Introduction to NLP

Vector and matrix models

Compressed out of NLP courses from Dan Jurafsky (Stanford), & David Bamman (Berkeley),
Michael Collins (MIT & Columbia), and some online (Udemy) courses

Book: Speech and Language Processing by Jurafsky & Martin (3™ edition)

What do words mean?

e N-gram or text classification methods we've seen so far
o Words are just strings (or indices w;, in a vocabulary list)
o That's not very satisfactory!

e Formal logic classes:
o Vx dog(X) — mammal(X)
o Vxcat(X) ?
o But again, just atomic symbols

e What should a good representation of word meaning do for us?

e Let's look at some desiderata from
o the linguistic study of word meaning

Relations between words: Synonymy

® Synonyms have the same meaning in some or all contexts.
o couch/sofa
o big/ large
o automobile / car

e Note that there are probably no examples of perfect synonymy!
o Even if many aspects of meaning are identical
o Still may differ based on politeness, slang, register, genre, etc.

o Example: big vs. large
O my big sister != my large sister

- ...Difference in form - difference in meaning

Relation: Similarity

e No synonymy, but words can have similar meanings.

O car vs. bicycle
O cow vs. horse

e How to find out? Ask humans!

wordl ___[word2 _____Isimilarity ___

vanish disappear 9.8
behave obey 7.3
belief impression 5.95
muscle bone 3.65
modest flexible 0.98
hole agreement 0.3

SimLex-999 dataset (Hill et al., 2015)

Other word relations

Words can be related in a number of ways:

e Via a semantic frame (“topic”)
O coffee, tea: similar
O coffee, cup: related (not similar)

e Antonymy note that these are
o dark - light actually very similar!

o short - long
o fast - slow

e Connotation (sentiment)
o great- love
o terrible - hate

Sentiment

Words seem to vary along 3 affective dimensions:
o valence: the pleasantness of the stimulus
o arousal: the intensity of emotion provoked by the stimulus
o dominance: the degree of control exerted by the stimulus

Valence love 1.000 toxic 0.008
happy 1.000 nightmare 0.005
Arousal elated 0.960 mellow 0.069
frenzy 0.965 napping 0.046
Dominance powerful 0.991 weak 0.045
leadership 0.983 empty 0.081

Values from NRC VAD Lexicon (Mohammad 2018)

Distributional semantics
- aka vector semantics

Computational models of word meaning

e Vector (distributional) semantics
o The standard model in language processing!
o Handles many of our linguistic goals!

e I|dea: Words are defined by their environments (the words around them)
o Wittgenstein: "The meaning of a word is its use in the language”
o Firth (1957): “You shall know a word by the company it keeps”

e From the common notion of synonymy:
o If A and B have almost identical environments, they are synonyms!

Example: What does mean?

Suppose you see these sentences:
* Ong choi is delicious sautéed with garlic.
»Ong choi is superb over rice
» Ong choi leaves with salty sauces

And you've also seen these:
* ...spinach sautéed with garlic over rice
* Chard stems and leaves are delicious
» Collard greens and other salty leafy greens

Conclusion:
o Ongchoi is a leafy green like spinach, chard, or collard greens
m We could conclude this based on words like "leaves" and "delicious" and "sauteed"

Ongchoi: "Water Spinach"

FipFE
kangkong
rau muong

Yamaguchi, Wikimedia Commons, public domain

Model of word meaning

® |dea 1. Let's define the meaning of a word by its distribution in language
o meaning its neighboring words

® |dea 2: Meaning is a point in multidimensional space

Valence love 1.000 toxic 0.008

happy 1.000 nightmare 0.005

example'wnh Arousal elated 0.960 mellow 0.069
connotation:

frenzy 0.965 napping 0.046

Dominance powerful 0.991 weak 0.045

leadership 0.983 empty 0.081

Defining meaning as a point in space

Each word = a vector (not just "good" or "w,:")
Similar words are "nearby in semantic space"”

We build this space automatically by seeing which words are nearby in text

not good
bad
to by s | dislikt_a worst
that now are incredibly bad worse
a ' you
than with is
very good incredibly good
amazing fantastic

e) wonderful
terrific nice

good

We define meaning of a word as a vector

e These vectors are commonly called "embedding"
o because they are embedded into shared space
e The standard way to represent meaning in NLP

Fine-grained model of meaning for similarity

e This is in contrast to thesaurus/logic-based meaning where
o We don'’t have a thesaurus for every language

o Even if we do, they have problems with recall
m Many words are missing
m Most (if not all) phrases are missing
m Some connections between senses are missing

Intuition: why vectors?

Consider sentiment analysis:

o With words, a feature is a word identity
m Feature 5: 'The previous word was "terrible™
m requires the exact same word to be in training and test

o With embeddings:
m Feature is a word vector
m The previous word was vector [35,22,17...]
m Now in the test set we might see a similar vector [34,21,14]
m We can generalize to similar but unseen words!!!

Words as vectors
- document & word matrices

Term-document matrix

We already know that each document can be represented by a
count vector of words:

As You Like It Twelfth Night Julius Caesar Henry V
battle i "0) A 13
good |14 80 62 39
fool 36 58 1 4
wit 0 15 2 3

e Thisis called the
This representation is fundamental in indexing and

information retrieval

Visualizing document vectors

Henry V [4,13]
O 15—
ES
S 107/ Julius Cacsar /1,7]
57 As You Like It /36,1 ~ Twelfth Night /58,0]
49
1 T T T T T T T T T

5 10 15 20 25 30 35 40 45 50 55 60
fool

Vectors are the basis of information retrieval

As You Like It Twelfth Night Julius Caesar Henry V

battle 1 0 7 '
good 14 80 62 89
fool 36 58 1 4
wit 0 15 2 3

® \Vectors are similar for the two comedies
o AsYou like It & Twelfth Night

e But comedies are different than the other two
o Comedies have more fools and wit and fewer battles.

Words as rows In term-document matrix

e Similarly to documents,

As You Like It Twelfth Night Julius Caesar Henry V

battle

good
fool
wit

® battle is "the kind of word that occurs in Julius Caesar and Henry V"

® foolis "the kind of word that occurs in comedies, especially Twelfth Night"

Term-context matrix

e We may now completely skip the documents and focus on the words

e This lead to the
o or“word-word” matrix of size VxV

e The words are similar in meaning if their context vectors are similar

aardvark ... computer data result pie sugar
cherry 0 2 3 9 442 25
strawberry 0 0 0 1 60 19
digital {0 1670 1683 85 5 4)
information 0 3325 3982 378

remember
bi-grams?

Word context creation

Instead of using entire documents, we can extract smaller context windows:

Lorem ipsum doloa
=it amet, =

consecte

is traditionally followed by cherry pie, a traditional dessert
often mixed, such as strawberry rhubarb pie. Apple pie
computer peripherals and personal digital assistants. These devices usually

a computer. This includes information available on the internet

e The size of the context window depends on our goal
e The shorter the windows the more syntactic the representation (x 1-3 words)
e The longer the windows the more semantic the representation (£ 4-10 words)

Visualizing word vectors

4000
a information
£ 3000— [3982,3325]
= digital
& 2000/71683,1670]
o
© 1000—

I | I |
1000 2000 3000 4000

data

Word similarity
- cosine similarity

Computing word similarity: Dot product

Reminder: dot product between two vectors is a scalar:
N

dot product(v,w) =v-w = ZViWi = VW] +Vvaws + ...+ vywy

e Note that: =1
1. The dot product tends to be high when the two vectors have large values in
the same dimensions
2. Dot product can thus be a useful similarity metric between vectors

Problem:
e Dot product favors long vectors
o those that have higher values in many dimensions v| =

e Frequent words will have generally longer vectors!
o since they co-occur many times with other words
m ‘of, and, the, you, ...”

Alternative: cosine similarity

Solution: normalize by the length of the vectors...

5 Viwi

i=1

viwl [N
33wt

=

V.

cosine(V,w) =

i=1 i=1

e by far the most popular similarity metric in NLP
e using the definition of the dot product between two vectors:

V- -W

v-w = |v||w]| cos 0 = cos 0

vl fw)

Cosine as a similarity metric

Generally:

-1: vectors point in opposite directions

+1: vectors point in same directions
0: vectors are orthogonal

With count vectors:

e The frequency values are non-negative
e Hence the cosine for term-term matrix vectors ranges from 0-1

Cosine examples

N
v, _MMW
. — = 1_; V_V" i=1
cosine(V,w) = —— = cherry
V][w] N N
th_z ZW? digital 5 1683 1670
i=1 i=1 information 5 3982 3325
. . . 442 %5+ 8 %3982 + 2 %3325 _
cosine(cherry,information) = = 017

V4422 4+ 82 4 224/52 + 39822 + 33252

5%5+ 1683 %3982 + 1670 % 3325 B
V52 + 16832 + 167021/52 + 39822 + 33252

cosine(digital,information) =

Visualizing cosines (angles)

I

Q

-

S cherry

2 | \d@% information

5 | T 1 I o _I_é
Q

500 1000 1500 2000 2500 3000

Dimension 2: ‘computer’

Vector Semantics
- TF-IDF for Term-Document matrix weighting

Raw frequency is a bad representation

e The co-occurrence matrices we have seen represent raw frequencies.
e Frequency is clearly useful:
o If sugar appears a lot near apricot, that's useful information.
e But overly frequent words are not very informative about the context
o e.g., words like the, it, and or they
e |t's a paradox! How can we balance these two conflicting constraints?

Two common solutions for word weighting

commonly used for

tf-idf: tf-idf value for word t in document d: weighting document

dimensions of words

e

Wid = tfl‘,d X ldft

commonly used for
weighting word

PMI: (Pointwise mutual information) dimensions of words

p(w1.w2) —
p(w1)p(w2)

> PMI(wq,w;) = log

TF-IDF for Term-Document matrix weighting

1) Term frequency (tf)

o = count(t,d)

e Instead of using raw count, we commonly squash a bit:
o tf,,=l0g,o(count(t,d)+1)

2) Document frequency (df)

o is the number of documents a term t occurs in.
o note this is not collection frequency (total count across all documents)
e "Romeo" is very distinctive for one Shakespeare play:

Collection Frequency Document Frequency
Romeo 113 1

action 113 31

TF-IDF for Term-Document matrix weighting

2’) Inverse document frequency (idf)

emphasize words that appear in few documents

again, more commonly:

, N
idf; = logg (d_f)
t

where N is the total number of documents in
the collection

Note that documents can be anything

o we often call each paragraph a document!

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.246
wit 34 0.037
fool 36 0.012
good 37 0
sweet 37 0

Final TF-IDF word weighting

We.q = th, g X idf;

Raw counts:
As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3
TF-IDF:
As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

Vector Semantics
- Positive PMI for Term-Term matrix weighting

Two common solutions for word weighting

commonly used for

tf-idf: tf-idf value for word t in document d: weighting document

dimensions of words

Wwiq = tf, g x idf; -

commonly used for

weighting word

PMI: (Pointwise mutual information) dimensions of words

p(w1.w2) —
p(w1)p(w2)

> PMI(wq,w;) = log

Pointwise Mutual Information

Pointwise mutual information:
Do events x and y co-occur more than if they were independent?

PMI(X,Y)=log, pﬁgﬁy&)

PMI between two words:
Do words x and y co-occur more than if they were independent?

P(word,,word,)
P(word,)P(word,)

PMI(word,,word,) = log,

Positive Pointwise Mutual Information

PMI generally ranges from —inf to +inf
* Positive values mean wl and w2 co-occur more than by chance
* Zero values mean wl and w2 co-occur exactly as if by chance

* Negative values mean wl and w2 co-occur less than by chance

In practice, we commonly care only about emphasizing the positive case

* Leading a modification called Positive PMI =

PMI if PMI>0

PPM] =
0 else

Computing PPMI on a term-context matrix

e Matrix F (frequency)
o with W rows (words) and C columns (contexts)
e fj; is the number of times w; occurs in context c;

C W computer data result pie sugar count(w)
Z Z f cherry 2 8 9 442 25 486
f) ij strawberry 0 0 1 60 19 80
P, = J Do = ———— J=1 I | digital 1670 1683 85 5 4 3447
y w C i* w P T w C information 3325 3982 378 5 13 7703
z ZJ:J ZZf;J ZZJ;' count(context) 4997 5673 473 512 61 11716

i=l j=1 i=l j=1 i=1 j=1

_ pmi; 1t pmi; >0
ppmi; =
PI*P* 0 otherwise

pmi, = log,

computer data result pie sugar count(w)

-fl: : cherry 2 8 9 442 25 486
. = — strawberry 0 0 1 60 19 80
Pi=7% ¢ digital 1670 1683 85 5 4 3447
ZZ f) information 3325 3982 378 5 13 7703
y
i=1 j:] count(context) 4997 5673 473 512 61 11716
(w=informati data) = 3982/111716 = .3399 S v
p(w=information, c=data) = =
(w=inf lon) =7703/11716 6575 ny ny
p(w=information) = = . A e
p(w;)= plc;)=+—
p(c=data) = 5673/11716 = .4842 N N
p(w,context) p(w)
computer data result pie sugar p(w)
cherry 0.0002 0.0007 0.0008 0.0377 0.0021 0.0415
strawberry 0.0000 0.0000 0.0001 0.0051 0.0016 0.0068
digital 0.1425 0.1436 0.0073 0.0004 0.0003 0.2942
information 0.2838 0.3399 0.0323 0.0004 0.0011 0.6575

p(context) 0.4265 04842 0.0404 0.0437 0.0052

p(w,context) p(w)
computer data result pie sugar p(w)
. plj cherry 0.0002 0.0007 0.0008 0.0377 0.0021 0.0415
p m ll_ = 10 g) strawberry 0.0000 0.0000 0.0001 0.0051 0.0016 0.0068
Y p . p ' digital 0.1425 0.1436 0.0073 0.0004 0.0003 0.2942
L information 0.2838 0.3399 0.0323 0.0004 0.0011 0.6575
p(context) 0.4265 04842 0.0404 0.0437 0.0052

pmi(information,data) = log, (.3399 / (.6575*.4842)) =.0944

Resulting PPMI matrix (negatives replaced by 0)

computer data result pie sugar
cherry 0 0 0 4.38 3.30
strawberry 0 0 0 4.10 5.51
digital 0.18 0.01 0 0 0
information 0.02 0.09 0.28 0 0

Technical note: Modifying PMI

Problem: PMI is biased toward infrequent events
o Very rare words have very high PMI values

Solution:
o Use add-one smoothing

Vector Semantics
- Dense vectors

Sparse versus dense vectors

e TF-IDF/ PPMI vectors are
o long (length |V|= 20,000 to 300,000)
o sparse (most elements are zero)

e Alternative: learn vectors which are
o short (length 50-1000)

o dense (most elements are non-zero)

Short dense vectors (embeddings)

e \Why dense vectors?

(@)
O
@)
@)

They work better in practice!
Short vectors may be easier to use as features in machine learning (less weights to tune)
Dense vectors may generalize better than storing explicit counts
They may do better at capturing synonymy
m car and automobile are synonyms, but are represented as distinct dimensions

e How to obtain them?
1.

2.

Matrix factorization

o LSA (SVD), NNMF
“Neural” Models

o word2vec, GloVe

Vector Semantics
- Dense vectors via SVD : Term-Document matrix

Dimensionality reduction

an Height

Singular Value Decomposition (SVD)

Any w X ¢ matrix X equals the product of 3 matrices: X =W S C

Document \

. these are (much)
‘5 C smaller than our
’ original data!

=

(@) X o W mxm mxC

= \

m = of X
WxC W x m

e note that rank(X) = min(w,c)
e reveals the “true” dimensionality of our data

Singular Value Decomposition

Any w X ¢ matrix X equals the product of 3 matrices: X =W S C

e W (w x m): rows corresponding to original, but m columns represents a dimension

in a new latent space, such that
* m column vectors are orthogonal to each other
* Columns are ordered by the amount of variance in the dataset each new dimension explains

e S (mxm): diagonal m x m matrix of singular values expressing the
importance of each dimension.

e C (m x c¢): columns corresponding to original, but m rows corresponding to the
singular values

Truncated Singular Value Decomposition

® Often, m is not small enough

® |nstead of keeping all m dimensions, we just keep the top k singular values.
O Let's say 300.

® The result is a least-squares approximation to the original X
® Each row of W is:

O k-dimensional vector Document

O Representing word W

Word
X
I

=

Truncated Singular Value Decomposition

® Often, m is not small enough

® |nstead of keeping all m dimensions, we just keep the top k singular values.
O Let's say 300.

® The result is a least-squares approximation to the original X

® Each row of W is:
k x k k xc
= | W
k<m
W x k

O k-dimensional vector Document

O Representing word W

Word
X
|

Vector Semantics
- Revisiting topic modelling

Latent Semantic Analysis

e LSA is often referred to as “topic modelling” itself

e SVD applied to the Document-Term matrix =
o 300 dimensions are commonly used for k

e The cells are commonly weighted by TF-IDF

e Kk topics = k latent dimensions
e Wwe expect the word distr. across the topics to be distinct/orthogonal

e this is exactly what SVD does! .
is not nearly as
famous as it should be." -
Gilbert Strang

Topic modelling with LSA

Word

Document
X
I

topic
importance
values

= the same output format as we have seen from LDA!

Non-negative Matrix Factorization

Alternative decomposition: Non-negative Matrix Factorization (NNMF)

e Idea: constrain the latent topics to be non-negative

o rather than constraining to be orthogonal

X=WxC
Document

This is easier to interpret the topics

O

W ~ amount of words in topics

C
o C ~amount of topics in documents

Word
X
I
3
(@]

Non-negative Matrix Factorization

NNMF is only approximate

e different optimization criteria for the X = WxC problem

e with Kullback-Leibler divergence KL(X; WxC)

@ e = probabilistic LSA (pLSA)
AN

N\

(O @ OH-@

D D

LDA = Bayesian pLSA = not Bayesian

Vector Semantics
- Dense vectors via SVD: Term-Term matrix

SVD applied to Term-Term matrix

...let’s return to the PPMI Term-Term matrices
can we apply SVD to them?

O

simplifying assumption: the matrix has rank | V|

Vx|V

o]] 0O O

0 0] 0

0 0 o3
Lo o o .
Vx|V

. Oy _

Vx|V

Truncated SVD produces embeddings

| [1o 0 0
0 (e5) 0
X W 0 0 o3
i i /L0 0 O
VIx|Vvi VIxk ke k

.. O

kx |V]|

Dense SVD embeddings vs. sparse PPMI matrices
generally better at tasks requiring word similarity

(@]

(@)

Denoising: low-order dimensions represent noise
Truncation may help the models generalize better to unseen data.

embedding
for

word |

-|V| <k

Problems with SVD

Problems with SVD
e Computational cost scales quadratically, for wxc matrix:
O(wc?) operations (when c<w)

o — Bad for millions of words or documents!

e Hard to incorporate new words or documents
e Different learning regime than common ML models

Vector Semantics
- Dense embedding vectors via machine learning

Embeddings: Prediction-based models

Main idea: instead of capturing co-occurrence counts, the words in text

e Importantly, this is
o A word c that occurs near input word w in the corpus is the "correct label"
m No need for human labels!
o Inspired by neural net language models
m Bengio et al. (2003); Collobert et al. (2011)
But we don’t actually care about this task!

e we'll only extract the learned classifier weights to be the

The most popular word embedding model: (Tomas Mikolov!)

e [Fast, easy to train (much faster than SVD)
e Pretrained embeddings available online

62

word2vec: Skip-Gram Training
Let’s look at a word2vec variant: skip-gram with negative sampling (SGNS)

Idea: predict if a candidate word c is a neighbor of t

The target word t and a neighboring context word ¢ are positive examples.
Randomly sample other words in the lexicon to get negative examples

Use logistic regression to train a classifier to distinguish those two cases

WD

Use the learned weights as the

Skip-Gram Training Data

Let's look at the Skip-Gram training approach:

Assume a +/- 2 word context window, given training sentence:

...lemon, a [tablespoon of @apricot jam, a] pinch...
cl c2 [Wi] c3 c4

Skip-Gram Classifier

...lemon, a [tablespoon of apricot jam, a] pinch...
cl c2 [Wt] ¢c3 «c4b

Goal: train a classifier that is given a candidate (word, context) pair
(apricot, jam)
(apricot, aardvark)

And assign each pair a probability:

P(+|w, c)
P(=|w, c) =1 - P(+|w, c)

Similarity, dot product, probability

Core intuition: base the classification on embedding similarity of w & ¢

® Remember: two vectors are similar if they have a high dot product
® Hence, similarity(w,c) xw-c¢

But similarity is just a number...

e we need to normalize to get a “probability™!

e How? Well, just use the sigmoid fcn:
1

1 +exp(—c-w)

P(+|w,c) = o(c-w) =

P(—|w,c) = 1—P(+]|w,c)
1
1 +exp(c-w)

= o(—c-w)=

66

How Skip-Gram Classifier computes P(+|w, C)

|
1+exp(—c-w)

P(+|w,c) = o(c-w) =

This is for one context word, but we have lots of context words.
We'll assume independence and just multiply them:

_——
remember the L
NB/unigrams? P(—|—|W,C1:L) = HO'(C,' - W)

Skip-gram classifier: Summary

e We train a “probabilistic” classifier, given:
1. atesttarget word w
2. its context window of L words c,.,

o Estimate probability that w occurs in this window based on similarity

of w (embeddings) to the C,.. (embeddings).

w target words
We need to learn the embeddings: @ = == }

|V]|+1
C context & noise
words

2V

zebra

We learn 2 embeddings for each word

w
1 2 |- IV
1) input embedding (~word) w, in the input matrix W ;{ !
e Column i of the input matrix W is the 1xd vector ;
embedding Wi for word 1 in the vocabulary. dx |V
C
1 2 d

1) output embedding (~context) c, in output matrix C

e Row i of the output matrix C'is a d x 1 vector i

embedding c; for word i in the vocabulary. _
VI

V[x d 69

Learning word2vec embeddings: Skip-gram

To obtain the embeddings, we first initialize them randomly, and start training

e iteratively shifting the word embeddings to be more like their neighbors

...lemon, a [tablespoon of apricot jam, a] pinch...

cl

positive examples +
{ C

apricot tablespoon
apricot of

apricot jam
apricot a

c2 [Wi] c3 c4

T

For each positive example
we'll grab k negative
examples, sampling by
frequency

70

Learning word2vec embeddings: Skip-gram

To obtain the embeddings, we first initialize them randomly, and start training

e iteratively shifting the word embeddings to be more like their neighbors

...lemon, a [tablespoon of apricot jam, a] pinch...

cl c2 [Wt] 3 c4 SGNS
L. . version of
positive examples + negative examples - << word2vec
t C t C t C
apricot tablespoon apricot aardvark apricot seven
apricot of apricot my apricot forever
apricot jam apricot where apricot dear

apricot a apricot coaxial apricot if 71

Word2vec: how to learn vector embeddings

Given:
e the set of positive and negative training instances
e and an initial set of embedding vectors
Goal:
e |earn to adjust those word vectors such that we:
o Maximize the similarity of the target & context word pairs (w,C,.)
m drawn from the positive data
o Minimize the similarity of the (w,c.,) pairs

m drawn from the negative data

Loss function

e Maximize the similarity of the target & context word pairs (w,c
o drawn from the positive data

pos)

e Minimize the similarity of the (w,c,q,) pairs

o drawn from the negative data Wz assu;n - f
independency o
k | words in ¢
LCE — —10g P(—l—lw:; C])OS)HP(_|W7 C”‘-’gi)
=1
J | £
. = — |logP s Cpos) T+ log P(—|w, Cneg,
For a w with P(H 1w, Cpos) ; gPl=hwe gt)}
context C s - k
Cneg:L ".Cnegk = — IOgP(+|W7 Cpos) + Zlog (1 — P(+|W7 Cﬂegi)):|
i i—=1

i k
= — |[logo(cpos W) + Zlog O (—Cheg, w)}

i=1

Training the classifier

Finally, we minimize the loss with Stochastic Gradient Descent

k (aardvark [eee
Lcg = — |log G(Cpos ‘W) + Z log G(—Cneg,- W) move apricot and jam closer,
i=1 apricot [@e)w| ~~. increasingc, - w
W+ Lo
OLcp o ()—1] derivatives of R
—— = |O(Cpos W) — LW Lo i ' ' "
0¢p05 P sigmoids have | b » --apricotjam..
ol elegant form... 9 s "/ "\
CE _ JORY IS (aardvark jeee /. move apricot and matrix apart
_ — G Cneg WIW / ' . .
acneg [jam mssic . . decreasing ¢, ., =
k
ILee C1 s oo
a — [G(Cpos 'W) - 1]Cpos + Z[O-(Cnegi 'W)]Cneg,- Tolstoy 598 I "‘move apricot and Tolstoy apart
W . decreasingc_., * W
=1 k zebra [e89 e

Word2vec learning summary

How to learn word2vec (skip-gram) embeddings:

Start with V random d-dimensional vectors as initial embeddings

Train a classifier based on embedding similarity loss measure

From a corpus take pairs of words that co-occur as positive examples
Take pairs of words that don't co-occur as negative examples

Train the classifier to distinguish these by slowly adjusting all the
embeddings to improve the classifier performance

Throw away the classifier code and keep the embeddings.

arLONE

o

We actually end up with both target word W and context C embeddings!

e torepresent a word i we commonly just add these as W; + C;

Relation between skip-grams and PMI!

® Note that if we multiply WCT

O We geta [V|x|V| matrix M , where each entry m;; corresponds to some
association between input word i and output word |

O | can be shown that skip-gram reaches its optimum just when this matrix

M is a shifted version of the PMI matrix: instead of truncating at

0 (PPMI), we shift by k
WCT =MPMI —|Og k . (negative sampling)

O So, skip-gram word2vec is implicitly factoring a shifted version of the
PMI matrix into the two embedding matrices!

76

GloVe

e Can we combine these 2 approaches?

o To make use of the co-occurrence counts

o while avoiding the full matrix decomposition

e GloVe = Globhal Vectors

o introduces a custom loss fcn L
e We iterate through all pairs of words in X
O optimizing one co-occurrence count at a time
e No need to iterate the large text corpus

o just through the aggregated counts

e [ast training, good even with small data

10

0.8

0.6

0.2

00

04

7

V|
1,J=1

co-occurrence matrix

\/
f()(w Cj — lOngg)

\ . . .
\ frequent pairs discounting
\

Vector Semantics
- Properties of learned embeddings

Nearest neighbors and window size

target: Rcdmond Havel ninjutsu graffiti capitulate
Redmond Wash. Vaclav Havel ninja spray paint capitulation
Redmond Washington president Vaclav Havel = martial arts grafitti capitulated
Microsoft Velvet Revolution swordsmanship taggers capitulating

Small windows (C= +/- 2) : nearest words are syntactically similar words

e Hogwarts nearest neighbors are other fictional schools:
e Sunnydale, Evernight, Blandings

Large windows (C= +/- 5) : nearest words are topically related words

o Hogwarts nearest neighbors are generally from Harry Potter world:
o Dumbledore, half-blood, Malfoy

Embedding space has neat geometrical relations

WOMAN

UNCLE

KING

N//

QUEEN

AUNT

QUEENS

KINGS \
\ QUEEN

KING

With that we can solve word analogies!:

—
klng man + woman is close to gueen

—l

Parls — France + Italy Is close to Rome

Embedding space geometry: GloVe

Nearest words to
frog:

. frogs

toad

. litoria

. leptodactylidae
rana

. lizard

. eleutherodactylus

NoOuUAWNR

rana

eleutherodactylus

05 T T T T
_ _ — —slowest
0.4 N B
. “slower _ _ _ _— — — —-shortest
> =
- ~ shorter
0.3+ e .
slow+” 7
-
-
short
0.2+ J
0.1F B
of P “8tronger” T T T = = = — — — ~ girongest 7
4 -—
N ~“Touder — T~ — — - R
strong < - loudest
-0.1 loud,.”_ _ _ _ b
- ?learer ““““ — — — —clearest
“softer” T T - — - - — - _ _
il ~ = = — - softest
e
-0.2- clear <~ .~ darkef — — — — — — _ _ _ _ h
soft « — —- darkest
dark
-0.3 I 1 I L 1 1 ! I I
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

Embeddings as a window into historical semantics

~30 million books, 1850-1990, Google Books data:

da gay (1900s)

gay (1950s)

gay (1990s)

b

broadcast (1850s)

broadcast (1900s)

broadcast (1990s)

awful (1850s)

awful (1900s)
awful (1990s)

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal Statistical
Laws of Semantic Change. Proceedings of ACL.

Embeddings reflect cultural bias!

ASK “Paris : France :: Tokyo : X”

o X = Japan
this can be a serious

ASK “father : doctor :: mother : x” problem, why?

O X = nurse V

Ask “man : computer programmer :: woman : X’
o X = homemaker

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to
computer programmer as woman is to homemaker? debiasing word embeddings." In NeurIPS, pp. 4349-
4357. 2016.

