Introduction to NLP

Probabilistic models

Compressed out of NLP courses from Dan Jurafsky (Stanford), \& David Bamman (Berkeley), Michael Collins (MIT \& Columbia), and some online (Udemy) courses

Book: Speech and Language Processing by Jurafsky \& Martin (3rd edition)

Why teach NLP in SMU?

1. Language/text has a symbolic structure
2. It is all about machine learning these days
3. NLP is a core part of Artificial Intelligence

- However, there is no NLP at FEL

After this short NLP block, you should be able to:

- Recognize some classic NLP tasks when encountered
- Understand some modern NLP methods and models:
i. probabilistic models
ii. vector/matrix models
iii. neural models
- Implement and/or use these in practice (Python)

What is NLP?

NLP = Natural Language Processing

- a.k.a. computational linguistics (from a linguist's point of view)

Intersection of:

- Linguistics
- $\mathrm{Al} / \mathrm{ML}$
- CS

Goal: process language with computers to perform useful things...

Why learn NLP?: Practical viewpoint

- Part of speech tagging
- Named entity recognition
- Language modelling
- Topic modelling
- Information extraction
- Text Summarization
- Machine translation
- Question answering
- Conversational agents

Why learn NLP?: Theoretical viewpoint

- Language is the natural testbed for intelligence!

. Well, you're made up of cells and I'm made up of code

I'm more of an R2D2

Why is it so hot in here?

Why learn NLP?: Theoretical viewpoint

- Language is the natural testbed for intelligence! Why?
- There are 2 most abundant sources of data: Visual and Textual

Why learn NLP?: Theoretical viewpoint

- Language is the natural testbed for intelligence! Why?
- There are 2 most abundant sources of data: Visual and Textual
- However, while even insects can see, Lanquaqe is characteristic to humans

SYSTEM 1

Intuition \& instinct

SYSTEM 2

Rational thinking

Probabilistic Models

- Language modelling

Probabilistic Language Models

- Goal: assign probability to a sentence
- Machine Translation:
- $P($ high winds tonite $)>P($ large winds tonite $)$
- Spell Correction
- The office is about fifteen minuets from my house
- $\mathrm{P}($ about fifteen minutes from) > P (about fifteen minuets from)
- Speech Recognition
- $P(I$ saw a van) >> P (eyes awe of an)
- + Summarization, question-answering, ...

Probabilistic Language Modeling

- Goal: compute the probability of a sentence or sequence of words:

$$
P(W)=P\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5} \ldots w_{n}\right)
$$

- Related task: probability of an upcoming word:

$$
\mathrm{P}\left(\mathrm{w}_{5} \mid \mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \mathrm{w}_{4}\right)
$$

- A model that computes either of these:

$$
P(W) \text { or } P\left(w_{n} \mid w_{1}, w_{2} \ldots w_{n-1}\right) \quad \text { is called a language model or LM. }
$$

- Alternative name: grammar

How to compute $\mathrm{P}(\mathrm{W})$

- How to compute this joint probability:

P (its, water, is, so, transparent, that)

- Let's start with the Bayes rule:

$$
P(A, B)=P(A) P(B \mid A)
$$

- And now more generally ("Chain Rule of Probability")

$$
P\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) \ldots P\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right)
$$

Joint probability of words in sentence

$$
P\left(w_{1} w_{2} \ldots w_{n}\right)=\prod_{i} P\left(w_{i} \mid w_{1} w_{2} \ldots w_{i-1}\right)
$$

$P($ "its water is so transparent") $=$
P (its) $\times \mathrm{P}($ water \mid its $) \times \mathrm{P}$ (is \mid its water $)$
$\times \mathrm{P}$ (so|its water is) $\times \mathrm{P}$ (transparent|its water is so)

How to estimate these probabilities

- Could we just count and divide?
$P($ the \mid its water is so transparent that $)=$
Count(its water is so transparent that the)
Count(its water is so transparent that)
- Too many possible sentences!
- We'll never see enough data for estimating these

Markov Assumption

- A simplifying assumption:
$P($ the \mid its water is so transparent that $) \approx P($ the \mid that $)$
- Or maybe a bit less restrictive
$P($ the \mid its water is so transparent that $) \approx P($ the \mid transparent that $)$

Markov Assumption

$$
P\left(w_{1} w_{2} \ldots w_{n}\right) \approx \prod P\left(w_{i} \mid w_{i-k} \ldots w_{i-1}\right)
$$

In other words, we approximate each component in the product

$$
P\left(w_{i} \mid w_{1} w_{2} \ldots w_{i-1}\right) \approx P\left(w_{i} \mid w_{i-k} \ldots w_{i-1}\right)
$$

Simplest case: Unigram model

$$
P\left(w_{1} w_{2} \ldots w_{n}\right) \approx \prod P\left(w_{i}\right)
$$

Some automatically generated sentences from a unigram model:

```
fifth, an, of, futures, the, an, incorporated, a, a, the,
inflation, most, dollars, quarter, in, is, mass
thrift, did, eighty, said, hard, 'm, july, bullish
that, or, limited, the
```


Bigram model

= Condition on the previous word:

$$
P\left(w_{i} \mid w_{1} w_{2} \ldots w_{i-1}\right) \approx P\left(w_{i} \mid w_{i-1}\right)
$$

```
texaco, rose, one, in, this, issue, is, pursuing, growth, in,
a, boiler, house, said, mr., gurria, mexico, 's, motion,
control, proposal, without, permission, from, five, hundred,
fifty, five, yen
outside, new, car, parking, lot, of, the, agreement, reached
this, would, be, a, record, november
```


N -gram models

- We can extend to trigrams, 4-grams, 5-grams
- In general this is an insufficient model of language
- because language has long-distance dependencies:
"The computer which I had just put into the machine room on the fifth floor crashed."
- But we can often get away with N-gram models in practice

Probabilistic Language Modelling

- Estimating N-gram Probabilities

Estimating bigram probabilities

- Using Maximum Likelihood Estimate:
<s> I am Sam </s>

$$
\begin{array}{r}
P\left(w_{i} \mid w_{i-1}\right)=\frac{\operatorname{count}\left(w_{i-1}, w_{i}\right)}{\operatorname{count}\left(w_{i-1}\right)} \\
P\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)}
\end{array}
$$

<s>Sam I am </s>
<s> I do not like green eggs and ham </s>

$$
\begin{array}{lll}
P(\mathrm{I}|<\mathrm{s}\rangle)=\frac{2}{3}=.67 & P(\mathrm{Sam}|<\mathrm{s}\rangle)=\frac{1}{3}=.33 & P(\mathrm{am} \mid \mathrm{I})=\frac{2}{3}=.67 \\
P(\langle/ \mathrm{s}\rangle \mid \mathrm{Sam})=\frac{1}{2}=0.5 & P(\mathrm{Sam} \mid \mathrm{am})=\frac{1}{2}=.5 & P(\mathrm{do} \mid \mathrm{I})=\frac{1}{3}=.33
\end{array}
$$

Example: Berkeley Restaurant Project sentences

- can you tell me about any good cantonese restaurants close by
- mid priced thai food is what i'm looking for
- tell me about chez panisse
- can you give me a listing of the kinds of food that are available
- i'm looking for a good place to eat breakfast
- when is caffe venezia open during the day

Raw bigram counts

- Out of 9222 sentences:

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Raw bigram probabilities

- Normalize by unigrams:

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

- Result:

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Bigram estimates of sentence probabilities

$\mathrm{P}(<s>\mid$ want english food $</ s>)=$
$P(I \mid<s>) \times P($ want $\mid I) \times P($ english \mid want $) \times P($ food \mid english $) \times P(</ s\rangle \mid$ food $)=.000031$

- What types of knowledge in a LM?
- $P($ english \mid want $)=.0011$
- $P($ chinese \mid want $)=.0065$
- $\mathrm{P}($ to| want $)=.66$
- $\quad P($ eat \mid to $)=.28$
- $P($ food \mid to $)=0$
- $P($ want \mid spend $)=0$
- $P(i \mid\langle s\rangle)=.25$

Practical Issues

- We do everything in log space!
o to avoid numeric underflow
- also adding is faster than multiplying
- though log can be slower than multiplication

$$
\log \left(p_{1} \times p_{2} \times p_{3} \times p_{4}\right)=\log p_{1}+\log p_{2}+\log p_{3}+\log p_{4}
$$

Google N-Gram Release

```
-serve as the incoming 92
-serve as the incubator 99
-serve as the independent 794
-serve as the index 223
-serve as the indication 72
-serve as the indicator 120
-serve as the indicators 45
-serve as the indispensable 111
-serve as the indispensible 40
-serve as the individual 234
```

https://books.google.com/ngrams

Probabilistic Language Modelling

- Evaluation and Perplexity

Extrinsic evaluation of N -gram models

- Does our language model prefer good sentences to bad ones?
- Assign higher probability to "real" or "frequently observed" sentences
- Than "ungrammatical" or "rarely observed" sentences?
- Best evaluation for comparing models A and B
- Put each model in a task
- spelling corrector, speech recognizer, MT system
- Run the task, get an accuracy for A and for B
- How many misspelled words corrected properly
- How many words translated correctly
- Compare accuracy for A and B

Difficulty of extrinsic evaluation

- Extrinsic evaluation
- Time-consuming; can take days or weeks
- So:
- Sometimes we use intrinsic evaluation: perplexity
- Bad approximation
- unless the test data looks just like the training data
- So generally only useful in pilot experiments
- But is helpful to think about.

Intuition of Perplexity

- The Shannon Game:

How well can we predict the next word?
mushrooms 0.1
pepperoni 0.1
anchovies 0.01
I always order pizza with cheese and
The $33^{\text {rd }}$ President of the US was \qquad
$-\left\{\begin{array}{l}\text { mushrooms } 0.1 \\ \text { pepperoni } 0.1 \\ \text { anchovies } 0.01 \\ \cdots \\ \text { fried rice } 0.0001 \\ \cdots \\ \text { and 1e-100 }\end{array}\right.$

A better model of a text is one which assigns a higher probability to the word that actually occurs

- The best language model is one that best predicts an unseen test set
- Gives the highest P (sentence)

Perplexity

Perplexity is the inverse probability of the

$$
P P(W)=P\left(w_{1} w_{2} \ldots w_{N}\right)^{-\frac{1}{N}}
$$ sentence, normalized by the number of words:

Chain rule: $\quad \operatorname{PP}(W)=\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P\left(w_{i} \mid w_{1} \ldots w_{i-1}\right)}}$

$$
=\sqrt[N]{\frac{1}{P\left(w_{1} w_{2} \ldots w_{N}\right)}}
$$

For bigrams: $\quad \operatorname{PP}(W)=\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P\left(w_{i} \mid w_{i-1}\right)}}$
*perplexity is also closely related to cross-entropy $P P(W)=2^{H(W)}=2^{-\frac{1}{N} \log _{2} P\left(w_{1}, w_{2}, \ldots, w_{N}\right)}$

The Shannon Game intuition for perplexity

- Perplexity is a "weighted equivalent branching factor"
- How hard is the task of recognizing digits ' $0,1,2,3,4,5,6,7,8,9^{\prime}$ - Perplexity = 10

$$
\begin{aligned}
\operatorname{PP}(W) & =P\left(w_{1} w_{2} \ldots w_{N}\right)^{-\frac{1}{N}} \\
& =\left(\frac{1}{10}^{N}\right)^{-\frac{1}{N}} \\
& =\frac{1}{10}^{-1} \\
& =10
\end{aligned}
$$

- How hard is recognizing $(30,000)$ names at Microsoft.
- Perplexity $=30,000$
- Let's imagine a call-routing phone system gets 120 K calls and has to recognize
a. "Operator" (let's say this occurs 1 in 4 calls)
b. "Sales" (1in 4)
c. "Support" (1 in 4)
d. 30,000 different names (each name occurring 1 time in the 120K calls)
- We get the perplexity of this sequence of length 120 Kby first multiplying 120 K probabilities
- (90K of which are $1 / 4$ and 30 K of which are $1 / 120 \mathrm{~K}$), and then taking the inverse 120,000 th root:

$$
\text { Perplexity }=(1 / 4 * 1 / 4 * 1 / 4 * 1 / 4 * 1 / 4 * \ldots * 1 / 120 K * 1 / 120 K * \ldots)^{\wedge}(-1 / 120 K)
$$

- This can be arithmetically simplified to just $N=4$: the operator (1/4), the sales (1/4), the tech support ($1 / 4$), and the 30,000 names $(1 / 120,000)$: Perplexity $=\left((1 / 4 * 1 / 4 * 1 / 4 * 1 / 120 \mathrm{~K})^{\wedge}(-1 / 4)=52.6\right.$

Lower perplexity = better model

- Training 38 million words, test 1.5 million words

N-gram Order	Unigram	Bigram	Trigram
Perplexity	962	170	109

The Shannon Visualization Method

- Choose a random bigram (<s>, w) according to its probability
- Now choose a random bigram (w, x) according to its probability
- And so on until we choose </s>
- Finally string the words together

```
<S> I
    I want
        want to
        to eat
            eat Chinese
        Chinese food
                                food </s>
I want to eat Chinese food
```


Approximating Shakespeare: Random Sampling

1	-To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have -Hill he late speaks; or! a more to leg less first you enter
gram	-Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow. -What means, sir. I confess she? then all sorts, he is trim, captain.
-Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, gram 'tis done. -This shall forbid it should be branded, if renown made it empty.	
-King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in;	
gram	-It cannot be but so.

Shakespeare as a corpus

- $\mathrm{N}=884,647$ tokens, $\mathrm{V}=29,066$
- Shakespeare produced 300,000 bigram types
- out of $\mathrm{V}^{2}=844$ million possible bigrams.
- So 99.96% of the possible bigrams were never seen
- have zero entries in the table
- Quadrigrams even worse:
- What's coming out looks like Shakespeare because it is Shakespeare!

Probabilistic Language Modelling

- Overfitting and Smoothing

The perils of overfitting: Zeros

- Training set:
... denied the allegations
... denied the reports
... denied the claims
... denied the request
$P($ "offer" | denied the) $=0$
- Test set:
... denied the offer
... denied the loan
- Bigrams with zero probability!
- mean that we will assign 0 probability to the test set!
- And hence we cannot compute perplexity (can't divide by 0)!

The intuition of smoothing

- When we have sparse statistics:
- $\quad P(w \mid$ denied the)
- 3 allegations
- 2 reports
- 1 claims
- 1 request
- 7 total

- Steal probability mass to generalize better
- $P(w \mid$ denied the)

■ 2.5 allegations

- $\quad 1.5$ reports
- 0.5 claims
- 0.5 request
- 2 other
- 7 total

Add-one estimation

- Also called Laplace smoothing
- Pretend we saw each word one more time than we did
- Just add one to all the counts!
- MLE estimate:

$$
P_{M L E}\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)}
$$

- Add-1 estimate:

$$
P_{A d d-1}\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)+1}{c\left(w_{i-1}\right)+V}
$$

Berkeley Restaurant Corpus: Laplace smoothed bigram counts

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Laplace-smoothed bigrams

No longer a MLE!

$$
P^{*}\left(w_{n} \mid w_{n-1}\right)=\frac{C\left(w_{n-1} w_{n}\right)+1}{C\left(w_{n-1}\right)+V}
$$

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Compare with raw bigram counts

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

Probabilistic Language Modelling

- Supervised Text Classification

Text classification?

- Spam detection
- Authorship identification
- Age/Gender recognition
- Language identification
- Sentiment classification
- Topic classification

Text classification: task

- Input:
- a document d

○ a fixed set of classes $\boldsymbol{C}=\left\{\boldsymbol{c}_{\mathbf{1}}, \boldsymbol{c}_{\mathbf{2}}, \ldots, \boldsymbol{c}_{\boldsymbol{\jmath}}\right\}$
○ A training set of \boldsymbol{m} hand-labeled documents $\left(\boldsymbol{d}_{1}, \boldsymbol{c}_{\mathbf{1}}\right), \ldots,\left(\boldsymbol{d}_{\boldsymbol{m}}, \boldsymbol{c}_{\boldsymbol{m}}\right)$

- Output:
\bigcirc a learned classifier $\boldsymbol{f}: \boldsymbol{d} \boldsymbol{\rightarrow}$

Text classification: methods

- Naturally, any kind of classifier can be used
- Rule-based systems
- Naïve Bayes
- Logistic regression
- Support-vector machines
- Neural networks

The bag of words representation

Naive Bayes

- How to predict the class \mathbf{c} for a document d?

$$
P(c \mid d)=\frac{P(d \mid c) P(c)}{P(d)}
$$

- let's apply the Bayes rule again!

$$
\begin{aligned}
c_{M A P} & =\underset{c \in C}{\operatorname{argmax}} P(c \mid d) \\
& =\underset{c \in C}{\operatorname{argmax}} \frac{P(d \mid c) P(c)}{P(d)} \\
& =\underset{c \in C}{\operatorname{argmax}} P(d \mid c) P(c)
\end{aligned}
$$

MAP is "maximum a posteriori"

$$
=\text { most likely class }
$$

$$
=\operatorname{argmax} P\left(x_{1}, x_{2}, \ldots, x_{n} \mid c\right) P(c)
$$

$$
c \in C
$$

Document d represented as features $\mathbf{x}_{1} \ldots \mathbf{x}_{\mathrm{n}}$

Naive Bayes: Tractability Problem

$$
c_{M A P}=\underset{c \in C}{\operatorname{argmax}} P\left(x_{1}, x_{2}, \ldots, x_{n} \mid c\right) P(c)
$$

$\mathrm{O}\left(|X|^{n} \bullet|C|\right)$ parameters!
How often does this class occur?

Could only be estimated if a very, very large number of training examples was available.

We can just count the relative frequencies in a corpus

Naive Bayes: Independence Assumptions

- Bag of Words assumption
- Assume word position doesn't matter

$$
P\left(x_{1}, x_{2}, \ldots, x_{n} \mid c\right)
$$

All models are wrong, but some are useful.

George Box

- Conditional Independence
- Assume the feature probabilities $P\left(x_{i} \mid c_{j}\right)$ are independent given the class c.

$$
P\left(x_{1}, \ldots, x_{n} \mid c\right)=P\left(x_{1} \mid c\right) \bullet P\left(x_{2} \mid c\right) \bullet P\left(x_{3} \mid c\right) \bullet \ldots \bullet P\left(x_{n} \mid c\right)
$$

- Naive Bayes model inference:

$$
c_{N B}=\underset{c_{\mathrm{j}} \in C}{\operatorname{argmax}} P\left(c_{j}\right) \prod_{i \in \text { positions }} P\left(x_{i} \mid c_{j}\right)
$$

Naive Bayes: log space

- Multiplying a lot of small number leads to underflow problems...
- Solution - move to log space!
- Instead of:

$$
c_{N B}=\underset{c_{\mathrm{j}} \in C}{\operatorname{argmax}} P\left(c_{j}\right) \prod_{i \in \text { positions }} P\left(x_{i} \mid c_{j}\right)
$$

- We calculate:

$$
c_{\mathrm{NB}}=\underset{c_{j} \in C}{\operatorname{argmax}}\left[\log P\left(c_{j}\right)+\sum_{i \in \text { positions }} \log P\left(x_{i} \mid c_{j}\right)\right]
$$

- Notes:

1) Taking log doesn't change the ranking of classes!

- The class with highest probability also has highest log probability!

2) It's a linear model:

- Just a max of a sum of weights: a linear function of the inputs
- So naive bayes is a linear classifier

Naive Bayes: Learning the parameters

- You have seen this before: maximum likelihood estimates!
o simply use the frequencies in the data
- The prior for the class probabilities: $\hat{P}\left(c_{j}\right)=\frac{N_{c_{j}}}{N_{\text {total }}}$
- The likelihood for the words:
o "merge" all words for each class

$$
\hat{P}\left(w_{i} \mid c_{j}\right)=\frac{\operatorname{count}\left(w_{i}, c_{j}\right)}{\sum_{w \in V} \operatorname{count}\left(w, c_{j}\right)}
$$

Problem with Maximum Likelihood

- What if we have seen no training documents with the word fantastic and classified in the topic positive (thumbs-up)?

$$
\hat{P}(\text { "fantastic" } \mid \text { positive })=\frac{\operatorname{count}(\text { "fantastic", positive })}{\sum_{w \in V} \operatorname{count}(w, \text { positive })}=0
$$

- Zero probabilities cannot be conditioned away, no matter the other evidence!

$$
c_{M A P}=\operatorname{argmax}_{c} \hat{P}(c) \prod_{i} \hat{P}\left(x_{i} \mid c\right) \quad=0!
$$

- Solution?
- Smoothing to the rescue!

$$
\hat{P}\left(w_{i} \mid c\right)=\frac{\operatorname{count}\left(w_{i}, c\right)+1}{\sum_{w \in V}(\operatorname{count}(w, c)+1)}=\frac{\operatorname{count}\left(w_{i}, c\right)+1}{\left(\sum_{w \in V} \operatorname{count}(w, c)\right)+|V|}
$$

Generative Model for Multinomial Naïve Bayes

Naïve Bayes and Language Modeling

- Naïve bayes classifiers can use any sort of feature
- URL, email address, dictionaries, network features
- But if, as in the previous slides, we use only words as features
- Then Naïve bayes has an important similarity to language modeling:
- Each class = a unigram language model
- Assigning each word a probability: P(word|class)
- Assigning each sentence a probability P(sentence | class) = П P(word|class)

Each class = a unigram language model!

Class pos

0.1	I	\underline{l}	$\underline{\text { love }}$	$\underline{\text { this }}$	$\underline{\text { fun }}$	film
0.1	love	0.1	0.1	.05	0.01	0.1
0.01	this					
0.05	fun					
0.1	film					

Naive Bayes as a Language Model

- Which class assigns the higher probability to a sentence?

Model pos		
0.1	I	
0.1	love	
0.01	this	
0.05	fun	
0.1	film	

Model neg		I	love	this	fun	film
0.2	I					
0.001	love					
		0.1	0.1	0.01	0.05	0.1
0.01	this	0.2	0.001	0.01	0.005	0.1
0.005	fun					
0.1	film	P (sentence \mid pos) $>\mathrm{P}$ (sentence ${ }^{\text {neg }}$)				

Probabilistic Language Modelling

- Unsupervised Topic Modelling

Topic models

- Unsupervised models for discovering hidden "topics" or "themes" in documents
- Clusters/groups of terms that tend to occur together.
- Input:
- set of documents
- number of "topics" to learn
- Output:
- extracted topics (clusters)
- topic distribution for each document
- topic distribution for each word in a document

Documents

Figure source: Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84

Probabilistic topic models

- Assume a probabilistic generative process that yields the documents
- this can be hierarchical and quite complex
- Adopts the language of probabilistic graphical models (Bayes nets)
- Simply a visual way of writing the joint probability
- Nodes represent variables (blue = observed, grey = latent)
- Arrows indicate conditional relationships
- "The probability of x is dependent on z "
- A latent variable is one that's unobserved, either because:
- we are predicting it (but have observed that variable for other data points)
- it is unobservable (e.g., a "topic" of a document)

Graphical models tell a "story" of doc generation

The "story": Plate notation

$$
\begin{aligned}
\text { for } i & =1 . . N: \\
y(i) & \sim p(Y) \\
x(i) & \sim p(X \mid Y=y(i))
\end{aligned}
$$

Obviously, that's not a good way to generate an email...

Latent Dirichlet Allocation (LDA)

- The absolute classic method of choice for probabilistic topic modelling

David Blei	\square sledovat	Cilace	zobrazit všECHNY	
Professor of Statistics and Computer Science, Columbia University. E-mailová adresa ověrena na: columbia.edu - Domovská stränka			Vsechny	Od 2017
Machine Learning Statistics Probabilistic topic models Bayesian nonparametrics Approximate posterior infer...		Citace h-index it1-index	$\begin{array}{r} 10623 \\ 96 \\ 205 \end{array}$	59185 80 184
Andrew Ng	\triangle slemovat	Citace	ZObrazit všechny	
Stanford University. E-mailová adresa ověèna na: cs.stanford.edu - Domovská stránka			Vsechny	Od2017
Machine Leaming Deep Learning Al		Citace i10-index	$\begin{aligned} & 195599 \\ & 134 \\ & 295 \end{aligned}$	$\begin{array}{r} 114815 \\ 103 \\ 269 \end{array}$
Michael I. Jordan	0 slibovat	Citace	zobrazit všechny	
Professor of Electrical Engineering and Computer Sciences and Professor of Statistics, UC Berkeley.			Vsechry	Od 2017
E-mailová adresa ovè̌ena na: cs. berkeley.edu - Domovská stránka machine learning computer science statistics artificial intelligence optimization		Citace h-index i10-index	$\begin{array}{r} 226651 \\ 186 \\ 629 \end{array}$	$\begin{array}{r} 106096 \\ 129 \\ 480 \\ 48 \end{array}$

Latent Dirichlet Allocation

David M. Blei

David M. Blei
Computer Science Division Computer Science Division
University of California University of California
Berkeley, CA 94720, USA
Andrew Y. Ng
Computer Science Department
Stanford, CA 94305, US
Michael I. Jordan
University of California
Berkeley, CA 94720, US

BLEI@Cs.BERKELEY.EDU

ANG@Cs.STANFORD.EDU

Bayesian topic model

The "story" of corpus generation: unigrams

Probability of a document:

$$
p(x)=\prod_{j=1}^{D} p\left(x_{j}\right)
$$

The "story" of corpus generation: mixture models

Latent Dirichlet Allocation

Corpus level

\mathbf{z} is inside both plates now sample new topic for every word !!!
$\alpha, \beta=$ parameters
for $\mathrm{i}=1 . \mathrm{N}$:

$$
\begin{aligned}
& \theta(i) \sim \operatorname{Dirichlet}(\alpha) \\
& \text { for } \mathrm{j}=1 . . \mathrm{D} \text { : } \\
& \quad \mathrm{z}(\mathrm{i}, \mathrm{j}) \sim \operatorname{Multinom}(\theta(\mathrm{i})) \\
& \quad x(\mathrm{i}, \mathrm{j}) \sim \mathrm{p}(\mathrm{X} \mid \mathrm{Z}=\mathrm{Z}(\mathrm{i}, \mathrm{j}), \beta)
\end{aligned}
$$

topic prior over
word-counts

D

N

a topic model

$$
p(\theta, z, x \mid \alpha, \beta)=p(\theta \mid \alpha) \prod_{j=1}^{D} p\left(z_{j} \mid \theta\right) p\left(x_{j} \mid z_{j}, \beta\right)
$$

Latent Dirichlet Allocation

$$
\begin{aligned}
& \text { + number of } \\
& \text { topics = K }
\end{aligned}
$$

Bayesian machine learning

- Under normal circumstances, the θ would be a normal parameter
- e.g. a weight in a neural network
- But in Bayesian ML, (almost) everything is a random variable
- hence we get a distribution over the "weights" θ
- and this distribution has a hyperparameter α
- specifically $\theta \sim \operatorname{Dirichlet}(\alpha)$
- typically its symmetric variant where α is a scalar (all topics a-priori equally likely)
- Why Dirichlet?
- Intuitively, Dirichlet is a distribution over positive (probability) vectors that sum up to one
- = parameters for discrete multinomial distributions (of topics)
- Moreover, it is a conjugate prior for the multinomial distribution

Topic model step-by-step

- A topic is a distribution over words:

- e.g., P("adore" | topic=love) $=0.18$

Topic model step-by-step

z ~Multinomial (θ)
P (topic | topic distribution θ)

Topic model step-by-step

z ~Multinomial (θ)
P (topic | topic distribution θ)

Topic model step-by-step

$x \sim$ Multinomial (z, β)
$P($ word | topic $z, \beta)$

Topic model step-by-step

$x \sim$ Multinomial (z, β)
$P($ word | topic $z, \beta)$

Topic model step-by-step

P (topic | topic distribution θ)

Topic model step-by-step

P (topic | topic distribution θ)

Topic model step-by-step

$$
P(\text { word | topic } z, \beta)
$$

Topic model step-by-step

$P($ word | topic $z, \beta)$

Assumptions

- The only information we have are distributions of words across the documents
- No sequential information
- topics for words are independent of each other given the set of topics for a document
- Each particular word has one topic
- but in general we can obtain the same word from different topics!
- Every document has one topic distribution
- Topics don't have arbitrary correlations (Dirichlet prior)

Learning the parameters

- What are the topic distributions for each document?

- What are the word distributions for each topic?
- Find the parameters that maximize the likelihood of the training data!
- using variational EM or Gibbs sampling

Inferred Distributions: topics+words

\(\left.\theta \in \mathbb{R}^{N} \begin{array}{c}song

release\end{array}\right\}\)| \{god, call, give $\}$ |
| :---: |
| god |
| call |
| give |
| man |
| time |

\{government, party,
election\}

\{game, team, player\}
game
team
player
win
play
\{math, number,
function\}
math
number
function
code
set

Smoothed LDA

- Empirically maximizing the likelihood of training data can be problematic
- Particularly in LDA, $\beta \in \mathbb{R}^{K x V}$ is an unseen but fixed value
- i.e., it is a point estimate with no distribution
- this means zero probability for unseen words!
- What can we do? You already know what...
- Apply smoothing!
- e.g. +1 (Laplace) that we discussed
- actually used in practice, but rather ad-hoc
- A more principled solution?
- go more Bayesian!

Smoothed LDA

Smoothed LDA

low η means sparse distr.

- With this $\boldsymbol{\eta}$ we now have a Dirichlet prior for all the words (even unseen in the corpus!)

How to use in practice

a) Implement your own LDA and variational EM...
b) from sklearn.decomposition import LatentDirichletAllocation

- not to be confused with another LDA = Linear Discriminant Analysis
- used to be in sklearn.Ida.LDA
- now: sklearn.discriminant_analysis.LinearDiscriminantAnalysis
- Other popular libraries:
- Gensim
- from Radim Rehurek
- Spacy
- In the next lecture, we will see a complementary approach with matrix decompositions

