = o(Urh,—1 +W¢x element-wise
. : (A 1%(Hadamard) product
e mask gating: k, = ¢, Of

+ standard RNN hidden unit: g; = tanh(Ugh,—1 +W,Xx,)

input gate - purpose: add information to the current context

o mask caleulation: i, = o&(Ujh,_; +W,;x)
e mask gating: ir g O

Long short-term memory (LSTM) network cont'd

Next, we add this to the (“masked”) context vector €; = _i; + k;

AN

e (o obtain new context at time t add-gate masking | |forget-gate masking

e decides solely what to output for

the current hidden state o, = O'(Ughr—l -+ Wﬂx;)

hr —_— Of@lZﬁﬂh(C;)

Long short-term memory (LSTM) network

-

Y

forget gate mask

prev. context

Ct-1

R

Rk
prev. hidden
7%

current input

current context

current hidden

output gate mask

add gate mask

LSTM J

You can think of the LSTM equations visually like this:

Write some new cell content @
Forget some T

cell content \Q \. .{)

source: https://colah.qithub.io/
posts/2015-08-Understanding-LSTMs

Ct1 =P =D

iy Oy

Compute the

fl‘.
forget gate ___——_H:::-—*I_Cll_ljl_cli_l IEI@ |jo_|

——— | Output some cell content
to the hidden state

Compute the Compute the
input gate new cell content

1 0 — > <

Neural Network Pointwise Vector

Layer Operation Transfer ~ Concatenate Copy

— N

Compute the
output gate

https://colah.github.io/

RNNSs interface

In practice, you are nicely interfaced from all this complexity

e and can just plug LSTM everywhere we have seen RNN so far...

Ct hy

h ht
a a

Recursive NNs (TreeNNSs)

Operate over regular trees instead of sequences

1
5.5
1
2.5
3.8
4 23
45 3.6
o}

my birth

©o P2 = g(a,p1)

oo p1=8g(b,c)

[;;.]—’[]—>[55]—>[33]—)[] Co GO

very good ...

.. hot
RN a b ¢

the country of my birth

Neural models
- Attention and Transformers

Transformers

...LSTM are great, but the sequential processing can be problematic in practice
Next idea:

e maps sequences (X,,...,X,) directly to sequences (y,...,Y,)
e no recurrent connections (similar to feed-forward NNSs)
e the sequence is processed at once in parallel

Comprised of transformer blocks made of

e simple linear layers
e feedforward networks
o layers

Causal (masked) Self-Attention

e The units are connected to reflect the sequentiality (causality)
e But can be processed in parallel, as there is no intermediate state

Self-Attention
Layer

Self-Attention

Core: we match an item to a collection of related items Remember
word2vec?

e revealing (pair-wise) relevance in the current context

How to score relevance? Dot-product (again) score(X;, X;) = X;-X;
e we then take softmax o;; = softmax(score(x;,x;)) Vj<i
over all the comparisons _ exp(score(x;,X;)) vj<i

S exp(score(x;, X))

Yi = Z Qi jX

J<i

And output a weighted sum

e weighted by the relevance scores

Query, Key, Value

The input embeddings x; take on different roles here:

as a Query: g; the current focus of attention
e will be projected as: q;=W®%x;

as a Key: k; the preceding input used for matching
e will be projected as : k;=WKx;

as a Value: v, used for computing the output

e will be projected as: v.=WVx.

a notation adopted from
information retrieval
(or memory networks)

WeR ¥

Query, Key, Value

Given these roles/projections:

for the relevance score we use

score(x;,Xi) = q;-k;
the query and key vectors (%i, %) Qi K
for the output calculation we use
Yi = Z QijVj
the value vectors —
J=1

additionally, we normalize the dot-products score(x;,X;)
o by the dimensionality of the vectors V dk

Example: computing the 3rd position

The input embeddings’ x; roles:

Query: g; - the current focus

o (=W,

Key: k; - the preceding input

([ki:WKXi

Value: v; - the output role

o Vi:WVXi

Weight and Sum
value vectors

Output Vector

Ys

somax (3@ S)
Key/Query <'\B‘
Comparisons >
< —J0 4
Generate N N N
ey, query value 4 @ q @ 4 @
key, query val @ @2. @31

vectors X, ‘q

Self-Attention: Query, Key, Value

Since the calculations are independent for each position, we can vectorize this

all input embeddings x;..xy form an input matrix X

all the query-key comparisons come from QKT (+softmax)
and finally multiply the result by V

QKT
SelfAttention(Q,K,V) = softmax () V
Q1Y) Vi

- we have to limit these to the preceding pairs only

Note that attention is quadratic in the input sequence size N

and the Query, Key, Value projections: Q = XWQ; K = XWK; V = XWV

ql+k1| —o0 | —o0 | —o0 | —oo
g2+k1|g2°k2| —o0 | —o0 [—o0
g3+k1(g3°k2|q3°k3| —co | —oo
q4+k1|q4-k2 |g4+k3 |g4+k4 | —co
q5-k1|q5k2 |g5-k3 |q5-k4 | q5k5

Transformer blocks

Additionally, we include

e feed-forward layer

e residual connections
O just skip a layer

e layer normalization
o layer-wise z-score
o + linear projection

u Lnorm:)/X + ﬁ
These can be stacked

e just like the RNNs

P
Transformer
Block

Residual

connection [Feedforward Layer]

(x—)
(0]

X =

Residual
connection

[Layer Normalize

=$

A

(Layer Normalize]

:
[Self-Attention Layer }
A /

Hes . &)

Multihead Attention

Problem: there can be multiple relationships between a pair of words

e syntactic, semantic, discourse...

Idea: Multi-head self-attention MultiHeadAtm(X) = (head; @ head,... & head;,)W?
Q=XW?; K=XWK; v=xw/

e sets of parallel attention layers
head; = SelfAttention(Q,K,V)

e each with its own WQ: WK: WV

The rest of the transformer block remains the same

Multihead Attention

g

Project down to d wO

Concatenate [head1 I head? I head3 I head4

Outputs

Multihead
Attention
Layer

Modeling word order

How about word positions?

Output Vector

e In RNNSs, these were implicit in the model structure
e here we are invariant to their positions! Weight and Sum

value vectors

Idea: combine words with

e just like words, we can embed positions Sofimax (3 4)
e e.g. position 3 = some learnable vector R
o Up to some max. N Key/Query o=
Comparisons &
In the model, we just sum with the words

— <0 —
Sl @K | #><I0 | @ <
| @ @ @3&

vectors

Modeling word order

Positional embeddings:

Transformer
Blocks

Composite
Embeddings
(input + position)

problem:

Word
. ..) Embeddings
e higher positions will Sosition
receive fewer updates Embeddings

Janet will back the bill

Positional encoding

Better idea: use a static N — RY function instead
E.g. sin + cos with varying frequencies

=] & O WO =D
R R R R OO0 00

= =R O O == O 0O

P(k.21) = sin()

n2v'd

P(k,2i+ 1) = cos{)

- from the original “Attention is all you need” paper

= O = O = O = O

10 :
11 :
12 :
13:
14 :
15:

P Pk, R, O O O 0
[e T = T = S R

= O = O = O = O

pvd

075
050
025
000
=025
050
-0.75
n Lo
fA

Source:
https://kazemnejad.com/blog/transfor
L mer_architecture positional encoding

Complete Transformer block

Multi-head attention

L 1

Attention

Scaled Dot-Product

Output
Probabilities
(¢)
Add & Norm J==
Feed
Forward
e 1 —\ l Add & Norm I
—~LAdd & Norm } Multi-Head)
Feed Attention ' I
Forward 7) Nx
—]
Nix Add & Norm
~—>| Add & Norm) NESiea
Multi-Head Muilti-Head
Attention Attention
AT —p At~
S — J . —
Positional Positional
Encodi P @_® i
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

1T 18

t
[Linear]J'[Lineaﬂ}

\Y K

source: Attention is all you need
https://arxiv.org/abs/1706.03762

Scaled dot-product attention

I MatMul I

Mask (opt.)

MatMul

Neural models
- Some more applications with Transformers

Transformers as Language Models

Next word long and thanks for all

Loss |7 Iog leHgJ |7 lUg yandl |_]-Og Ythanks | I7 10g yfor | |_ J'Og 'yall ‘

“odabuiary S@ ol @]@ @L@ é@ll;

Linear Layer

LT
= =) Lck
TE CE

2 all in parallel!

Transformer !
Block :
3

Input
Embeddings

So

Contextual Generation

Idea: use context to prime the autoregressive generation
Completion Text

e underlies a number of practical applications! — -
all””"; the)
| i
Sample from Softmax : E
! | :
linear layer < 7 | |
i I ;
Transformer — : ——
Blocks =7

Input
Embeddings

—{00® ;

Prefix Text

Abstractive version

Text summarization 7 —

One practical application of the context-based autoregressive generation
Supervised training regime (data e.g. from news):

e full articles + their summaries
® (Xgye X)) + (Yireees Vi)

With transformers, we simply concatenate these: (X4,..., X,,0, Y1,---Y;)

e and train a standard (!) autoregressive language model
o with teacher forcing, exactly as we did before!

Text summarization

The same regime used for other advanced tasks! Generated Summary
A
: : _ _ o N N
e e.g. machine translation or question answering Kyle | Waring will”

will

|
I |

The only . reached its destination d I Kyle | Waring
L .

N— -

N

—

Original Story Delimiter

Transformers summary

Transformers are used extensively across all NLP tasks now

e sequence labeling: part-of-speech, named entities, ...
e sequence classification: sentiment, spam, ...

We commonly use pre-training on large textual corpora
e In a self-supervised manner as a standard LM
And then fine-tune on top of the learned representations

e This was the key to the many recent breakthroughs in NLP...

NLP journey overview

Co-
occurrence
Matrix

ELMo/BERT/
XLNet

Transformer
Models

Word2Vec/
Glove

Text Text
Classification Sumwarization

m “Parallelized the processing of sequential data, for better performance”
. Attention Based “Ability to focus on relevant input via attention weights”
Entity

Question
Answering Tra”sfo rmers Recognition _ “Considered the complete sentence in order to predict”
_ “Minimized the problem of diminishing gradients”
“Extracted positional information”
Yanone foxt FeEmdos p
Modeling Generation “Extracted meaning or intuitions from Represented words”

Translation

“Converted textual information to numerical form*“

Things we did not cover...

e All of linguistics
o Parsing
m Dependency
m Constituency
o Grammars
o Lexicons, corpora

e Text preprocessing
o Regular expressions
o Edit distance

e Applications

o Basic: Part of speech tagging, NER, RE, ...
o Advanced: machine translation, QA, dialog systems, ...

