
Introduction to NLP
Probabilistic models

Compressed out of NLP courses from Dan Jurafsky (Stanford), & David Bamman (Berkeley),

Michael Collins (MIT & Columbia), and some online (Udemy) courses

Book: Speech and Language Processing by Jurafsky & Martin (3rd edition)

Why teach NLP in SMU?

1. Language/text has a symbolic structure

2. It is all about machine learning these days

3. NLP is a core part of Artificial Intelligence

○ However, there is no NLP at FEL

After this short NLP block, you should be able to:

○ Recognize some classic NLP tasks when encountered

○ Understand some modern NLP methods and models:

i. probabilistic models

ii. vector/matrix models

iii. neural models

○ Implement and/or use these in practice (Python)

What is NLP?

NLP = Natural Language Processing

- a.k.a. computational linguistics (from a linguist’s point of view)

Intersection of:

● Linguistics

● AI/ML

● CS

Goal: process language with computers to perform useful things…

Why learn NLP?: Practical viewpoint

● Part of speech tagging

● Named entity recognition

● Language modelling

● Topic modelling

● Information extraction

● Text Summarization

● Machine translation

● Question answering

● Conversational agents

Why learn NLP?: Theoretical viewpoint

● Language is the natural testbed for intelligence!

Why learn NLP?: Theoretical viewpoint

● Language is the natural testbed for intelligence! Why?

● There are 2 most abundant sources of data: Visual and Textual

Why learn NLP?: Theoretical viewpoint

● Language is the natural testbed for intelligence! Why?

● There are 2 most abundant sources of data: Visual and Textual

● However, while even insects can see, Language is characteristic to humans

Probabilistic Models

- Language modelling

Probabilistic Language Models

● Goal: assign probability to a sentence

● Machine Translation:

○ P(high winds tonite) > P(large winds tonite)

● Spell Correction

○ The office is about fifteen minuets from my house

■ P(about fifteen minutes from) > P(about fifteen minuets from)

● Speech Recognition

○ P(I saw a van) >> P(eyes awe of an)

● + Summarization, question-answering, …

Why?

Probabilistic Language Modeling

● Goal: compute the probability of a sentence or sequence of words:

P(W) = P(w1,w2,w3,w4,w5…wn)

● Related task: probability of an upcoming word:

P(w5|w1,w2,w3,w4)

● A model that computes either of these:

P(W) or P(wn|w1,w2…wn-1) is called a language model or LM.

● Alternative name: grammar

How to compute P(W)

● How to compute this joint probability:

P(its, water, is, so, transparent, that)

● Let’s start with the Bayes rule:

P(A,B) = P(A) P(B|A)

● And now more generally (“Chain Rule of Probability”)

P(x1,x2,x3,…,xn) = P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1,…,xn-1)

Joint probability of words in sentence

P(“its water is so transparent”) =

P(its) × P(water|its) × P(is|its water)

× P(so|its water is) × P(transparent|its water is so)

How to estimate these probabilities

● Could we just count and divide?

● Too many possible sentences!
● We’ll never see enough data for estimating these

Markov Assumption

● A simplifying assumption:

● Or maybe a bit less restrictive

Andrei Markov

Markov Assumption

In other words, we approximate each component in the product

Simplest case: Unigram model

fifth, an, of, futures, the, an, incorporated, a, a, the,

inflation, most, dollars, quarter, in, is, mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Some automatically generated sentences from a unigram model:

= Condition on the previous word:

Bigram model

texaco, rose, one, in, this, issue, is, pursuing, growth, in,

a, boiler, house, said, mr., gurria, mexico, 's, motion,

control, proposal, without, permission, from, five, hundred,

fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

N-gram models

● We can extend to trigrams, 4-grams, 5-grams
● In general this is an insufficient model of language

○ because language has long-distance dependencies:

“The computer which I had just put into the machine room on the fifth floor
crashed.”

● But we can often get away with N-gram models in practice

Probabilistic Language Modelling

- Estimating N-gram Probabilities

Estimating bigram probabilities

● Using Maximum Likelihood Estimate:

<s> I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

Example: Berkeley Restaurant Project sentences

● can you tell me about any good cantonese restaurants close by

● mid priced thai food is what i’m looking for

● tell me about chez panisse

● can you give me a listing of the kinds of food that are available

● i’m looking for a good place to eat breakfast

● when is caffe venezia open during the day

● …….

Raw bigram counts

● Out of 9222 sentences:

Raw bigram probabilities

● Normalize by unigrams:

● Result:

Bigram estimates of sentence probabilities

P(<s> I want english food </s>) =

P(I|<s>) × P(want|I) × P(english|want) × P(food|english) × P(</s>|food) = .000031

● What types of knowledge in a LM?
○ P(english|want) = .0011

○ P(chinese|want) = .0065

○ P(to|want) = .66

○ P(eat | to) = .28

○ P(food | to) = 0

○ P(want | spend) = 0

○ P (i | <s>) = .25

Practical Issues

● We do everything in log space!
○ to avoid numeric underflow

■ also adding is faster than multiplying
■ though log can be slower than multiplication

Google N-Gram Release

●serve as the incoming 92

●serve as the incubator 99

●serve as the independent 794

●serve as the index 223

●serve as the indication 72

●serve as the indicator 120

●serve as the indicators 45

●serve as the indispensable 111

●serve as the indispensible 40

●serve as the individual 234

https://books.google.com/ngrams

Probabilistic Language Modelling

- Evaluation and Perplexity

Extrinsic evaluation of N-gram models

● Does our language model prefer good sentences to bad ones?

○ Assign higher probability to “real” or “frequently observed” sentences

■ Than “ungrammatical” or “rarely observed” sentences?

● Best evaluation for comparing models A and B

○ Put each model in a task

■ spelling corrector, speech recognizer, MT system

○ Run the task, get an accuracy for A and for B

■ How many misspelled words corrected properly

■ How many words translated correctly

○ Compare accuracy for A and B

Difficulty of extrinsic evaluation

● Extrinsic evaluation

○ Time-consuming; can take days or weeks

● So:

○ Sometimes we use intrinsic evaluation: perplexity

○ Bad approximation

■ unless the test data looks just like the training data

■ So generally only useful in pilot experiments

○ But is helpful to think about.

Intuition of Perplexity
● The Shannon Game:

How well can we predict the next word?

- Unigrams are terrible at this game. (Why?)

A better model of a text is one which assigns a higher probability to the word that actually occurs

● The best language model is one that best predicts an unseen test set

• Gives the highest P(sentence)

I always order pizza with cheese and ____

The 33rd President of the US was ____

I saw a ____

mushrooms 0.1

pepperoni 0.1

anchovies 0.01

….

fried rice 0.0001

….

and 1e-100

Perplexity

Perplexity is the inverse probability of the
sentence, normalized by the number of words:

Chain rule:

For bigrams:

*perplexity is also closely related to cross-entropy

The Shannon Game intuition for perplexity

● How hard is recognizing (30,000) names at Microsoft.
○ Perplexity = 30,000

● Let's imagine a call-routing phone system gets 120K calls and has to recognize
a. "Operator" (let's say this occurs 1 in 4 calls)
b. "Sales" (1in 4)
c. "Support" (1 in 4)
d. 30,000 different names (each name occurring 1 time in the 120K calls)
○ We get the perplexity of this sequence of length 120Kby first multiplying 120K probabilities

○ (90K of which are 1/4 and 30K of which are 1/120K), and then taking the inverse 120,000th root:

Perplexity = (¼ * ¼ * ¼* ¼ * ¼ * …. * 1/120K * 1/120K * ….)^(-1/120K)

● This can be arithmetically simplified to just N = 4: the operator (1/4), the sales (1/4), the tech support (1/4), and

the 30,000 names (1/120,000): Perplexity = ((¼ * ¼ * ¼ * 1/120K)^(-1/4) = 52.6

● Perplexity is a “weighted equivalent branching factor”

● How hard is the task of recognizing digits ‘0,1,2,3,4,5,6,7,8,9’
○ Perplexity = 10

Lower perplexity = better model

● Training 38 million words, test 1.5 million words

N-gram Order Unigram Bigram Trigram

Perplexity 962 170 109

The Shannon Visualization Method

● Choose a random bigram (<s>, w) according to its probability
● Now choose a random bigram (w, x) according to its probability

○ And so on until we choose </s>
○ Finally string the words together

<s> I

I want

want to

to eat

eat Chinese

Chinese food

food </s>

I want to eat Chinese food

Approximating Shakespeare: Random Sampling

Shakespeare as a corpus

● N=884,647 tokens, V=29,066

● Shakespeare produced 300,000 bigram types

○ out of V2= 844 million possible bigrams.

● So 99.96% of the possible bigrams were never seen

○ have zero entries in the table

● Quadrigrams even worse:

○ What's coming out looks like Shakespeare because it is Shakespeare!

Probabilistic Language Modelling

- Overfitting and Smoothing

The perils of overfitting: Zeros

● Training set:

… denied the allegations
… denied the reports
… denied the claims
… denied the request

P(“offer” | denied the) = 0

● Test set:

… denied the offer
… denied the loan

● Bigrams with zero probability!
○ mean that we will assign 0 probability to the test set!

● And hence we cannot compute perplexity (can’t divide by 0)!

The intuition of smoothing

● When we have sparse statistics:
○ P(w | denied the)

■ 3 allegations
■ 2 reports
■ 1 claims
■ 1 request
■ 7 total

● Steal probability mass to generalize better
○ P(w | denied the)

■ 2.5 allegations
■ 1.5 reports
■ 0.5 claims
■ 0.5 request
■ 2 other
■ 7 total

a
ll
e
g
a
t
io

n
s

r
e
p
o
r
t
s

c
l
a
i
m

s

a
tt

a
c
k

r
e
q
u
e
s
t

m
a
n

o
u
tc

o
m

e

…

a
ll
e
g
a
t
io

n
s

a
tt

a
c
k

m
a
n

o
u
tc

o
m

e

a
ll
e
g
a
t
io

n
s

r
e
p
o
r
t
s

c
l
a
i
m

s

r
e
q
u
e
s
t

…

Add-one estimation

● Also called Laplace smoothing

● Pretend we saw each word one more time than we did

● Just add one to all the counts!

● MLE estimate:

● Add-1 estimate:

Berkeley Restaurant Corpus:
Laplace smoothed bigram counts

Laplace-smoothed bigrams

No longer a MLE!

Compare with raw bigram counts

Probabilistic Language Modelling

- Supervised Text Classification

Text classification?

● Spam detection

● Authorship identification

● Age/Gender recognition

● Language identification

● Sentiment classification

● Topic classification

● …

Text classification: task

● Input:

○ a document d

○ a fixed set of classes C = {c1, c2,…, cJ}

○ A training set of m hand-labeled documents (d1,c1),....,(dm,cm)

● Output:

○ a learned classifier f:d→ c

46

f()=c

Text classification: methods

● Naturally, any kind of classifier can be used

○ Rule-based systems

○ Naïve Bayes

○ Logistic regression

○ Support-vector machines

○ Neural networks

○ …

The bag of words representation

f()=c

seen 2

sweet 1

whimsical 1

recommend 1

happy 1

... ...

Naive Bayes

MAP is “maximum a posteriori”

= most likely class

Bayes Rule

Dropping the denominator

● How to predict the class c for a document d?

○ let’s apply the Bayes rule again!

Document d represented as

features x
1
…x

n

"Likelihood" "Prior"

Naive Bayes: Tractability Problem

How often does this class

occur?
O(|X|n•|C|) parameters!

We can just count the

relative frequencies in a

corpus

Could only be estimated if a very, very
large number of training examples was
available.

Naive Bayes: Independence Assumptions

● Bag of Words assumption
○ Assume word position doesn’t matter

● Conditional Independence
○ Assume the feature probabilities P(xi|cj) are independent given the class c.

● Naive Bayes model inference:

Naive Bayes: log space

● Multiplying a lot of small number leads to underflow problems…
○ Solution - move to log space!

● Instead of:

● We calculate:

● Notes:
1) Taking log doesn't change the ranking of classes!

- The class with highest probability also has highest log probability!
2) It's a linear model:

- Just a max of a sum of weights: a linear function of the inputs

● So naive bayes is a linear classifier

Naive Bayes: Learning the parameters

● You have seen this before: maximum likelihood estimates!
○ simply use the frequencies in the data

● The prior for the class probabilities:

● The likelihood for the words:
○ “merge” all words for each class

Sec.13.3

Problem with Maximum Likelihood

● What if we have seen no training documents with the word fantastic and classified in
the topic positive (thumbs-up)?

● Zero probabilities cannot be conditioned away, no matter the other evidence!

● Solution?
○ Smoothing to the rescue!

Sec.13.3

= 0 !

what about

completely

unknown words?

Generative Model for Multinomial Naïve Bayes

c=China

X
1
=Shanghai X

2
=and X

3
=Shenzhen X

4
=issue X

5
=bonds

Naïve Bayes and Language Modeling

● Naïve bayes classifiers can use any sort of feature

○ URL, email address, dictionaries, network features

● But if, as in the previous slides, we use only words as features

● Then Naïve bayes has an important similarity to language modeling:

● Each class = a unigram language model

● Assigning each word a probability: P(word|class)

● Assigning each sentence a probability P(sentence | class) = ∏ P(word|class)

Each class = a unigram language model!

0.1 I

0.1 love

0.01 this

0.05 fun

0.1 film

…

I love this fun film

0.1 0.1 .05 0.01 0.1

Class pos

P(sentence | c=pos) = 0.0000005

Sec.13.2.1

Naive Bayes as a Language Model

● Which class assigns the higher probability to a sentence?

0.1 I

0.1 love

0.01 this

0.05 fun

0.1 film

Model pos Model neg

filmlove this funI

0.10.1 0.01 0.050.1
0.10.001 0.01 0.0050.2

P(sentence|pos) > P(sentence|neg)

0.2 I

0.001 love

0.01 this

0.005 fun

0.1 film

Sec.13.2.1

Probabilistic Language Modelling

- Unsupervised Topic Modelling

Topic models

● Unsupervised models for discovering hidden “topics” or “themes” in documents

○ Clusters/groups of terms that tend to occur together.

● Input:

○ set of documents

○ number of “topics” to learn

● Output:

○ extracted topics (clusters)

○ topic distribution for each document

○ topic distribution for each word in a document

Probabilistic topic models

● Assume a probabilistic generative process that yields the documents

○ this can be hierarchical and quite complex

● Adopts the language of probabilistic graphical models (Bayes nets)

○ Simply a visual way of writing the joint probability

■ Nodes represent variables (blue = observed, grey = latent)

■ Arrows indicate conditional relationships

● “The probability of x is dependent on z”

● A latent variable is one that’s unobserved, either because:

○ we are predicting it (but have observed that variable for other data points)

○ it is unobservable (e.g., a “topic” of a document)

z

x

Graphical models tell a “story” of doc generation

y

x

z

x

supervised

one needs to

resort to EM

2) follow the

arrow and

sample

x ~ p(x|y)

1) sample

y ~ p(y)

out of thin air

unsupervised

here we have to guess

(including the dimensionality)

N

The “story”: Plate notation

y

x

for i = 1..N:

y(i) ~ p(Y)

x(i) ~ p(X | Y = y(i))

e.g. p(y) = [70% spam, 30% ham]

e.g. p(x|y) = “Multinomial[Y=spam]”

Email: “Hello, lottery, welcomes, deadline, 100%, viagra, inherit, …”

Obviously, that’s not a good

way to generate an email…

Latent Dirichlet Allocation (LDA)

● The absolute classic method of choice for probabilistic topic modelling

N

N

D

x

N

D

xz

D

xzθ𝛼

ᵝ

unigram mixture of unigrams

Bayesian topic model

no topics topics Z

priors

The “story” of corpus generation: unigrams

N

D

x

for i = 1..N:

for j = 1..D:

x(i,j) ~ p(X)

Probability of a document:

The “story” of corpus generation: mixture models

N

D

xz
for i = 1..N:

z(i) ~ p(Z)

for j = 1..D:

x(i,j) ~ p(X | Z = z(i))

D

a topic model

N

Latent Dirichlet Allocation

xzθ𝛼

ᵝ

𝛼, ꞵ = parameters

for i = 1..N:

θ(i) ~ Dirichlet(𝛼)
for j = 1..D:

z(i,j) ~ Multinom(θ(i))

x(i,j) ~ p(X | Z = z(i,j), ꞵ)

z is inside both

plates now -

sample new topic

for every word !!!Corpus level

parameters

per-doc topic

proportions

topic prior over

word-counts

a prior over

topic mixtures

D

N
document-level parameters

Latent Dirichlet Allocation

xzθ𝛼

ᵝ

𝛼, ꞵ∊ℝKxV

for i = 1..N:

θ(i) ~ DirichletK(𝛼) # θ∊ℝNxK

for j = 1..Di:

z(i,j) ~ MultinomK(θ(i))

x(i,j) ~ MultinomV(z(i,j), ꞵ)

word-level parameters

corpus-level

parameters

multi-dim.

distributions!

+ number of

topics = K

+ vocabulary

size = V

Bayesian machine learning

● Under normal circumstances, the θ would be a normal parameter

○ e.g. a weight in a neural network

● But in Bayesian ML, (almost) everything is a random variable

○ hence we get a distribution over the “weights” θ

○ and this distribution has a hyperparameter 𝛼

○ specifically θ ~ Dirichlet(𝛼)

■ typically its symmetric variant where 𝛼 is a scalar (all topics a-priori equally likely)

● Why Dirichlet ?

○ Intuitively, Dirichlet is a distribution over positive (probability) vectors that sum up to one

■ = parameters for discrete multinomial distributions (of topics)

○ Moreover, it is a conjugate prior for the multinomial distribution

Topic model step-by-step

● Each document has distribution over topics:

xzθ𝛼

ᵝ

D

N

topic names

are “ad-hoc”

low 𝛼 means

sparse distr.

over topics

Topic model step-by-step

● A topic is a distribution over words:

● e.g., P(“adore” | topic=love) = 0.18

xzθ𝛼

ᵝ

D

N

Topic model step-by-step

xzθ𝛼

ᵝ

D

N

? ? ? ?
z ∼ Multinomial(θ)

P(topic | topic distribution θ)

Topic model step-by-step

xzθ𝛼

ᵝ

D

N

war aliens war love
z ∼ Multinomial(θ)

P(topic | topic distribution θ)

Topic model step-by-step

xzθ𝛼

ᵝ

D

N

war aliens war love
x ~ Multinomial(z,ꞵ)

P(word | topic z, ꞵ)
? ? ? ?

Topic model step-by-step

xzθ𝛼

ᵝ

D

N

war aliens war love
x ~ Multinomial(z,ꞵ)

P(word | topic z, ꞵ)
“fights” “alien” “kills” “marry”

Topic model step-by-step

xzθ𝛼

ᵝ

D

N

? ? ? ?
P(topic | topic distribution θ)

Topic model step-by-step

xzθ𝛼

ᵝ

D

N

aliens family aliens love
P(topic | topic distribution θ)

Topic model step-by-step

xzθ𝛼

ᵝ

D

N

aliens family aliens love
P(word | topic z, ꞵ)

? ? ? ?

Topic model step-by-step

xzθ𝛼

ᵝ

D

N

aliens family aliens love
P(word | topic z, ꞵ)

“ET” “mom” “space” “friend”

Assumptions

● The only information we have are distributions of words across the documents

● No sequential information

○ topics for words are independent of each other given the set of topics for a document

● Each particular word has one topic

○ but in general we can obtain the same word from different topics!

● Every document has one topic distribution

● Topics don’t have arbitrary correlations (Dirichlet prior)

Learning the parameters

● What are the topic distributions for each document?

● What are the word distributions for each topic?

● Find the parameters that maximize the likelihood of the training data!

○ using variational EM or Gibbs sampling

xzθ𝛼

ᵝ

D

N

Inferred Distributions: topics+words

ꞵ∊ℝKxV

θ∊ℝNxK

Smoothed LDA

● Empirically maximizing the likelihood of training data can be problematic

● Particularly in LDA, ꞵ∊ℝKxV is an unseen but fixed value

● i.e., it is a point estimate with no distribution

● this means zero probability for unseen words!

● What can we do? You already know what…

○ Apply smoothing!

■ e.g. +1 (Laplace) that we discussed

■ actually used in practice, but rather ad-hoc

● A more principled solution?

○ go more Bayesian!

xzθ

ᵝ

D

N

D

A Bayesian topic model

Smoothed LDA

N

xzθ𝛼

ᵝpriors

D

A smoothed Bayesian topic model

K

Smoothed LDA

N

xzθ𝛼

ᵝηpriors

Now even the word distribution

across the K topics is itself a

random variable ꞵ ~ Dirichlet(η)

● With this ηwe now have a Dirichlet prior for all the words (even unseen in the corpus!)

low η means

sparse distr.

over words

How to use in practice

a) Implement your own LDA and variational EM…

b) from sklearn.decomposition import LatentDirichletAllocation

● not to be confused with another LDA = Linear Discriminant Analysis

○ used to be in sklearn.lda.LDA

○ now: sklearn.discriminant_analysis.LinearDiscriminantAnalysis

● Other popular libraries:

○ Gensim

■ from Radim Rehurek

○ Spacy

● In the next lecture, we will see a complementary approach with matrix decompositions

