
Introduction to NLP
Vector and matrix models

Compressed out of NLP courses from Dan Jurafsky (Stanford), & David Bamman (Berkeley),

Michael Collins (MIT & Columbia), and some online (Udemy) courses

Book: Speech and Language Processing by Jurafsky & Martin (3rd edition)

What do words mean?

● N-gram or text classification methods we've seen so far
○ Words are just strings (or indices wi in a vocabulary list)

○ That's not very satisfactory!

● Formal logic classes:
○ ∀x dog(X) ⟶ mammal(X)

○ ∀x cat(X) ?

○ But again, just atomic symbols

● What should a good representation of word meaning do for us?

● Let's look at some desiderata from lexical semantics
○ the linguistic study of word meaning

Relations between words: Synonymy

● Synonyms have the same meaning in some or all contexts.

○ couch / sofa

○ big / large

○ automobile / car

● Note that there are probably no examples of perfect synonymy!
○ Even if many aspects of meaning are identical

○ Still may differ based on politeness, slang, register, genre, etc.

○ Example: big vs. large
○ my big sister != my large sister

• …Difference in form → difference in meaning

Relation: Similarity

● No synonymy, but words can have similar meanings.
○ car vs. bicycle

○ cow vs. horse

● How to find out? Ask humans!

word1 word2 similarity

vanish disappear 9.8

behave obey 7.3

belief impression 5.95

muscle bone 3.65

modest flexible 0.98

hole agreement 0.3

SimLex-999 dataset (Hill et al., 2015)

Other word relations

Words can be related in a number of ways:

● Via a semantic frame (“topic”)
○ coffee, tea: similar
○ coffee, cup: related (not similar)

● Antonymy

○ dark - light

○ short - long

○ fast - slow

● Connotation (sentiment)

○ great - love

○ terrible - hate

note that these are

actually very similar!

Sentiment

Words seem to vary along 3 affective dimensions:
○ valence: the pleasantness of the stimulus

○ arousal: the intensity of emotion provoked by the stimulus

○ dominance: the degree of control exerted by the stimulus

Word Score Word Score

Valence love 1.000 toxic 0.008

happy 1.000 nightmare 0.005

Arousal elated 0.960 mellow 0.069

frenzy 0.965 napping 0.046

Dominance powerful 0.991 weak 0.045

leadership 0.983 empty 0.081

Values from NRC VAD Lexicon (Mohammad 2018)

Distributional semantics

- aka vector semantics

Computational models of word meaning

● Vector (distributional) semantics
○ The standard model in language processing!

○ Handles many of our linguistic goals!

● Idea: Words are defined by their environments (the words around them)

○ Wittgenstein: "The meaning of a word is its use in the language"

○ Firth (1957): “You shall know a word by the company it keeps”

● From the common notion of synonymy:

○ If A and B have almost identical environments, they are synonyms!

Example: What does ”ongchoi” mean?

Suppose you see these sentences:
• Ong choi is delicious sautéed with garlic.

• Ong choi is superb over rice

• Ong choi leaves with salty sauces

And you've also seen these:
• …spinach sautéed with garlic over rice

• Chard stems and leaves are delicious

• Collard greens and other salty leafy greens

Conclusion:
○ Ongchoi is a leafy green like spinach, chard, or collard greens

■ We could conclude this based on words like "leaves" and "delicious" and "sauteed"

Ongchoi: "Water Spinach"

Yamaguchi, Wikimedia Commons, public domain

空心菜
kangkong
rau muống
…

Model of word meaning

● Idea 1: Let's define the meaning of a word by its distribution in language

○ meaning its neighboring words

● Idea 2: Meaning is a point in multidimensional space

Word Score Word Score

Valence love 1.000 toxic 0.008

happy 1.000 nightmare 0.005

Arousal elated 0.960 mellow 0.069

frenzy 0.965 napping 0.046

Dominance powerful 0.991 weak 0.045

leadership 0.983 empty 0.081

example with

connotation:

Defining meaning as a point in space

Each word = a vector (not just "good" or "w45")

Similar words are "nearby in semantic space"

We build this space automatically by seeing which words are nearby in text

We define meaning of a word as a vector

● These vectors are commonly called "embedding"

○ because they are embedded into shared space

● The standard way to represent meaning in NLP

○ Every modern NLP algorithm uses embeddings

○ Fine-grained model of meaning for similarity

● This is in contrast to thesaurus/logic-based meaning where
○ We don’t have a thesaurus for every language

○ Even if we do, they have problems with recall

■ Many words are missing

■ Most (if not all) phrases are missing

■ Some connections between senses are missing

Intuition: why vectors?

Consider sentiment analysis:

○ With words, a feature is a word identity
■ Feature 5: 'The previous word was "terrible"'
■ requires the exact same word to be in training and test

○ With embeddings:
■ Feature is a word vector
■ The previous word was vector [35,22,17…]
■ Now in the test set we might see a similar vector [34,21,14]
■ We can generalize to similar but unseen words!!!

Words as vectors

- document & word matrices

Term-document matrix

We already know that each document can be represented by a
count vector of words:

● This is called the term-document matrix
○ This representation is fundamental in indexing and

information retrieval

Visualizing document vectors

Vectors are the basis of information retrieval

● Vectors are similar for the two comedies
○ As You like It & Twelfth Night

● But comedies are different than the other two
○ Comedies have more fools and wit and fewer battles.

Words as rows in term-document matrix

● battle is "the kind of word that occurs in Julius Caesar and Henry V"

● fool is "the kind of word that occurs in comedies, especially Twelfth Night"

● Similarly to documents, words can be considered as vectors, too!

Term-context matrix

● We may now completely skip the documents and focus on the words

● This lead to the term-context matrix
○ or “word-word” matrix of size VxV

● The words are similar in meaning if their context vectors are similar

remember

bi-grams?

Word context creation

Instead of using entire documents, we can extract smaller context windows:

● The size of the context window depends on our goal

● The shorter the windows the more syntactic the representation (± 1-3 words)

● The longer the windows the more semantic the representation (± 4-10 words)

Visualizing word vectors

Word similarity

- cosine similarity

Computing word similarity: Dot product

Reminder: dot product between two vectors is a scalar:

● Note that:
1. The dot product tends to be high when the two vectors have large values in

the same dimensions
2. Dot product can thus be a useful similarity metric between vectors

Problem:

● Dot product favors long vectors

○ those that have higher values in many dimensions

● Frequent words will have generally longer vectors!

○ since they co-occur many times with other words

■ “of, and, the, you, …”

Solution: normalize by the length of the vectors…

= Cosine similarity

● by far the most popular similarity metric in NLP
● using the definition of the dot product between two vectors:

Alternative: cosine similarity

Cosine as a similarity metric

Generally:

-1: vectors point in opposite directions

+1: vectors point in same directions

0: vectors are orthogonal

With count vectors:

● The frequency values are non-negative
● Hence the cosine for term-term matrix vectors ranges from 0–1

Cosine examples

pie data computer

cherry 442 8 2

digital 5 1683 1670

information 5 3982 3325

cosine(cherry,information) =

cosine(digital,information) =

Visualizing cosines (angles)

Vector Semantics

- TF-IDF for Term-Document matrix weighting

Raw frequency is a bad representation

● The co-occurrence matrices we have seen represent raw frequencies.

● Frequency is clearly useful:

○ if sugar appears a lot near apricot, that's useful information.

● But overly frequent words are not very informative about the context

○ e.g., words like the, it, and or they

● It's a paradox! How can we balance these two conflicting constraints?

Two common solutions for word weighting

● Words like "the" or "it" will have very low idf

● Statistical measure: see if words like "good" appear more
often with "great" than we would expect by chance

commonly used for

weighting document

dimensions of words

commonly used for

weighting word

dimensions of words

TF-IDF for Term-Document matrix weighting

1) Term frequency (tf)
● tft,d = count(t,d)

● Instead of using raw count, we commonly squash a bit:

● tft,d = log10(count(t,d)+1)

2) Document frequency (df)
● dft is the number of documents a term t occurs in.

○ note this is not collection frequency (total count across all documents)

● "Romeo" is very distinctive for one Shakespeare play:

TF-IDF for Term-Document matrix weighting

2’) Inverse document frequency (idf)
● emphasize words that appear in few documents

● idft = N / dft
● again, more commonly:

● where N is the total number of documents in

the collection

● Note that documents can be anything

○ we often call each paragraph a document!

Final TF-IDF word weighting

Raw counts:

TF-IDF:

Vector Semantics

- Positive PMI for Term-Term matrix weighting

Two common solutions for word weighting

● Words like "the" or "it" will have very low idf

● Statistical measure: see if words like "good" appear more
often with "great" than we would expect by chance

commonly used for

weighting document

dimensions of words

commonly used for

weighting word

dimensions of words

Pointwise Mutual Information

Positive Pointwise Mutual Information

PMI generally ranges from –inf to +inf

• Positive values mean w1 and w2 co-occur more than by chance

• Zero values mean w1 and w2 co-occur exactly as if by chance

• Negative values mean w1 and w2 co-occur less than by chance

In practice, we commonly care only about emphasizing the positive case

• Leading a modification called Positive PMI = PPMI

Computing PPMI on a term-context matrix

● Matrix F (frequency)
○ with W rows (words) and C columns (contexts)

● fij is the number of times wi occurs in context cj

p(w=information, c=data) = 3982/111716 = .3399

p(w=information) = 7703/11716 = .6575

p(c=data) = 5673/11716 = .4842

pmi(information,data) = log2 (.3399 / (.6575*.4842)) = .0944

Resulting PPMI matrix (negatives replaced by 0)

Technical note: Modifying PMI

Problem: PMI is biased toward infrequent events

○ Very rare words have very high PMI values

Solution:

○ Use add-one smoothing

Vector Semantics

- Dense vectors

Sparse versus dense vectors

● TF-IDF / PPMI vectors are

○ long (length |V|= 20,000 to 300,000)

○ sparse (most elements are zero)

● Alternative: learn vectors which are

○ short (length 50-1000)

○ dense (most elements are non-zero)

Short dense vectors (embeddings)

● Why dense vectors?
○ They work better in practice!
○ Short vectors may be easier to use as features in machine learning (less weights to tune)

○ Dense vectors may generalize better than storing explicit counts

○ They may do better at capturing synonymy

■ car and automobile are synonyms, but are represented as distinct dimensions

● How to obtain them?
1. Matrix factorization

○ LSA (SVD), NNMF

2. “Neural” Models

○ word2vec, GloVe

Vector Semantics

- Dense vectors via SVD : Term-Document matrix

Dimensionality reduction

Singular Value Decomposition (SVD)

Any w x c matrix X equals the product of 3 matrices: X = W S C

X

Document

W
o

rd

= W

S C

w x c w x m

m x m m x c

m = rank of X

● note that rank(X) ≦ min(w,c)

● reveals the “true” dimensionality of our data

these are (much)

smaller than our

original data!

Singular Value Decomposition

Any w x c matrix X equals the product of 3 matrices: X = W S C

● W (w x m): rows corresponding to original, but m columns represents a dimension

in a new latent space, such that
• m column vectors are orthogonal to each other

• Columns are ordered by the amount of variance in the dataset each new dimension explains

● S (m x m): diagonal m x m matrix of singular values expressing the

importance of each dimension.

● C (m x c): columns corresponding to original, but m rows corresponding to the

singular values

● Often, m is not small enough

● Instead of keeping all m dimensions, we just keep the top k singular values.
○ Let’s say 300.

● The result is a least-squares approximation to the original X

● Each row of W is:

○ k-dimensional vector

○ Representing word W

Truncated Singular Value Decomposition

X

Document

W
o

rd
= W

S C

w x c w x m

m x m m x c

● Often, m is not small enough

● Instead of keeping all m dimensions, we just keep the top k singular values.
○ Let’s say 300.

● The result is a least-squares approximation to the original X

● Each row of W is:

○ k-dimensional vector

○ Representing word W

Truncated Singular Value Decomposition

X

Document

W
o

rd
= W

S C

w x c w x k

k x k k x c

k < m

Vector Semantics

- Revisiting topic modelling

Latent Semantic Analysis

● LSA is often referred to as “topic modelling” itself

● SVD applied to the Document-Term matrix = Latent Semantic Analysis
○ 300 dimensions are commonly used for k

● The cells are commonly weighted by TF-IDF

● k topics = k latent dimensions

● we expect the word distr. across the topics to be distinct/orthogonal

● this is exactly what SVD does!
"SVD is not nearly as

famous as it should be." -

Gilbert Strang

Topic modelling with LSA

X

Word
D

o
c
u
m

e
n
t

=
W

S C

topics

D
o

c
u

m
e

n
ts

words

to
p

ic
s

= the same output format as we have seen from LDA!

topic

importance

values

Non-negative Matrix Factorization

Alternative decomposition: Non-negative Matrix Factorization (NNMF)

● Idea: constrain the latent topics to be non-negative

○ rather than constraining to be orthogonal

● This is easier to interpret the topics

○ W ~ amount of words in topics

○ C ~ amount of topics in documents
X

Document

W
o

rd = W

C

w x c w x m

m x c

X ≅ W x C

NNMF is only approximate

● different optimization criteria for the X ≅ WxC problem

● with Kullback-Leibler divergence KL(X; WxC)

● = probabilistic LSA (pLSA)

Non-negative Matrix Factorization

D

wzθ𝛼

ᵝ

N

D

wzθ

N

LDA = Bayesian pLSA = not Bayesian

Vector Semantics

- Dense vectors via SVD: Term-Term matrix

SVD applied to Term-Term matrix

● simplifying assumption: the matrix has rank |V|

● …let’s return to the PPMI Term-Term matrices
○ can we apply SVD to them?

Truncated SVD produces embeddings

● Dense SVD embeddings vs. sparse PPMI matrices

● generally better at tasks requiring word similarity

○ Denoising: low-order dimensions represent noise

○ Truncation may help the models generalize better to unseen data.

Problems with SVD

Problems with SVD

● Computational cost scales quadratically, for wxc matrix:

𝛰(wc2) operations (when c<w)

○ → Bad for millions of words or documents!

● Hard to incorporate new words or documents

● Different learning regime than common ML models

Vector Semantics

- Dense embedding vectors via machine learning

Embeddings: Prediction-based models

Main idea: instead of capturing co-occurrence counts, predict the words in text

● Importantly, this is self-supervised learning
○ A word c that occurs near input word w in the corpus is the "correct label"

■ No need for human labels!

○ Inspired by neural net language models

■ Bengio et al. (2003); Collobert et al. (2011)

But we don’t actually care about this task!

● we'll only extract the learned classifier weights to be the word embeddings

The most popular word embedding model: word2vec (Tomáš Mikolov!)

● Fast, easy to train (much faster than SVD)

● Pretrained embeddings available online

62

word2vec: Skip-Gram Training

Let’s look at a word2vec variant: skip-gram with negative sampling (SGNS)

Idea: predict if a candidate word c is a neighbor of t

1. The target word t and a neighboring context word c are positive examples.

2. Randomly sample other words in the lexicon to get negative examples

3. Use logistic regression to train a classifier to distinguish those two cases

4. Use the learned weights as the embeddings

Skip-Gram Training Data

Let’s look at the Skip-Gram training approach:

Assume a +/- 2 word context window, given training sentence:

…lemon, a [tablespoon of apricot jam, a] pinch…
c1 c2 [Wt] c3 c4

Skip-Gram Classifier

Goal: train a classifier that is given a candidate (word, context) pair
(apricot, jam)
(apricot, aardvark)

…

And assign each pair a probability:

P(+|w, c)
P(−|w, c) = 1 − P(+|w, c)

…lemon, a [tablespoon of apricot jam, a] pinch…
c1 c2 [Wt] c3 c4

Similarity, dot product, probability

Core intuition: base the classification on embedding similarity of w & c

• Remember: two vectors are similar if they have a high dot product
• Hence, similarity(w,c) ∝ w ∙ c

But similarity is just a number…

● we need to normalize to get a “probability”!
● How? Well, just use the sigmoid fcn:

66

How Skip-Gram Classifier computes P(+|w, c)

This is for one context word, but we have lots of context words.
We'll assume independence and just multiply them:

remember the

NB/unigrams?

Skip-gram classifier: Summary

● We train a “probabilistic” classifier, given:
1. a test target word w
2. its context window of L words c1:L

○ Estimate probability that w occurs in this window based on similarity

of w (embeddings) to the c1:L (embeddings).

We need to learn the embeddings:

We learn 2 embeddings for each word

1) input embedding (~word) w, in the input matrix W

● Column i of the input matrix W is the 1×d vector

embedding wi for word i in the vocabulary.

1) output embedding (~context) c, in output matrix C

● Row i of the output matrix C′ is a d × 1 vector

embedding ci for word i in the vocabulary.

69

C

To obtain the embeddings, we first initialize them randomly, and start training

● iteratively shifting the word embeddings to be more like their neighbors

Learning word2vec embeddings: Skip-gram

70

…lemon, a [tablespoon of apricot jam, a] pinch…
c1 c2 [Wt] c3 c4

For each positive example
we'll grab k negative
examples, sampling by
frequency

To obtain the embeddings, we first initialize them randomly, and start training

● iteratively shifting the word embeddings to be more like their neighbors

Learning word2vec embeddings: Skip-gram

71

…lemon, a [tablespoon of apricot jam, a] pinch…
c1 c2 [Wt] c3 c4 SGNS

version of
word2vec

Word2vec: how to learn vector embeddings

Given:

● the set of positive and negative training instances

● and an initial set of embedding vectors

Goal:

● learn to adjust those word vectors such that we:

○ Maximize the similarity of the target & context word pairs (w,cpos)

■ drawn from the positive data

○ Minimize the similarity of the (w,cneg) pairs

■ drawn from the negative data

Loss function

● Maximize the similarity of the target & context word pairs (w,cpos)

○ drawn from the positive data

● Minimize the similarity of the (w,cneg) pairs

○ drawn from the negative data

For a w with
context cpos ,
cneg1 ...cnegk

we assume

independency of

words in c

Training the classifier

Finally, we minimize the loss with Stochastic Gradient Descent

derivatives of

sigmoids have

elegant form…

Word2vec learning summary

How to learn word2vec (skip-gram) embeddings:

1. Start with V random d-dimensional vectors as initial embeddings
2. Train a classifier based on embedding similarity loss measure
3. From a corpus take pairs of words that co-occur as positive examples
4. Take pairs of words that don't co-occur as negative examples
5. Train the classifier to distinguish these by slowly adjusting all the

embeddings to improve the classifier performance
6. Throw away the classifier code and keep the embeddings.

We actually end up with both target word W and context C embeddings!

● to represent a word i we commonly just add these as wi + ci

Relation between skip-grams and PMI!

● Note that if we multiply WCT

○ We get a |V|x|V| matrix M , where each entry mij corresponds to some

association between input word i and output word j

○ I can be shown that skip-gram reaches its optimum just when this matrix

M is a shifted version of the PMI matrix:

WCT =MPMI −log k

○ So, skip-gram word2vec is implicitly factoring a shifted version of the

PMI matrix into the two embedding matrices!

76

instead of truncating at

0 (PPMI), we shift by k

(negative sampling)

GloVe

● Can we combine these 2 approaches?

○ To make use of the co-occurrence counts

○ while avoiding the full matrix decomposition

● GloVe = Global Vectors

○ introduces a custom loss fcn L

● We iterate through all pairs of words in X

○ optimizing one co-occurrence count at a time

● No need to iterate the large text corpus

○ just through the aggregated counts

● Fast training, good even with small data

co-occurrence matrix

frequent pairs discounting

Vector Semantics

- Properties of learned embeddings

Nearest neighbors and window size

Small windows (C= +/- 2) : nearest words are syntactically similar words

● Hogwarts nearest neighbors are other fictional schools:
● Sunnydale, Evernight, Blandings

Large windows (C= +/- 5) : nearest words are topically related words

○ Hogwarts nearest neighbors are generally from Harry Potter world:
○ Dumbledore, half-blood, Malfoy

Embedding space has neat geometrical relations

With that we can solve word analogies!:

king – man + woman is close to queen

Paris – France + Italy is close to Rome

Embedding space geometry: GloVe

~30 million books, 1850-1990, Google Books data:

Embeddings as a window into historical semantics

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal Statistical
Laws of Semantic Change. Proceedings of ACL.

Embeddings reflect cultural bias!

Ask “Paris : France :: Tokyo : x”

○ x = Japan

Ask “father : doctor :: mother : x”

○ x = nurse

Ask “man : computer programmer :: woman : x”
○ x = homemaker

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to
computer programmer as woman is to homemaker? debiasing word embeddings." In NeurIPS, pp. 4349-
4357. 2016.

this can be a serious

problem, why?

