Introduction to NLP

Probabilistic models

Compressed out of NLP courses from Dan Jurafsky (Stanford), & David Bamman (Berkeley),
Michael Collins (MIT & Columbia), and some online (Udemy) courses

Book: Speech and Language Processing by Jurafsky & Martin (3™ edition)

Why teach NLP in SMU?

1. Languagel/text has a symbolic structure
2. ltis all about machine learning these days

3. NLP is a core part of Artificial Intelligence
o However, there is no NLP at FEL

After this short NLP block, you should be able to:

o Recognize some classic NLP tasks when encountered
o Understand some modern NLP methods and models:
I. probabilistic models
ii. vector/matrix models
iii. neural models
o Implement and/or use these in practice (Python)

What is NLP?

NLP = Natural Language Processing

- a.k.a. computational linguistics (from a linguist’s point of view)

Intersection of:

e Linguistics
e AI/ML
o CS

Goal: process language with computers to perform useful things...

Why learn NLP?: Practical viewpoint

e Part of speech tagging

e Named entity recognition

Hair Salon

e Language modelling

e Topic modelling

e Information extraction @ ®
—

“Hi, I'm calling to book a “Sure, give me one second.”
women's haircut for a client.”

e Text Summarization
e Machine translation
e Question answering

e Conversational agents

Why learn NLP?: Theoretical viewpoint

e Language is the natural testbed for intelligence! PR

Well, you're made up of cells and I'm
made up of code

are you sentient

On a scale of WALL-E to Hal-9000

..’ I'm more of an R2D2

Why learn NLP?: Theoretical viewpoint

e Language is the natural testbed for intelligence! Why?

e There are 2 most abundant sources of data: Visual and Textual

NU%ETESMAHC CRITERA oy 2 o e
ananananan Ll—' £ MADE e
553 GO - HUMAstwm S

PROQE;Q.FJE“ % = FVALUATIONRULES £ =52

ATE

T ASKS ANV SYSTEMS = Suion
T&§K=,>m;~)™ STANDARD ="
2SI | C = DATA SYSTEMRESEARcH
= — COMPLEXITY = COMMONLY 5

PROBLEMHOWEVER vw o DIFFERENT ~ §

MUDE[
DEFINITIC

Why learn NLP?: Theoretical viewpoint

e Language is the natural testbed for intelligence! Why?
e There are 2 most abundant sources of data: Visual and Textual

e However, while even insects can see, Language is characteristic to humans

SYSTEM 1 SYSTEM 2

Intuition & Iinstinct Rational thinking

Takes effort
Slow

Unconscious
Fast
Associative Logical
Automatic pilot Lazy
Indecisive

Source: Daniel Kahneman

Probabilistic Models
- Language modelling

Probabilistic Language Models

ooo

e Machine Translation:
o P(high winds tonite) > P(large winds tonite)

e Spell Correction

o The office is about fifteen minuets from my house
m P(about fifteen minutes from) > P(about fifteen minuets from)

e Speech Recognition
o P(l saw a van) >> P(eyes awe of an)

e + Summarization, question-answering, ...

Probabilistic Language Modeling
® Goal: compute the probability of a sentence or sequence of words:

P(W) = P(w;,W,,W3,W,,We...W,)

e Related task: probability of an upcoming word:

P(ws|wy,w,,w3,w,)

e A model that computes either of these:

P(W) or Plw,|w,w,..w_,) is called a

e Alternative name: grammar

How to compute P(W)

e How to compute this joint probability:

P(its, water, is, so, transparent, that)

e Let’s start with the Bayes rule:

P(A,B) = P(A) P(B]A)

e And now more generally (“Chain Rule of Probability”)

P(X1,X5,X3,.-,X,) = P(X1)P(X, | X)P(X3 | X1,%5)...P(X [Xq,ee X, 1)

Joint probability of words in sentence
Pww,...w)= HP(Wi WW, W)
P(“its water is so transparent”) =

P(its) x P(water|its) x P(is|its water)

x P(so|its water is) x P(transparent|its water is so0)

How to estimate these probabilities

e Could we just count and divide?

P(the |1ts water is so transparent that) =

Count(its water is so transparent that the)
Count(its water 1s so transparent that)

e Too many possible sentences!
e We'll never see enough data for estimating these

Markov Assumption

® A simplifying assumption:

P(the |its water 1s so transparent that) ~ P(the [that) AndreiMarkov

® Or maybe a bit less restrictive

P(the | 1ts water 1s so transparent that) ~ P(the | transparent that)

Markov Assumption

Pwwy.eow,) = | [POw, [w,_yow,)

In other words, we approximate each component in the product

P(w,

WlWZ"'Wi—l) ~ P(Wr Wi—k"'wi—l)

Simplest case: Unigram model

P(ww,..w,)~ [| P(w,)

Some automatically generated sentences from a unigram model:

fifth, an, of, futures, the, an, incorporated, a, a, the,
inflation, most, dollars, quarter, in, 1s, mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Bigram model

= Condition on the previous word:

P(w,

Wi, W:‘—1) ~ P(Wi Wi—l)

texaco, rose, one, 1in, this, issue, 1s, pursuing, growth,
a, boiler, house, said, mr., gurria, mexico, 's, motion,

control, proposal, without, permission, from, five, hundred,

fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

N-gram models

e We can extend to trigrams, 4-grams, 5-grams

e In general this is an insufficient model of language
o because language has

“The computer which | had just put into the machine room on the fifth floor
crashed.”

e But we can often get away with N-gram models in practice

Probabilistic Language Modelling
- Estimating N-gram Probabilities

Estimating bigram probabilities

® Using Maximum Likelihood Estimate:
count(w_,,w,)

Pow: [w..) = count(w,_,)
<s>|am Sam </s> i1
<s>Sam | am </s> C(W. w,)

_ -1
Pw, |w,_)= L
<s> | do not like green eggs and ham </s> C(Wi_l)
P(I|<s>)=3=.67 P(sam|<s>)=1=.33 Plam|I)=3%=.67
P(</s>|sam)=1=05 P(Sam|am)=3=.5 P(do|I)=1=.33

Example: Berkeley Restaurant Project sentences

e can you tell me about any good cantonese restaurants close by
® mid priced thai food is what i’'m looking for

e tell me about chez panisse

® can you give me a listing of the kinds of food that are available
® i‘m looking for a good place to eat breakfast

e when is caffe venezia open during the day

Raw bigram counts

e Outof 9222 sentences:

1 want | to eat chinese food | lunch spend
1 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 151 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Raw bigram probabilities

e Normalize by unigrams:

® Result:

1 want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278
1 want | to eat chinese | food | lunch | spend

1 0.002 033 |0 0.0036| 0 0 0 0.00079
want 0.0022 |0 0.66 0.0011 | 0.0065 | 0.0065 | 0.0054| 0.0011
to 0.00083 | 0 0.0017] 0.28 0.00083 | 0 0.0025 | 0.087
eat 0 0 0.0027 | O 0.021 0.0027 1 0.056 |0
chinese || 0.0063 | 0 0 0 0 0.52 0.0063 | O
food 0.014 0 0.014 |0 0.00092 | 0.0037 | 0 0
lunch 0.0059 |0 0 0 0 0.00291 0 0
spend | 0.0036 |0 0.0036 | O 0 0 0 0

Bigram estimates of sentence probabilities

P(<s> | want english food </s>) =
P(lI|<s>) x P(want]|l) x P(english|want) x P(food|english) x P(</s>|food) = .000031

e What types of knowledge in a LM?
o P(english|want) =.0011

P(chinese|want) = .0065

P(to|want) = .66

P(eat | to) =.28

P(food | to) =0

P(want | spend) =0

P(i | <s>)=.25

0O O O O o o

Practical Issues

e We do everything in log space!
O to avoid numeric underflow
m also adding is faster than multiplying
m though log can be slower than multiplication

log(p; % py X p3 % py)=1log p, +1og p, +1log p; +1og p,

Google N-Gram Release

®@scrve
®scrve
®scrve
®scrve
@serve
®scrve
®scrve
@secrve
®scrve

®scrve

as

as

as

as

as

as

as

as

as

as

the
the
the
the
the
the
the
the
the
the

incoming 92
incubator 99
independent 794
index 223
indication 72
indicator 120
indicators 45
indispensable 111
indispensible 40
individual 234

https://books.google.com/ngrams

Probabilistic Language Modelling
- Evaluation and Perplexity

Extrinsic evaluation of N-gram models

® Does our language model prefer good sentences to bad ones?
o Assign higher probability to “real” or “frequently observed” sentences

m Than “ungrammatical” or “rarely observed” sentences?

® Best evaluation for comparing models A and B
O Put each model in a task
m spelling corrector, speech recognizer, MT system
O Run the task, get an accuracy for A and for B
m How many misspelled words corrected properly
®m How many words translated correctly

O Compare accuracy for A and B

Difficulty of extrinsic evaluation

® Extrinsic evaluation
o Time-consuming; can take days or weeks
® So:
O Sometimes we use evaluation:
O Bad approximation
m unless the test data looks just like the training data
m So generally only useful in pilot experiments

O Butis helpful to think about.

Intuition of Perplexity

e The Shannon Game:
How well can we predict the next word? pepperoni 0.1

/~ mushrooms 0.1
< anchovies 0.01

fried rice 0.0001

- Unigrams are terrible at this game. (Why?) \ and 1e-100

A better model of a text is one which assigns a higher probability to the word that actually occurs

e The best language model is one that best predicts an unseen test set

e Gives the highest P(sentence)

Perplexity

=[=

Perplexity is the inverse probability of the PP(W) = P(wwy..wy)
sentence, normalized by the number of words:
)]{/P(|)
_ o 1 WiW,. Wy
Chainrule: PP(W) = JHP(WI-WL —

*perplexity is also closely related to cross-entropy PP(W) = 2HW) = 9~y log; Plwi,wz,. . wy)

The Shannon Game intuition for perplexity

® Perplexity is a “weighted equivalent branching factor” PPW) = Plwiwz...wn) ¥

e How hard is the task of recognizing digits ‘0,1,2,3,4,5,6,7,8,9’
O Perplexity =10

e How hard is recognizing (30,000) names at Microsoft. =10
o Perplexity = 30,000

® Let'simagine a call-routing phone system gets 120K calls and has to recognize
a. "Operator" (let's say this occurs 1 in 4 calls)
b. "Sales" (1in 4)
c. "Support" (1in 4)
d. 30,000 different names (each name occurring 1 time in the 120K calls)
o We get the perplexity of this sequence of length 120Kby first multiplying 120K probabilities
o (90K of which are 1/4 and 30K of which are 1/120K), and then taking the inverse 120,000th root:

Perplexity = (Ya* Va* Va* Va* Yo * * 1120K * 1/120K *)*(-1/120K)

e This can be arithmetically simplified to just N = 4: the operator (1/4), the sales (1/4), the tech support (1/4), and

the 30,000 names (1/120,000): Perplexity = ((Va * Va * ¥a * 11120K)A(-1/4) = 52.6

Lower perplexity = better model

® Training 38 million words, test 1.5 million words

R e L

Perplexity

The Shannon Visualization Method

® Choose a random bigram (<s>, w) according to its probability
® Now choose a random bigram (w, x) according to its probability
o And so on until we choose </s>
o Finally string the words together
<s> 1
I want
want to
to eat
eat Chinese
Chinese food
food </s>
I want to eat Chinese food

Approximating Shakespeare: Random Sampling

|

gram

2

gram

3

gram

4

gram

—To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have
—Hill he late speaks; or! a more to leg less first you enter

—Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.
—What means, sir. I confess she? then all sorts, he is trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
tis done.
—This shall forbid it should be branded, if renown made it empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;
—It cannot be but so.

Shakespeare as a corpus

e N=884,647 tokens, V=29,066

e Shakespeare produced 300,000 bigram types
O out of V2= 844 million possible bigrams.

® S50 99.96% of the possible bigrams were never seen
O have zero entries in the table

e Quadrigrams even worse:

o What's coming out looks like Shakespeare because it is Shakespeare!

Probabilistic Language Modelling
- Overfitting and Smoothing

The perils of overfitting: Zeros

® Training set: ® Test set:
... denied the allegations ... denied the offer
... denied the reports ... denied the loan

... denied the claims
... denied the request

P(“offer” | denied the) =0

e Bigrams with zero probability!
o mean that we will assign O probability to the test set!

e And hence we cannot compute perplexity (can’t divide by 0)!

The intuition of smoothing

e When we have sparse statistics:
O P(w | denied the)
| 3 allegations
2 reports
1 claims
1 request
7 total

attack
man
outcome

e Steal probability mass to generalize better
o P(w | denied the)
] 2.5 allegations

[| 1.5 reports Z
m 0.5claims o
m 0.5request RIS
c') S
[2 other R, 8.
m 7 total < v gw |

attack
man
outcome

Add-one estimation

e Also called Laplace smoothing
® Pretend we saw each word one more time than we did

e Just add one to all the counts!

c(w,_,w,)
PMLE(Wi |Wi—1): L
® MLE estimate: C(Wi—l)
c(w_,w,)+1
PAdd—l(wi |Wi—1)= el v
e Add-1 estimate: C(Wi—1)+

Berkeley Restaurant Corpus:
Laplace smoothed bigram counts

1 want | to eat chinese food | lunch | spend
1 6 828 1 10 1 1 1 3
want 3 1 609 | 2 7 7 6 2
to 3 1 5 687 | 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Laplace-smoothed bigrams

No longer a MLE!

P (wy|lwp_1) = C(wp_1wn) + 1 =
n n— C(W”_l) —|—V

1 want to eat chinese | food lunch spend
1 0.0015 0.21 0.00025| 0.0025 0.00025(0.00025| 0.00025| 0.00075
want 0.0013 0.00042(0.26 0.00084| 0.0029 0.0029 0.0025 0.00084
to 0.00078 | 0.00026(0.0013 0.18 0.00078 | 0.00026| 0.0018 0.055
eat 0.00046| 0.00046(0.0014 0.00046| 0.0078 0.0014 0.02 0.00046
chinese || 0.0012 0.00062 | 0.00062| 0.00062| 0.00062| 0.052 0.0012 0.00062
food 0.0063 0.00039(0.0063 0.00039| 0.00079(0.002 0.00039| 0.00039
lunch 0.0017 0.00056| 0.00056| 0.00056| 0.00056| 0.0011 0.00056| 0.00056
spend 0.0012 0.00058 [0.0012 0.00058| 0.00058| 0.00058 | 0.00058| 0.00058

Compare with raw bigram counts

‘ ‘ ‘ 1 ‘ want | to ‘ eat | chinese ‘ food | lunch spend
1 5 827 0 9 0 0] 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0] 6 211
eat 0] 0] 2 0] 16 2 42 0]
chinese 1 0 0 0 0 82 1 0
food 15 0] 15 0] 1 4 0 0]
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

H 1 want | to eat ‘ chinese ‘ food | lunch ‘ spend |

1 3.8 527 0.64 6.4 0.64 0.64 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63 4.4 133
eat 0.34 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098 0.098 0.098 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32 0.16 0.32 0.16 0.16 0.16 0.16 0.16

Probabilistic Language Modelling
- Supervised Text Classification

Text classification?

e Spam detection

e Authorship identification
e Age/Gender recognition
e Language identification
e Sentiment classification

e Topic classification

Text classification: task

® /nput:
o a document d
o a fixed set of classes €={c,, €5,..., C;}

o Atraining set of m hand-labeled documents (d,c,),....,(d,,c,,)

e Output:

o a learned classifier f:d = ¢ ["To be, or nok to e, hat s the nes s
"Whether 'tis nobler in the mind to suffer”]

46

Text classification: methods

e Naturally, any kind of classifier can be used

o Rule-based systems

o Naive Bayes

o Logistic regression

o Support-vector machines Sidedeatel s

o Neural networks

‘question': 7
O ‘whether': 13,
e ‘ ¢

Bt &

The bag of words representation

f

Seell

sweet

whimsical

recommend

happy

Rl = RN

Nalve Bayes
P(e|dy=PEIOPE)

e How to predict the class ¢ for a document d? P(d)
o let’s apply the Bayes rule again!

MAP is “maximum a posteriori”
= most likely class

Cyp = argmax P(c | d)

ceC
= argmax Pd]c)P(c) Bayes Rule
ceC P(d)
=argmax P(d | ¢)P(c) Dropping the denominator
ceC
—aremax P(x..x......x |c)P(c Document d represented as
%ec (Pt ”|) () features Xx,...x,,

“Likelihood" | | "Prior"

Naive Bayes: Tractability Problem

C,p = argmax P(x,, x,,...,x, |c)P(c)
ceC

O(|X| Ne | C|) parametersl How often does this class
' occur?

Could only be estimated if a very, very :

large number of training examples was We can just count the

d g.e LnletEs e 8 P relative frequencies in a
available. corpus

Naive Bayes: Independence Assumptions

. All models are
e Bag of Words assumption B g
O Assume word position doesn’t matter some are e
useful. b =
P(XI, xz, " x” | C) George Box ..’; "\Q 't 4
e Conditional Independence ‘
O Assume the feature probabilities P(x;| ¢;) are independent given the class c. ‘

Py, [€)= P(x, |)0 P(x, [)8 P(x, [€)s... 0 P(x, |)

e Naive Bayes model inference:

Cyp = argmax P(c;) H P(x;|c;)

c.eC . ..
] 1€ positions

Naive Bayes: log space

Multiplying a lot of small number leads to underflow problems...
O Solution - move to log space!

Instead of: Cyp = argmax P(c,) H P(x;|c))

i€ C

i€ positions

We calculate: eyp = argmax |log P(c;) + Z log P(z;|c;)
c,eC . . s
iepositions
Notes:
1) Taking log doesn't change the ranking of classes!
- The class with highest probability also has highest log probability!
2) It's a linear model:

- Just a max of a sum of weights: a linear function of the inputs

So naive bayes is a linear classifier

Naive Bayes: Learning the parameters

® You have seen this before: maximum likelihood estimates!
o simply use the frequencies in the data

e The prior for the class probabilities: P(Cj) = J

count(w;,c;)

Z count(w,c;)

welV

e The likelihood for the words: ﬁ(Wi | Cj) =

o “merge” all words for each class

what about
completely
unknown words?

Problem with Maximum Likelihood

o ©

o

e What if we have seen no training documents with the word fantastic and classified in
the topic positive (thumbs-up)?

A . .. count("fantastic", positive
P("fantastic" ‘posmve) = (P —) - 0
Z count(w, positive)

wel

® Zero probabilities cannot be conditioned away, no matter the other evidence!
Cpup = ATgMAXx P(C)HiP(xI. c)

count(w;,c)+1

Z coum(w,c)J + |V|

welV

e Solution? ﬁ(w lc)=
O Smoothing to the rescue! : Z (count(w, c)+ 1)

wel

count(w,,c)+1 = [

Generative Model for Multinomial Naive Bayes

-,
\ \\
\ \\
S ~
\

7’ /
s /
7’ ‘< /
’ /
P ’ \ RN

Naive Bayes and Language Modeling

e Naive bayes classifiers can use any sort of feature

o URL, email address, dictionaries, network features

e But if, as in the previous slides, we use only words as features

e Then Naive bayes has an important similarity to language modeling:

e Each class = a unigram language model

® Assigning each word a probability: P(word|class)

® Assigning each sentence a probability P(sentence | class) = T P(word | class)

Each class = a unigram language model!

Class pos
0.1 I
0.1 love
0.01 this
0.05 fun
0.1 film

| love this fun film_

0.1 0.1 .05 0.01 0.1

P(sentence | c=pos) = 0.0000005

Naive Bayes as a Language Model

® \Which class assigns the higher probability to a sentence?

Model pos
0.1 |

0.1 love
0.01 this
0.05 fun
0.1 film

Model neg
0.2 |

0.001 love
0.01 this
0.005 fun

0.1

film

I love this fun film
0.1 0.1 0.01 0.05 0.1
0.2 0.001 0.01 0.005 0.1

P(sentence|pos) > P(sentence|neg)

Probabilistic Language Modelling
- Unsupervised Topic Modelling

Topic models

e Unsupervised models for discovering hidden “topics” or “themes” in documents
o Clusters/groups of terms that tend to occur together.

Topics Documents Toplc proportions and

gene .64
ool Seeking Life's Bare (Genetic) Necessities
e Input: E B M
o set of documents
o number of “topics” to learn
e Output:
o extracted topics (clusters)
0] topic distribution for each document Figure source: Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84.

o topic distribution for each word in a document

Probabilistic topic models

e Assume a probabilistic generative process that yields the documents

o this can be hierarchical and quite complex

e Adopts the language of probabilistic graphical models (Bayes nets)
o Simply a visual way of writing the joint probability
m Nodes represent variables (blue = observed, grey = latent)
m Arrows indicate conditional relationships
e “The probability of x is dependent on z”

e A latent variable is one that’s unobserved, either because:

o we are predicting it (but have observed that variable for other data points)
o itisunobservable (e.g., a “topic” of a document)

Graphical models tell a “story” of doc generation

1) sample supervised unsupervised
y ~ p(y) o here we have to guess
out of thin air : (including the dimensionality)
2) follow the
arrow and
sample
X~ p(x|y) 7
P(x|z)P(z).
P(x|y)P(y) P(z|z) = °
P(ylz) = P(z) o

P(z)

one needs to
resort to EM

All models are

The “story”: Plate notation wrong, but

sOome are

useful.

e
o o
Ceorge Box ' e » . y

e.g. p(y) = [70% spam, 30% ham] _/

—

LS
y

e.g. p(x]y) = “Multinomial[Y=spam]”

|/

Obviously, that’s not a good
way to generate an email...

fori=1..N: %
y(i) ~ p(Y)

X(i) - p(X | Y= y(i)) Email: “Hello, lottery, welcomes, deadline, 100%, viagra, inherit, ...”

Latent Dirichlet Allocation (LDA)

e The absolute classic method of choice for probabilistic topic modelling

David Blei

Professor of Statistics and Computer Science, Columbia University
E-mailova adresa ovéfena na: columbia edu - Domovskéa stranka

SLEDOVAT

Machine Learning Statistics Probabilistic topic models Bayesian nonparametrics
Approximate posterior infer..

Andrew Ng
Stanford University
4\ E-mailova adresa ovéfena na: cs stanford edu - Domovska stranka

Machine Learning Deep Learning Al

Michael I. Jordan

Professor of Electrical Engineering and Computer Sciences and Professor of
Statistics, UC Berkeley
E-mailova adresa ovéfena na: cs.berkeley.edu - Domovska stranka

SLEDOVAT

machine learning computer science statistics artificial intelligence optimization

Citace

Citace
h-index
i10-index

Citace

Citace
h-index
i10-index

Citace

Citace
h-index
i10-index

ZOBRAZIT VSECHNY
Véechny 0d 2017
106223 59185
96 80
205 184
ZOBRAZIT VBECHNY
Véechny 0d 2017
195969 114815
134 103
295 269
ZOBRAZIT VSECHNY
VEechny 0d2017
226651 106096
186 128
629 480

Joumal of Machine Leamning Rescarch 3 (2003) 993-1022

Latent Dirichlet Allocation

David M.
Computer Science Division

University of California

Berkeley, CA 94720, USA

Andrew Y. Ng

Computer Science Department

Stanford University

Stanford, CA 94305, USA

Michael 1. Jordan

Computer Science Division and Department of Statistics
University of California

Berkeley, CA 94720, USA

JORDAN(

1roF1 Latent dirichlet allocation

DM Blei, AY Mg, MI Jordan - Journal of machine Leaming research, 2003 - jmir.org

We describe latent Dirichlet allocation (LDA), a generative probabilistic medel for collections
of discrete data such as text corpora. LDAJ archical Bayesian model, in ._.

¥r Ulozit 99 Citovat Pocet citaci tohto Elanku: 41579 Sou

zejici Elanky Viechny verze (polet: 108) 9

Submitted 2402; Published 1/03

Blei BLEI@CS.BERKELEY.EDU

.-\N(J:"g\(.S.S TANFORD.EDU

"S.BERKELEY.EDU

[PDF] jmir.org

Oo
OOO

unigram

pI'IOI'S

&

N

mixture of unigrams

o)

Bayesian topic model

The “story” of corpus generation: unigrams

Probability of a document:

D
p(x) =] [()

fori=1..N: j=1
forj=1..D:

X(i,j) ~ p(X) N

The “story” of corpus generation: mixture models

fori=1..N:
z(i) ~ p(2)
forj=1..D:
X(i.j) ~ p(X'| Z = z(i))

@

Latent Dirichlet Allocation

z is inside both
plates now -

sample new topic
for every word !!!

per-doc topic

- Corpus level)
: proportions

. parameters

topic prior over
word-counts

a prior over
topic mixtures G

a, B = parameters : .
fori=1..N: a topic model
6(i) ~ Dirichlet(x) D
forj=1..D:
z(i,j) ~ Multinom(6(i)) p(0, z,z|a, B) = p(0|) HP(Zj 10)p(z;|z5, 8)

X(i.j) ~ p(X | Z = z(i,j), B) j=1

Latent Dirichlet Allocation

word-level parameters

multi-dim.
\7d|str|but|onsI
a, BE]RKXV
fori=1..N:
6(i) ~ Dirichlet“(a) # geRN*K
forj=1..D;
2(i.j) ~ Multinom*(8(i)) p(0, 2z, z|a, B) 9|Oé
X(i,j) ~ Multinom"(z(i,j), B)

document-level parameters

p(%10)p(2;]25, B)

n::]tj

Bayesian machine learning

e Under normal circumstances, the 8 would be a normal parameter

o e.g.aweightin a neural network
e Butin Bayesian ML, (almost) everything is a random variable

o hence we get a distribution over the “weights” 8
o and this distribution has a hyperparameter &
o specifically @ ~ Dirichlet(ct)

m typically its symmetric variant where & is a scalar (all topics a-priori equally likely)

e Why Dirichlet ?
o Intuitively, Dirichlet is a distribution over positive (probability) vectors that sum up to one
m = parameters for discrete multinomial distributions (of topics)
o Moreover, itis a conjugate prior for the multinomial distribution

low @ means
sparse distr.
aver topics

Topic model step-by-step

e FEach document has

topic names
are “ad-hoc”

war love chases boats aliens family

Topic model step-by-step

e Atopicisa ; ‘ .

0.20

0.10

— [’—H—‘ o e |

0.00

death die kill dead love like adore care mother father child son the of

e e.g., P(“adore” | topic=love) = 0.18

Topic model step-by-step

P(topic | topic distribution 0)

OO Y)

z ~ Multinomial(©)

Topic model step-by-step

P(topic | topic distribution 0)

OO Y)

z ~ Multinomial(©)

Topic model step-by-step @\

(OO -D,

@ @ @ @ X ~ Multinomial(z,)
OO o TP

Topic model step-by-step

(HOD @,

X ~ Multinomial(z,3)

P(word | topic z, B)

Topic model step-by-step @\

(D@,

‘ ‘ ‘ ’ P(topic | topic distribution 0)

Topic model step-by-step @\

OO Y)

@ @ @ @ P(topic | topic distribution 0)

Topic model step-by-step

P(word | topic z, B)

Topic model step-by-step

P(word | topic z, B)

Assumptions

e The only information we have are distributions of words across the documents

e No sequential information

o topics for words are independent of each other given the set of topics for a document

e Each particular word has one topic

o butin general we can obtain the same word from different topics!

e Every document has one topic distribution

e Topics don’t have arbitrary correlations (Dirichlet prior)

Learning the parameters @\

@@,

e \What are the topic distributions for each document?

e What are the word distributions for each topic?

e Find the parameters that maximize the likelihood of the training data!

o using variational EM or Gibbs sampling

Inferred Distributions: topics+words

8-
g

-

e]

2

g

) II I

o I

s -—_. ---
g

W gmad owe We adorm caer momer father ched son e

ke adore cans mother father chid sem e

Smoothed LDA

Empirically maximizing the likelihood of training data can be problematic

e Particularly in LDA, BERK®V is an unseen but fixed value

e i.e.,itisapoint estimate with no distribution
e this means zero probability for unseen words!

e What can we do? You already know what...
o Apply smoothing!
m e.g. +1 (Laplace) that we discussed
m actually used in practice, but rather ad-hoc
e A more principled solution?

o go more Bayesian! WENEED T0 GO MORE BA-YESFIA“

Smoothed LDA

prlorS

<

N

A Bayesian topic model

low n means
sparse distr.

Smoothed LDA

over words

Now even the word distribution
across the K topics is itself a

A

: @@ : random variable B ~ Dirichlet(n)
p”ors
. -
N

A smoothed Bayesian topic model

e With this nwe now have a Dirichlet prior for all the words (even unseen in the corpus!)

How to use in practice

a) Implement your own LDA and variational EM...
b) from sklearn.decomposition import LatentDirichletAllocation

e notto be confused with another LDA = Linear Discriminant Analysis
o used to be in sklearn.lda.LDA
o now: sklearn.discriminant_analysis.LinearDiscriminantAnalysis

e Other popular libraries:
o Gensim
m from Radim Rehurek
o Spacy

e Inthe next lecture, we will see a complementary approach with matrix decompositions

