
SMU: Lecture 5
Monday, March 7, 2022


(Based heavily on the Stanford RL Course of Prof. Emma Brunskill, but all potential errors are mine.)



Part 0: Where are we?



MDP Control Problem

How to find    ???π*(s) = arg max
π

Vπ(s)
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State-Action Value Q
• Definition: 

       . 

• Intuition: 

• The value of the return that we obtain if we first take the action  in the 
state  and then follow the policy  (including when we visit  again).


• Think of it as perturbing the policy  — we deviate from following the policy 
 only in the first step in .

Qπ(s, a) = R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′ )

a
s π s

π
π s
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Example
🐸Agent: 

States are given:  

c

b

a

END

??

1

??

??

??

??

??
??

??

????

??
??

Rewards??  

Actions are given: 
  A = {l, r}
🐸
📡

Policy is given, e.g.: 
 
 

…

π(l |a) = 0.2, π(r |a) = 0.8,
π(l |b) = 0.3, π(r |b) = 0.7,
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Model-Free Control

• Given a policy and an MDP with unknown parameters (or generally an 
environment with which we can interact), find the optimal policy .π
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Three Methods in Lecture 3

• Monte Carlo Control, SARSA and Q-Learning.


• All three using the concept of -greedy policy.ε
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-Greedy Policyε

π(a |s) =
1 − ε + ε

|A |
 when a = arg maxa∈A Q(s, a)

ε
|A |

 when a ≠ arg maxa∈A Q(s, a)

We assume ties are decided consistently
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TD-Target
Bellman for Q-function: 

 

Temporal difference update (SARSA)… 

Qπ(st, at) = R(st, at) + γ ⋅ ∑
st+1∈S

P(st+1 |st, at) ⋅ ∑
at+1∈A

π(at+1 |st+1) ⋅ Qπ(st+1, at+1)

Q(st, at) := Q(st, at) + α (rt + γQ(st+1, at+1) − Q(st, at))

𝔼[Qπ(Xt+1, At+1) |Xt = st, At = at]



Part 1: A Bit More About 
Convergence…



Convergence of MC, SARSA and Q-Learning

Tabular Linear NN

MC ✅
Chattering


(may oscilate at the 
end but not diverge)

❌

SARSA ✅
Chattering


(may oscilate at the 
end but not diverge)

❌

Q-Learning ✅ ❌ ❌



Part 2: A Bit More About Deep RL



Last Time: Value-Function Approximation

• MC:  
       


• SARSA: 
      


• Q-Learning: 

   

w := w + α ⋅ (gt − Q̂(st, at; w)) ⋅ ∇Q̂(st, at; w)

w := w + α ⋅ (r + γQ̂(st+1, at+1; w) − Q̂(st, at; w)) ⋅ ∇Q(st, at; w)

w := w + α ⋅ (r + γ max
a∈A

Q̂(st+1, a; w) − Q̂(st, at; w)) ⋅ ∇Q(st, at; w)



The Same Idea Can Be Used with NNs, but…

Convergence is not guaranteed.


Two of the reasons why Q-learning with VFA may diverge: correlations 
between samples and non-stationary targets.


Remedies: experience replay and fixed Q-targets.


There are many variations proposed in the literature with many tricks to 
improve deep Q-learning and many are still appearing…



DQN Pseudocode

1: Input C , ↵, D = {}, Initialize w , w�
= w , t = 0

2: Get initial state s0
3: loop

4: Sample action at given ✏-greedy policy for current Q̂(st , a;w)

5: Observe reward rt and next state st+1

6: Store transition (st , at , rt , st+1) in replay bu↵er D

7: Sample random minibatch of tuples (si , ai , ri , si+1) from D

8: for j in minibatch do

9: if episode terminated at step i + 1 then

10: yi = ri
11: else

12: yi = ri + � maxa0 Q̂(si+1, a
0
;w�

)

13: end if

14: Do gradient descent step on (yi � Q̂(si , ai ;w))
2
for parameters w : �w = ↵(yi � Q̂(si , ai ;w))rw Q̂(si , ai ;w)

15: end for

16: t = t + 1

17: if mod(t,C) == 0 then

18: w�  w
19: end if

20: end loop
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Part 3: Bandits (Introduction)



Efficient Learning
So far we only cared about whether our RL algorithms converge, not that 
much how fast


We assumed that failed experiments (episodes) do not cost us anything 
(except, maybe, time). That is the case, e.g., when learning some strategy 
with a simulator or when playing computer games, but not, e.g., when 
optimizing an advertisement campaign…


We can generally study efficient learning for MDPs but in this course we will 
only look at efficient learning for multi-armed bandits (which are simpler but 
still interesting and used in practice).



Multi-Armed Bandits

🎰 🎰 🎰 🎰

P[R = r |A = i]

1 2 3 4

We can choose actions  and each of them leads 
to a different distribution of rewards.

{1,2,3,4}



Setting
Multi-armed bandit is essentially a degenerate MDP that contains a single state.


Definition: A multi-armed bandit is given by:


A set  containing  actions  (each can be thought of as “pulling an arm”).


Reward distributions , that is the distribution of rewards at time  given 
the action at time .


At each step, the agent takes an action and receives a reward sampled from the above 
distribution.


The informal goal is to maximize the reward …. of course, this is a random variable.

A m a1, a2, …, am

P[Rt = r |At = a] t
t

T

∑
t=1

Rt



Example
Your PR team created  different advertisements. You are now supposed to show 
these advertisements to people and maximize the number of times they click on 
them. 

This can be modelled using multi-armed bandits:


The action  corresponds to displaying the -th advertisement from our collection.


We get reward 1 when the person clicks on the advertisement and 0 otherwise.


Clearly, the probabilities , , … will be different 
(different advertisements will have different quality).

m

ai i

P[Rt = 1 |At = 1] P[Rt = 1 |At = 2]



Regret (1/3)

Action-value: .


Similar to MDPs where we had . However, we do not need  
because we now have only one state. So we could rewrite it as . But 
then, since the action only affects the immediate reward and not to which 
state we get, the whole notion of policy is not very important for  in this 
setting, so we drop that as well and end up with .

Q(a) = 𝔼[Rt |At = a]

Qπ(s, a) s
Qπ(a)

Q
Q(a) = 𝔼[Rt |At = a]



Regret (2/3)
Optimal value:          .


Optimal action:         . 

Regret:                       . 

That is, regret is the “opportunity loss” at time t. Note that we use expected value 
in the definition of regret (recall how we defined ). That means we are not 
measuring regret directly in terms of what we observe. Since the parameters of 
bandits will generally be unknown, it also means we will not be able to compute 
regret directly.

V* = max
a∈A

Q(a) = max
a∈A

𝔼[Rt |At = a]

a* = arg max
a∈A

Q(a)

Lt = V* − Q(At)

Q(a)



Regret (3/3)

Total regret:               . 

Minimizing total regret is the same as maximizing the expected sum of 
rewards (i.e. return).

Ltot
T =

T

∑
t=1

Lt =
T

∑
t=1

(V* − Q(At))



Example
Consider again the example with advertisements, say we have 2 different 
advertisements that we can use, so .

Suppose that: 

, 

So , .


Let us have the following deterministic sequence of actions: 



What is the total regret of this episode? 
We have , , .

So the total regret is:


.


A = {a1, a2}

P[Person t clicks on ad |At = a1] = 0.8 P[Person t clicks on ad |At = a2] = 0.5
𝔼[Rt |At = a1] = 0.8 𝔼[Rt |At = a2] = 0.5

a1,1,a1,0,a2,1,a1,1,a2,0,a1,1,a1,0,a1,1,a1,1,a1,1

V* = 0.8 V* − Q(a1) = 0 V* − Q(a2) = 0.8 − 0.5 = 0.3

0 + 0 + 0.3 + 0 + 0.3 + 0 + 0 + … + 0 = 0.6/10 = 0.06



Some More Terminology (Gaps and Counts)

Count:  is the number of times the action  was used within the first  
time steps.


Gap: We will use the notation  and . It will 
always be clear from the context which one we use. 

Expected Regret can be written also as: 

Nt(a) a t

Δa = V* − Q(a) Δi = V* − Q(ai)

𝔼[Ltot
T ] =

T

∑
t=1

𝔼[ |V* − Q(at) | ] = ∑
a∈A

𝔼[NT(a)] ⋅ (V* − Q(a)) = ∑
a∈A

𝔼[NT(a)] ⋅ Δa



What We Want… (1/2)
We want to find algorithms where the regret will grow slowly with the number 
of time steps taken.


Note that: 

When regret does not grow at all after some time, that means that we are 
already taking the optimal action. 

Regret is the difference between best possible return and the return under 
our strategy. So when the regret grows slowly, it means we are already 
doing quite well.



What We Want… (2/2)

If we knew the expectations  then the problem would be trivial, 
but it would not be reinforcement learning. 

We could try to first estimate  by taking actions completely 
randomly. However, then in this first part we would incur high regret and it is 
also not clear how long we should be estimating (because that actually 
depends on the values of )… So we will need something 
smarter.

𝔼[Rt |At = a]

𝔼[Rt |At = a]

𝔼[Rt |At = a]



Greedy Methods (Why They 
Would Not Work)



Greedy Algorithm
Initialization: Do several passes over all actions and compute estimates   for all . 
Maintain counter  with the number of times an action was used.

While (some stopping condition): 

Select the action  which maximizes .


Use the selected action and observe .


Set .


Set .** 

Q̂(a) a ∈ A
N(a)

at ∈ A Q̂(a)
rt

N(at) := N(at) + 1

Q̂(at) := Q̂(at) +
1

N(at)
(rt − Q(at))

** 

Q(at)
= 1

N(at) − 1 (ri1
+…+rit−1

)

+ 1
N(at)

rit − 1
N(at)

Q(at) =
N(at)(ri1

+ … + rit−1
) + (N(at) − t)rit − (N(at) − 1) 1

N(at) − 1 (ri1
+ … + rit−1

)

(N(at) − 1)N(at)

=
(N(at) − 1)(ri1

+ … + rit−1
) + (N(at) − t)rit

(N(at) − 1)N(at)
= 1

N(at)
(ri1 + ri2 + … + rit)



Why Greedy Will Not Work Well
This will be similar to why purely greedy methods do not work well for RL (as 
we saw before, where we solved the problem by using -greedy methods. 

Example (Continue with our previous example): 
, .


For greedy methods, we need some initialization (e.g. passing over all the 
actions a couple of times). 

Suppose that our initial estimates for  are  and  
(which can happen if we are unlucky in the initialization).

Then we will never select  even though it is the optimal action. So regret 
will grow linearly with time in this case.

ε

𝔼[Rt |At = a1] = 0.8 𝔼[Rt |At = a2] = 0.5

Q Q̂(a1) = 0 Q̂(a2) = 0.5

a1



-Greedy Methods (Also not 
that great…)

ε



-Greedy (Basic Idea)ε
Similarly to what we did in the previous lectures… 

Initialization: Do several passes over all actions and compute estimates   for all . Maintain counter 
 with the number of times an action was used.


While (some stopping condition): 
With probability :


Select the action  which maximizes .

Else:


Select an action  uniformly at random.


Use the selected action and observe .


Set .


Set .

Q̂(a) a ∈ A
N(a)

1 − ε
at ∈ A Q̂(a)

at ∈ A
rt

N(at) := N(at) + 1

Q̂(at) := Q̂(at) +
1

N(at)
(rt − Q(at))



Regret of -Greedy Methodsε
If we keep  constant during the run of the -greedy algorithm then we will incur 
regret growing linearly with the number of time steps—in every step we have 
probability  of picking a suboptimal action (assuming no ties) which will 

incur a regret of at least 


So also not great… 

We might try to set  to be a function of  (as we did before) but it turns out to be 
tricky and need to know a lot about ’s in advance.

ε ε

ε −
ε

|A |
V* − max

a≠a*
Q(a)

ε t
Q(a)



Optimism Under Uncertainty



UCB Algorithm: Basic Idea
Upper-Confidence Bound (UCB) Algorithm 

For every action , maintain an upper bound  (the upper bound 
will change with time, that is why it is indexed by ). 

In every time step , take the action that has the maximum upper bound, i.e. 
take the action .


After observing the reward, update the estimates.

a ∈ A Ut(a)
t

t
arg max

a∈A
Ut(a)



UCB Algorithm
Initialization: 

Take every action  once and record the rewards in .




Loop: 
Compute upper confidence bounds for all actions :


 

Use the action  and observe the reward .


Update 


Update .


 

a ∈ A Q̂(a)
t := 1

ai ∈ A

Ut(ai) = Q̂(ai) +
1

2N(ai)
log

2t2

δ

at = arg max
a∈A

Ut(a) rt

N(at) := N(a1) + 1

Q̂(at) := Q̂(at) +
1

N(at)
(rt − Q(at))

t := t + 1



Proof (1/12)

Claim: If all upper bounds  satisfy , 
i.e. if none of them underestimates the true value, then for the action  
selected at time , it must hold 


.


Easy to see why…

Ut(a1), Ut(a2), …, Ut(am) Ut(ai) ≥ Q(ai)
at

t

Ut(at) ≥ U(a*) = V*



Proof (2/12)
First, we will state an auxiliary statement (which you probably know from other courses).


Theorem (Hoeffding’s Inequality): Let  be independent random variables bounded on the interval 

. Let . Then it holds


, 


,


.

X1, X2, …, XN

[a; b] XN =
1
N

N

∑
i=1

Xi

P [XN − 𝔼[XN] ≥ ξ] ≤ exp (−
2Nξ2

(b − a)2 )
P [𝔼[XN] − XN ≥ ξ] ≤ exp (−

2Nξ2

(b − a)2 )
P [ |XN − 𝔼[XN] | ≥ ξ] ≤ 2 exp (−

2Nξ2

(b − a)2 )



Proof (3/12)
Our  will be , i.e. the estimate of , and our  will therefore be , 
i.e. number of times  was used. 


We have .


We will want to find  (one value for each ) such that


,


where  is the current number of time steps.

XN Q̂t(ai) Q̂(ai) N Nt(ai)
ai

𝔼[Q̂t(ai)] = Q(ai)

ξt t

P [ |Q(ai) − Q̂(ai) | ≥ ξt] ≤ 2 exp (−
2Nt(ai)ξ2

t

(b − a)2 ) =
δ
t2

t



Proof (4/12)
We have


,


,





For simplicity we will now assume that .

P [ |Q(ai) − Q̂(ai) | ≥ ξt] ≤ 2 exp (−
2Nt(ai)ξ2

t

(b − a)2 ) =
δ
t2

−
2N(ai)ξ2

t

(b − a)2
= log

δ
2t2

ξt = (b − a)
1

2Nt(ai)
log

2t2

δ

a = 0, b = 1



Proof (5/12)
That is, the upper bounds  will be:


.


And we will also have lower bounds :


.

Ut(ai)

Ut(ai) = Q̂(ai) +
1

2Nt(ai)
log

2t2

δ

Lt(ai)

Lt(ai) = Q̂(ai) −
1

2Nt(ai)
log

2t2

δ



Proof (6/12)

Let  be the action selected at time .

We will now bound the probability that at least some of the bounds are 
incorrect (we will see in a moment why we want this).





.

At t

P [
T

⋁
t=1

m

⋁
i=1

Ut(Ai) ∉ [Lt(Ai); Ut(Ai)]] ≤

≤
T

∑
t=1

m

∑
i=1

P[ |Q(ai) − Q̂t(ai) | > ξt] ≤
T

∑
t=1

m

∑
i=1

δ
t2

= mδ
T

∑
t=1

1
t2



Proof (7/12)
We can now use the famous identity  (which is smaller than 2).**


So we can bound:


.


That  means that the probability that all lower and upper bounds are valid at all time steps is at 
least .


We will use this in a moment. 

** We actually do not need this fancy result to get the constant 2 (see the additional 
slide)

∞

∑
t=1

1
t2

=
π2

6

P [
T

⋁
t=1

m

⋁
i=1

Ut(Ai) ∉ [Lt(Ai); Ut(Ai)]] ≤ 2mδ

1 − 2mδ



Proof (8/12)
Let  be the action selected at time .


We will now bound the probability that at least one of the upper bounds , ,  is 
lower than .


We can notice that the event that at least one action has wrong confidence bounds over the course 
of  time steps, formally written as





is a necessary condition for at least one of the upper bounds , ,  to be lower than 
.


Therefore we can bound this probability also by .

At t
U1(A1) U2(A2) …

U(a*)

T
T

⋁
t=1

m

⋁
i=1

Ut(Ai) ∉ [Lt(Ai); Ut(Ai)]

U1(A1) U2(A2) …
U(a*)

1 − 2δm



Proof (9/12)
Let us now compute the regret of this algorithm:





We have that  with probability at least  (from the previous 
slide!) Hence we can bound the above as:


.

Regret(T) =
T

∑
t=1

(Q(a*) − Q(At)) =
T

∑
t=1

(Ut(At) − Q(At) + Q(a*) − Ut(At))

Q(a*) < Ut(At) 1 − 2mδ

Regret(T) ≤
T

∑
t=1

(Ut(At) − Q(At))



Proof (10/12)
Now we will play with


.


Recall that we defined  for all .


Hence we get


.


Regret(T) ≤
T

∑
t=1

(Ut(At) − Q(At))

Ut(ai) = Q̂(ai) +
1

2Nt(ai)
log

2t2

δ
ai ∈ A

Regret(T) ≤
T

∑
t=1

Q̂(At) +
1

2Nt(At)
log

2t2

δ
− Q(At)



Proof (11/12)
Now we need to do something with


.


Since we have that, with probability at least , we have for all 


.


We can bound the regret, with probability at least , as


.

Regret(T ) ≤
T

∑
t=1

Q̂(At) +
1

2Nt(At)
log

t2

δ
− Q(At)

1 − 2δm at ∈ A

Q̂(at) − Q(at) ≤
1

2Nt(At)
log

t2

δ

1 − 2δm

Regret(T ) ≤
T

∑
t=1

2
1

2Nt(At)
log

t2

δ
=

T

∑
t=1

2
Nt(At)

log
t2

δ



Proof (12/12)

Finally we have, with probability at least , 





.

1 − 2δm

Regret(T) ≤
T

∑
t=1

2
Nt(At)

log
t2

δ
= log

t2

δ

T

∑
t=1

2
Nt(At)

=

= 2 log
t2

δ

m

∑
i=1

NT(ai)

∑
j=1

1
j

≤ 2
Tm
2

log
T2

δ

Sublinear regret!!!!



Conclusions

• There is a lot more about bandits than we could cover here… and about 
sample-efficient reinforcement learning in general.



If you want to know more…

Lattimore, Tor, and Csaba Szepesvári. Bandit algorithms. Cambridge 
University Press, 2020. 

Available online: https://tor-lattimore.com/downloads/book/book.pdf

https://tor-lattimore.com/downloads/book/book.pdf


Additional Slide  

(Why  is not needed)
∞

∑
t=1

1
t2

=
π2

6

Bounding


.
∞

∑
t=1

1
t2

≤ 1 + ∫
∞

1

1
t2

dt = 1 + [−
1
t ]

∞

1
= 2


