SMU: Lecture 3

Monday, February 28, 2022

(Heavily inspired by the Stanford RL Course of Prof. Emma Brunskill, but all potential errors are mine.)

Plan for Today

 Recap of important concepts from lectures 1 and 2.
e Model-free control:
e Monte-Carlo Online Control

« SARSA

* Q-Learning

Part 1: Where are we? (Recap
from the previous lectures)

Markov Decision Process

« Markov decision process = Markov reward process + Actions
e An MDP is given by:

» A set of states 9.

» A set of actions A.

A transition model P[X,.; = s'| X, = s5,A, = a] = P(s'| s, a)

notation
« Areward R(s,a) = E[R|X, = s,A, = a], i.e. the expected reward

that the agent receives when performing action a in state s.

» Discount factor y.

Policy

Policy determines which action to take in each state s.

It can be either deterministic or random — that is also why policy will not
simply be a function from states to actions.

We define policy: 7(a |s) = P(A, = a | X, =).

Example (policy for our ant %s):
o A = {left, right}
e w(left|1) =0, n(right| 1) = 1, z(left|2) = 0.5, a(right|1) = 0.5,...

(Bellman equation for MDP)

State Value Function of MDP

General case:

Vi(s) =) ma,s)- |R(s,a)+7-) P(s's.a)- VX(s)

acA s'eS

Version for deterministic policy:

VA(s) = R(s,a(s) + 7+) P(s'| 5, 7(s)) - V(s

s'es

MDP Control Problem

How to find 7z*(s) = arg max V”(s) 7?7
T

State-Action Value Q

e Definition:

O"(s,a) = R(s,a) +y - Z P(s’|s,a) - V*(s').

s'es

e Intuition:

e The value of the return that we obtain if we first take the action a in the
state s and then follow the policy 7 (including when we visit s again).

® [hink of it as perturbing the policy m — we deviate from following the policy
7t only in the first step in s.

Policy Improvement Step

« Given: An MDP and a policy 7; that we want to improve (if possible).
e DO:

« Foralls € §, compute Q”"(s, a) as defined on the previous slide, i.e.

Q"(s,a) = R(s,a) + y - Z P(s’|s,a) - V*(s').

s'es

« Compute new policy for all s € S: Here_, we use thg fact thazf our pc?l/cy IS determ/n/stlc
for simpler notation (treating policy as a function).

Using our previous notation we could write:
—_ TT;
m;. (s) = arg ma;c O%(s, a) o s
ae If a = arg max i(S,a
72'(61 | S) — { g aeA
0 otherwise

Policy lteration

1 =0
Initialize 7, randomly.
DO

V" = Compute the state-value function, evaluating ;.
r;.1 = Policy improvement of 7.
=1+ 1

WHILE |[7z; — z;_||; > O /*if policy changed */

Policy iteration finds the globally optimal policy!

10

Value Iteration

Setk=1

Initialize V,,(s) = O foralls € S
Bellman backup B[V]

] ”

Vi(s) = max [R(S, a) +y - Z P(s'|s,a) - Vi_i(s)
aeA Ve

WHILE [[V, — V[l > €

e To extract an optimal policy, we can extract a deterministic (not necessarily
unique) policy:

n(s) = arg max [R(S, a) + Z P(s'|s,a) - V(S’)] .

cA
“ s'eS

11

Problem: Model-Free Policy Evaluation

* Given a policy and an MDP with unknown parameters (or generally an
environment with which we can interact), estimate the value function.

Agent: M Rewards??

States are given:

??

Actions are given: .

A=1{lr} L\\
(O

Policy Is given, e.g.:
n(l|la) =0.2, n(r|a) = 0.8,
n(l|b) =0.3, n(r|b) = 0.7,

First/Every-Visit Monte-Carlo Evaluation

Initialize: G(s) = 0, N(s) = O for all s € S.
Fori=1,...,NV:
Sample episode €; = S; 1, a; 1,7} 155,20, 82, V2> -+ > Si T
For eachtimestep 1 <t < T
If 7 is the first occurrence of state s in the episode e; /* This is for first-visit MC */
§ Is the state visited at time 7 in the episode e;
it =V TV Vigp1 T i Viggo T -en T y'it VT,
N(s) := N(s) + 1 /* Increment total visits counter */
G(s) := G(s) + g; 1 /" Increment total return counter */

V*(s) := G(s)/N(s) /* Update current estimate */

Temporal Difference Learning

 TD learning combines Monte-Carlo estimation and dynamic
programming ideas.

 TD learning can be used both in episodic and infinite-horizon non-
episodic settings,

» TD learning updates estimates of V” continually, after every consecutive

tuple state-action-reward-state (therefore we do not need to wait till the
end of an episode).

TD-Learning: Pseudocode

Initialize: V*(s) =0 foralls € §
Loop:
Sample tuple (s;, a,, ¥}, S, 1)-

Update V*(s,) :== V*(s) +a - (r;;+vy - V(s,.) — Vi(s))

1D térget

Part 2: Model-Free Control
(Problem Statement)

Model-Free Control

* Given a policy and an MDP with unknown parameters (or generally an
environment with which we can interact), find the optimal policy 7.

Part 3: Model-Free Policy
Iteration

On-Policy and Off-Policy Methods

 On-policy methods: samples must be from the policy that we are
learning.

 Off-policy methods: samples do not have to be from the policy that we
are learning.

 We will see examples of these methods and then it will become clearer.

MC Estimation of Q”*(s, a)

e [ast time we talked about MC Estimation of the value function. We can
now try to use the same idea for the estimation of the state-action value

function OQ”(s, a).

Exploration vs Exploitation

* A simple idea (that will not work yet... and will illustrate why we need to think about exploration):

 THIS WILL NOT WORK (YET):
Initialize: G(s,a) = 0, N(s,a) = Oforall s € S.
Fori=1,...,N:
Sample episode ¢; =, 1, 4; 1, ;15 S;2, 42, Fi» --+» S 7 USING TT.
For eachtimestep 1 <r < T::
{If 7 is the first occurrence of state s in the episode e; - Use this if you want first-visit MC)

s, Is the state visited at time 7 in the episode e;
a, is the action taken at time 7 in the episode e;

. 2 T—t
it =TTV Tigpn TV " liggo T oo TY riT

N(s) := N(s) + 1 /* Increment total visits counter */

G(s,, a) .= G(s;, a,) + g; | /" Increment total return counter */

Q*(s,, a,) = G(s,, a)/N(s,, a,) /* Update current estimate */

Exploration vs Exploitation

* A simple idea (that will not work yet... and will illustrate why we need to think about exploration):

 THIS WILL NOT WORK (YET):
Initialize: G(s,a) = 0, N(s,a) = Oforall s € S.
Fori=1,...,NV:
Sample episode ¢; 1= §; 1,4, 1,7; 1, 5,2, 4; 2, Vi 2> ---» S; T, USING 7.
For each timestep 1 <7 < T::
(If 7 is the first occurrence of state s in the episode ¢; - Use this if you want first-visit MC)

s, is the state visited at time 7 in the episode ¢;

a, is the action taken at time 7 in the episode e¢;
it =ty TV Tip1 TY Vit ... TY "l

N(s) := N(s) + 1 /* Increment total visits counter */

G(s;, a,) .= G(s, a,) + g1 /" Increment total return counter */

Q*(s,, a,) := G(s,, a,)/N(s,, a,) /* Update current estimate */

Exploration vs Exploitation

* A simple idea (that will not work yet... and will illustrate why we need to think about exploration):

« Why this does not work? Suppose that the policy 7 is deterministic. Then we will only see actions (s, a)
where a = 7(s). So, essentially, we will only be able to have O” for actions taken by 7, which is useless
for what we want to use O for.

Initialize: G(s,a) = 0, N(s,a) = O forall s € §.
Fori=1,...,NV:
Sample episode ¢; 1= §; 1, 4; 1, T; 15 S;2, 4j 2, Vi 25 -+ -5 S; 7, USING 7T,
For each timestep 1 <1 < T::

{If 7 is the first occurrence of state s in the episode ¢; - Use this if you want first-visit MC)

s, Is the state visited at time 7 in the episode ¢;
a, is the action taken at time 7 in the episode ¢;

. 2 Ti—1
it =Ty TV Vi1 TY " Viggp T oo vV I
N(s) := N(s) + 1 /* Increment total visits counter */
G(s, a,) := G(s;,a,) + g; |/ Increment total return counter */

Q*(s, a) = G(s,,a,)/N(s,, a,) I* Update current estimate */

AN

S=1{a,b,c,END}, A = {[, r}
71'1(61) — l, ﬂl(b) — l, 7[1(6‘) — l
e, =a,l1,b,l,1,a,ll,c,I[,2,END

e, = ...

But how can we ever estimate, e.g.,

O*(a,r)??

&» Let’s see why it will not work!

* A simple idea (that will not work yet... and will illustrate why

we need to think about exploration):

* THIS WILL NOT WORK (YET):
Initialize: G(s,a) = 0, N(s,a) = O forall s € S.
Fori=1,...,N:
Sample episode ¢; =5, 1,4, 1,7} 15512, 4j 2, V25 - > Si T
using .
Foreachtimestep 1 <7 < T

{If 7 is the first occurrence of state s in the episode ¢;
- Use this if you want first-visit MC)

S, Is the state visited at time 7 in the episode ¢;

a, is the action taken at time 7 in the episode e¢;

._ 2 T—t
it =Tty Ty TV T+ ...+TY Vi T

1

N(s) := N(s) + 1 /* Increment total visits counter
Y/

G(s, a) .= G(s,a,) + g 1 /" Increment total
return counter */

Q”(s, a,) := G(s,, a,)/N(s,, a,) /* Update current
estimate */

e-Modified* Policy (Deterministic Case)

* We will now modify a given policy to “sometimes take a random action”.

 Definition: Given a deterministic policy 7 the e-greedy of z, denoted r_,
IS the policy which is given as follows:

Number of actions

1—8°<1+ﬁ fora = n(s),
m(als) =

€ - (1 + ‘Tl‘> otherwise .

*This Is not a standard terminology.

e-Modified Policy (General Case)

* We will now modify a given policy to “sometimes take a random action”.

 Definition: Given a policy x the e-modified version of x, denoted x_, is the
policy which is given as follows:

r(als) = (1 —8)°7T(CZ‘S)+‘T€‘.

X4

@Example: Q-Value Estimation with e-Modified Policy

- — * A simple idea (that will not work yet... and will illustrate why
S T {a? b9 C? END }’ A T {l? }"} we need to think about exploration):
71'1 (Cl) — l, 71'1 (b) — l, 72'1 (C) — l THIS WILL NOT WORK (YET):
. Initialize: G(s,a) = 0, N(s,a) = O forall s € S.
Suppose that 7. is an Fori=1,..,N:
Sample episode ¢; 1= Si15 Qi 1> Vi 15512 Qi 2> Vigs - > SiT
61 — Cl, lalaba lalaaa l,l,C, l,2,END using 7.
_ Foreachtimestep 1 <7 < T
62 e {If 1 is the first occurrence of state s in the episode e;

- Use this if you want first-visit MC)
S, Is the state visited at time 7 in the episode ¢;

But hOW can we ever eStimate, e_g_, a, is the action taken at time ¢ in the episode ¢;
L, =7. . 7. 2, : Ii—t :
O”(b, r)?? This time we are guaranteed to i BT TY T T Ty o YT,
N(s) := N(s) + 1 /* Increment total visits counter
see the pair (b, r) infinitely many times (in v
- . . .y G(s, a) .= G(s,a,) + g 1 /" Increment total
the limit and with probability 1) as long as b return counter */
has non-zero probability of being visited. Q" (s, a,) == G(s,, a,)/N(s,, a,) /* Update current

estimate */

e-Greedy Policy

» Given a Q-function J(s, a), we define the e-greedy policy w.r.t. O as

We assume ties are decided consistently

] —€- (1 — ‘Tl‘) when a = arg max ., Q(s, a)

n(als) =

o when a # arg max__, O(s, a)

Monotonic e-Greedy Policy Improvement

» Theorem: Assume that we can compute OQ” and V”* exactly (which is not
always the case where we will use e-greedy policy improvements).

1. Let 7; be some &-greedy policy.
2. Let Q% be the Q-function w.r.t. z;.

3. Let x,, | be the e-greedy policy w.r.t. Q" as defined on the previous
slide.

Then V”*i+1(s) > V”"(s) forall s € S.

e Proof (Not this time but see the lectures of Emma Brunskill if you are
Interested.)

MC On Policy Improvement

Initialize: G(s,a) = 0, N(s,a) =0, O(s,a) =0foralls € §,a € A.
Initialize: e =1, k=1
Fori=1,...,N:
Sample episode €; 1= 5, 1, 4; 1,7; 1, 5;2, G2, Vi 25 - - S; 7, diven 7.
For eachtimestep 1| <7 < T::
{If 7 is the first occurrence of state s in the episode ¢; - Use this if you want first-visit MC)

S, Is the state visited at time 7 in the episode ¢;
a, is the action taken at time ¢ in the episode e¢;

it =Ty TV Vg1t 7 Viggo T e T it VT,

N(s) := N(s) + 1 /* Increment total visits counter */

G(s,, a) = G(s,a,) + g 1 /" Increment total return counter */
0(s,,a,) := G(s,,a,)/N(s,, a,) /* Update current estimate *

EndFor
k=k+1,e=1/k

7, = e—greedy policy w.r.t. 0

GLIE

 GLIE = “greedy in the limit of infinite exploration”.

* Definition (GLIE conditions):

1. If a state s € § is visited infinitely often, then each action in that state is
chosen infinitely often (with probability 1)

2. In the limit (as t = o), the learning policy is greedy with respect to the
learned Q-function (with probability 1). By greedy we mean (ighoring the

possibility of ties in the arg max for simplicity) that

@ls) { 1 fora = argmax,_, O,(s,a),
mo(als) =
ot 0O otherwise.

 For a proof, see, e.qg. Singh, S., Jaakkola, T., Littman, M. L., & Szepesvari,
C. (2000). Convergence results for single-step on-policy reinforcement-
learning algorithms. Machine learning, 38(3), 287-308.

* The formal proof is a bit tricky...

A Theorem (Why GLIE Matters)

 Theorem: GLIE Monte-Carlo Control converges to the optimal state-
action value function, i.e. Q,(s,a) = Q*(s,a) as k — oo.

A Theorem (Why GLIE Matters)

 Theorem: GLIE Monte-Carlo Control converges to the optimal state-
action value function, i.e. Q,(s,a) = Q*(s,a) as k — oo.

e Partially this follows from the theorem about monotonic e-greedy policy
improvement (think of what happens when the estimates of Q-function
w.r.t. some policy converge, but the real proof is more difficult than that
and we will not show it.

Part 4: SARSA and Q-Learning

General Form of TD-Based Methods

e Basic idea:

 Replace Monte Carlo Policy Evaluation by a temporal-difference
method.

o Still use e-greedy policies to guarantee that exploration will take place.

Bellman Equations for Q-Function

(Something we skipped when we talked about Q-functions for MDPs but
something that will be useful now.)

We have:

Vi(s) =) alals) - Q(s,a)
acA
O"(s,a) = R(s,a) + vy - Z P(s’|s,a) - V*(s')
s'eS
Combining the above:

Q7(s.,a) = R(s,a) +7-) P(s'|s,a)-) n(a'|s") - Q(s'.a)

s'es a'eA

TD-Target

Bellman for Q-function:

E[Q" (X1 Ay) | X, = 5, Ay = a)]

Temporal difference update (SARSA)...

(s, a) = Q0(s,a,) + a — Q(s,, at))

SARSA

 SARSA is an on-policy algorithm.
1. Initialize: set 7 to be some e-greedy policy, set t = 0

2. Sample a using the distribution given by 7, in the state s, (for sampling,
we will use the notation a ~ n(s)). Take the action a and observe 1, ;.

3. While s, is not a terminal state:

1. Take action a ~ 7(s,) and observe r,, {, S, .
2. 0@, a):=0(,a)+a (rt + yQ(S,. 1, Ay) — OCs,, at))

3. 1 := e-greedy(Q)
4. Sett:=t+ 1. Update €, a /* see next slides */

Convergence (SARSA)

« SARSA converges to the optimal state-value function OQ* if the following conditions are
satisfied:

1. The sequence of policies 7, satisfies the GLIE conditions (enough to have
e = 1/1).

2. Step-sizes satisfy the Robbins-Monro conditions:

o0
D=0
t=1

0

2
Z a; < o0.
t=1

Q-Learning (1/2)

 The Optimal Bellman Equation (we have not talked about it yet but it is
similar to what we already saw):

0*(s,a) = R(s,a) + 7|), P(s,

e Q-Learning update rule:

O, a) == 0@, a,) + (rt + y max Q(s,, 1, a) — (s, at))

aceA

Q-Learning (2/2)

e Q-Learning is an off-policy algorithm.

1. Initialize: set 7 to be some e-greedy policy, set t = 0

2. Sample a using the distribution given by 7, in the state s, (for sampling, we will
use the notation a ~ n(s)). Take the action a and observe 1, s;.

3. While s, is not a terminal state:

1. Take action a ~ 7z(s,) and observe r,_ |, S, 1.

2. O(s,a) :=0(s,a)+a (rt + ¥ maj(Q(s,.1,a) — O(s,, at))
ac

3. 1 := e-greedy(Q)

4. Sett:=1t+ 1. Update €, a /* see next slides */

Convergence (Q-Learning)

* For convergence of the state-value Q-function, we need only the Robbins-
Monro conditions + every state-action pair needs to be visited infinitely
often (with probability 1).

* For convergence of the policy to the optimal policy, we need GLIE (i.e. it
needs to also be greedy in the limit...).

Double Q-Learning

1: Initialize Q1(s,a) and Q2(s,a),Vs € S,a € At =0, initial state s; = sp
2: loop
3: Select a; using e-greedy 7(s) = arg max, Q1(st, a) + Q2(st, a)

4: QObserve (rt, St11)
5. if (with 0.5 probability) then
6: Ql(St, at) — Ql (5t7 at) -+ a(rt +'7Q2(5t+17 arg max, Ql (5t+17 a)) -
Ql(St, at))
7. else
8: Q2(st, ar) < Qo(st, ar) + a(re +vQ1(Se+1,arg max, Qo(se+1,a)) —
Q2(st, at))
9: endif
10: t=t+1
11: end loop

Compared to Q-learning, how does this change the: memory requirements,

uired?

mma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control Winter 2022 60 / 64

Why Double Q-Learning?

* Jo help with maximization bias...
* The following step causes the maximization bias:

(s, a) = (0(s,,a) +a (rt + y max Q(s,,,a) — Q(s,, at))

ac€A
because, in general;

-[max{X;,X,, ..., X, }] # max{E[X,], E|X,], ..., E[X,]}, and in fact:
-[max{ X, X,, ..., X, }| = max{E[X,], E[X,], ..., E[X,]}.

. So even if the estimates of (J(s, a) were unbiased, max (J(s,, , a) would not
acA
have to be unbiased.

Double Q-Learning

Double Q-Learning

1: Initialize Q1(s,a) and Q2(s,a),Vs € S,a € At =0, initial state s; = sp
2: loop
3: Select a; using e-greedy 7(s) = arg max, Q1(st, a) + Q2(st, a)

4: QObserve (rt, St11)
5. if (with 0.5 probability) then
6: Ql (St, at) — Ql (St7 at) + O5("1? + 7&(51?4-17 arg maxa&(st-l-lv a)) -
Ql(St, at))
7. else
8: Q2(st, at) + Qa(st, ar) +are +yQi(st+1,arg maxa Q2(st+1, a)) —
Q2(st, at)) o o
9: endif
10: t=t+1
11: end loop

Compared to Q-learning, how does this change the: memory requirements,

uired?

mma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control Winter 2022 60 / 64

