
SMU: Lecture 3
Monday, February 28, 2022


(Heavily inspired by the Stanford RL Course of Prof. Emma Brunskill, but all potential errors are mine.)



Plan for Today

• Recap of important concepts from lectures 1 and 2.


• Model-free control:


• Monte-Carlo Online Control 

• SARSA 

• Q-Learning



Part 1: Where are we? (Recap 
from the previous lectures)



Markov Decision Process
• Markov decision process = Markov reward process + Actions 
• An MDP is given by: 

• A set of states .


• A set of actions .


•
A transition model 


• A reward , i.e. the expected reward 
that the agent receives when performing action  in state .


• Discount factor .

S
A

P[Xt+1 = s′ |Xt = s, At = a] = P(s′ |s, a)

notation
R(s, a) = 𝔼[Rt |Xt = s, At = a]

a s
γ
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Policy
• Policy determines which action to take in each state . 


• It can be either deterministic or random — that is also why policy will not 
simply be a function from states to actions.


• We define policy: .


• Example (policy for our ant 🐜):


• 

•

s

π(a |s) = P(At = a |Xt = s)

A = {left, right}
π(left |1) = 0, π(right |1) = 1, π(left |2) = 0.5, π(right |1) = 0.5,…
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State Value Function of MDP
General case: 




Version for deterministic policy: 

Vπ(s) = ∑
a∈A

π(a, s) ⋅ [R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′ )]

Vπ(s) = R(s, π(s)) + γ ⋅ ∑
s′ ∈S

P(s′ |s, π(s)) ⋅ Vπ(s′ )
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(Bellman equation for MDP)



MDP Control Problem

How to find    ???π*(s) = arg max
π

Vπ(s)
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State-Action Value Q
• Definition: 

       . 

• Intuition: 

• The value of the return that we obtain if we first take the action  in the 
state  and then follow the policy  (including when we visit  again).


• Think of it as perturbing the policy  — we deviate from following the policy 
 only in the first step in .

Qπ(s, a) = R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′ )

a
s π s

π
π s
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Policy Improvement Step
• Given: An MDP and a policy  that we want to improve (if possible).


• DO: 

• For all , compute  as defined on the previous slide, i.e. 
.


• Compute new policy for all : 

      

πi

s ∈ S Qπi(s, a)
Qπi(s, a) = R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ Vπi(s′ )

s ∈ S

πi+1(s) = arg max
a∈S

Qπi(s, a)

Here, we use the fact that our policy is deterministic 
for simpler notation (treating policy as a function). 
Using our previous notation we could write: 

       π(a |s) = {1  if a = arg maxa∈A Qπi(s, a)
0  otherwise 
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Policy Iteration



Initialize  randomly. 
DO 

  .

  .


   
WHILE  

Policy iteration finds the globally optimal policy!

i = 0
π0

Vπi =  Compute the state-value function, evaluating πi

πi+1 =  Policy improvement of πi

i = i + 1
∥πi − πi−1∥1 > 0 /* if policy changed */
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Value Iteration 
Set 

Initialize  for all 

DO: 

 

WHILE  

• To extract an optimal policy, we can extract a deterministic (not necessarily 
unique) policy: 

.

k = 1
V0(s) = 0 s ∈ S

Vk(s) = max
a∈A [R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ Vk−1(s′ )]
∥Vk − Vk−1∥∞ ≥ ε

π(s) = arg max
a∈A [R(s, a) + ∑

s′ ∈S

P(s′ |s, a) ⋅ V(s′ )]
11

Bellman backup B[V]



Problem: Model-Free Policy Evaluation

• Given a policy and an MDP with unknown parameters (or generally an 
environment with which we can interact), estimate the value function.



Example
🐸Agent: 

States are given:  

c

b

a

END

??

1

??

??

??

??

??
??

??

????

??
??

Rewards??  

Actions are given: 
  A = {l, r}
🐸
📡

Policy is given, e.g.: 
 
 

…

π(l |a) = 0.2, π(r |a) = 0.8,
π(l |b) = 0.3, π(r |b) = 0.7,



First/Every-Visit Monte-Carlo Evaluation
Initialize: . 
For : 

Sample episode .


For each time step :

If  is the first occurrence of state  in the episode  /* This is for first-visit MC */

    is the state visited at time  in the episode 





 /* Increment total visits counter */ 
 /* Increment total return counter */ 

 /* Update current estimate */

G(s) = 0, N(s) = 0 for all s ∈ S
i = 1,…, N

ei := si,1, ai,1, ri,1, si,2, ai,2, ri,2, …, si,Ti

1 ≤ t ≤ Ti

t s ei

s t ei

gi,t := ri,t + γ ⋅ ri,t+1 + γ2 ⋅ ri,t+2 + … + γTi−t ⋅ ri,Ti

N(s) := N(s) + 1
G(s) := G(s) + gi,1

Vπ(s) := G(s)/N(s)



Temporal Difference Learning
• TD learning combines Monte-Carlo estimation and dynamic 

programming ideas.


• TD learning can be used both in episodic and infinite-horizon non-
episodic settings,


• TD learning updates estimates of  continually, after every consecutive 
tuple state-action-reward-state (therefore we do not need to wait till the 
end of an episode).


….

Vπ



TD-Learning: Pseudocode

Initialize: 

Loop: 

Sample tuple .

Update 

Vπ(s) = 0 for all s ∈ S

(st, at, rt, st+1)
Vπ(st) := Vπ(st) + α ⋅ (ri,t + γ ⋅ Vπ(st+1)

TD target

− Vπ(st))



Part 2: Model-Free Control 
(Problem Statement)



Model-Free Control

• Given a policy and an MDP with unknown parameters (or generally an 
environment with which we can interact), find the optimal policy .π



Part 3: Model-Free Policy 
Iteration



On-Policy and Off-Policy Methods
• On-policy methods: samples must be from the policy that we are 

learning.


• Off-policy methods: samples do not have to be from the policy that we 
are learning.


• We will see examples of these methods and then it will become clearer.



MC Estimation of Qπ(s, a)

• Last time we talked about MC Estimation of the value function. We can 
now try to use the same idea for the estimation of the state-action value 
function .Qπ(s, a)



Exploration vs Exploitation
• A simple idea (that will not work yet… and will illustrate why we need to think about exploration): 

• THIS WILL NOT WORK (YET): 
Initialize: . 
For : 

Sample episode  using .


For each time step :

(If  is the first occurrence of state  in the episode   -  Use this if you want first-visit MC)

    is the state visited at time  in the episode  
    is the action taken at time  in the episode 





 /* Increment total visits counter */ 
 /* Increment total return counter */ 

 /* Update current estimate */

G(s, a) = 0, N(s, a) = 0 for all s ∈ S
i = 1,…, N

ei := si,1, ai,1, ri,1, si,2, ai,2, ri,2, …, si,Ti
π

1 ≤ t ≤ Ti

t s ei

st t ei
at t ei

gi,t := ri,t + γ ⋅ ri,t+1 + γ2 ⋅ ri,t+2 + … + γTi−t ⋅ ri,Ti

N(s) := N(s) + 1
G(st, at) := G(st, at) + gi,1

Qπ(st, at) := G(st, at)/N(st, at)



Exploration vs Exploitation
• A simple idea (that will not work yet… and will illustrate why we need to think about exploration): 

• THIS WILL NOT WORK (YET): 
Initialize: . 
For : 

Sample episode  using .


For each time step :

(If  is the first occurrence of state  in the episode   -  Use this if you want first-visit MC)

    is the state visited at time  in the episode  
    is the action taken at time  in the episode 





 /* Increment total visits counter */ 
 /* Increment total return counter */ 

 /* Update current estimate */

G(s, a) = 0, N(s, a) = 0 for all s ∈ S
i = 1,…, N

ei := si,1, ai,1, ri,1, si,2, ai,2, ri,2, …, si,Ti
π

1 ≤ t ≤ Ti

t s ei

st t ei
at t ei

gi,t := ri,t + γ ⋅ ri,t+1 + γ2 ⋅ ri,t+2 + … + γTi−t ⋅ ri,Ti

N(s) := N(s) + 1
G(st, at) := G(st, at) + gi,1

Qπ(st, at) := G(st, at)/N(st, at)



Exploration vs Exploitation
• A simple idea (that will not work yet… and will illustrate why we need to think about exploration): 

• Why this does not work? Suppose that the policy  is deterministic. Then we will only see actions  
where . So, essentially, we will only be able to have  for actions taken by , which is useless 
for what we want to use  for. 

Initialize: . 
For : 

Sample episode  using .


For each time step :

(If  is the first occurrence of state  in the episode   -  Use this if you want first-visit MC)

    is the state visited at time  in the episode  
    is the action taken at time  in the episode 





 /* Increment total visits counter */ 
 /* Increment total return counter */ 

 /* Update current estimate */

π (s, a)
a = π(s) Qπ π

Q
G(s, a) = 0, N(s, a) = 0 for all s ∈ S

i = 1,…, N
ei := si,1, ai,1, ri,1, si,2, ai,2, ri,2, …, si,Ti

π
1 ≤ t ≤ Ti

t s ei

st t ei
at t ei

gi,t := ri,t + γ ⋅ ri,t+1 + γ2 ⋅ ri,t+2 + … + γTi−t ⋅ ri,Ti

N(s) := N(s) + 1
G(st, at) := G(st, at) + gi,1

Qπ(st, at) := G(st, at)/N(st, at)



Let’s see why it will not work!
, 


, , 







But how can we ever estimate, e.g., 
??


S = {a, b, c, END} A = {l, r}
π1(a) = l π1(b) = l π1(c) = l
e1 = a, l,1,b, l,1,a, l,1,c, l,2,END
e2 = …

Qπ(a, r)

• A simple idea (that will not work yet… and will illustrate why 
we need to think about exploration): 

• THIS WILL NOT WORK (YET): 
Initialize: . 
For : 

Sample episode  
using .

For each time step :


(If  is the first occurrence of state  in the episode   
-  Use this if you want first-visit MC)

    is the state visited at time  in the episode  
    is the action taken at time  in the episode 





 /* Increment total visits counter 
*/ 

 /* Increment total 
return counter */ 

 /* Update current 
estimate */

G(s, a) = 0, N(s, a) = 0 for all s ∈ S
i = 1,…, N

ei := si,1, ai,1, ri,1, si,2, ai,2, ri,2, …, si,Ti

π
1 ≤ t ≤ Ti

t s ei

st t ei
at t ei

gi,t := ri,t + γ ⋅ ri,t+1 + γ2 ⋅ ri,t+2 + … + γTi−t ⋅ ri,Ti

N(s) := N(s) + 1

G(st, at) := G(st, at) + gi,1

Qπ(st, at) := G(st, at)/N(st, at)

🐸
📡



-Modified* Policy (Deterministic Case)ε
• We will now modify a given policy to “sometimes take a random action”.


• Definition: Given a deterministic policy  the -greedy of , denoted , 
is the policy which is given as follows:


π ε π πε

πε(a |s) =
1 − ε ⋅ (1 + 1

|A | )  for a = π(s),

ε ⋅ (1 + 1
|A | )  otherwise .

Number of actions

*This is not a standard terminology.



-Modified Policy (General Case)ε
• We will now modify a given policy to “sometimes take a random action”.


• Definition: Given a policy  the -modified version of , denoted , is the 
policy which is given as follows:


.

π ε π πε

πε(a |s) = (1 − ε) ⋅ π(a |s) +
ε

|A |



Example: Q-Value Estimation with -Modified Policyε

, 

, , 


Suppose that  is an 







But how can we ever estimate, e.g., 
?? This time we are guaranteed to 

see the pair  infinitely many times (in 
the limit and with probability 1) as long as b 
has non-zero probability of being visited.

S = {a, b, c, END} A = {l, r}
π1(a) = l π1(b) = l π1(c) = l

πε

e1 = a, l,1,b, l,1,a, l,1,c, l,2,END
e2 = …

Qπ(b, r)
(b, r)

• A simple idea (that will not work yet… and will illustrate why 
we need to think about exploration): 

• THIS WILL NOT WORK (YET): 
Initialize: . 
For : 

Sample episode  
using .

For each time step :


(If  is the first occurrence of state  in the episode   
-  Use this if you want first-visit MC)

    is the state visited at time  in the episode  
    is the action taken at time  in the episode 





 /* Increment total visits counter 
*/ 

 /* Increment total 
return counter */ 

 /* Update current 
estimate */

G(s, a) = 0, N(s, a) = 0 for all s ∈ S
i = 1,…, N

ei := si,1, ai,1, ri,1, si,2, ai,2, ri,2, …, si,Ti

π
1 ≤ t ≤ Ti

t s ei

st t ei
at t ei

gi,t := ri,t + γ ⋅ ri,t+1 + γ2 ⋅ ri,t+2 + … + γTi−t ⋅ ri,Ti

N(s) := N(s) + 1

G(st, at) := G(st, at) + gi,1

Qπ(st, at) := G(st, at)/N(st, at)

🐸
📡



-Greedy Policyε
• Given a Q-function , we define the -greedy policy w.r.t.  as





Q(s, a) ε Q

π(a |s) =
1 − ε ⋅ (1 − 1

|A | )  when a = arg maxa∈A Q(s, a)
ε

|A |
 when a ≠ arg maxa∈A Q(s, a)

We assume ties are decided consistently



Monotonic -Greedy Policy Improvementε
• Theorem: Assume that we can compute  and  exactly (which is not 

always the case where we will use -greedy policy improvements).

1. Let  be some -greedy policy.

2. Let  be the Q-function w.r.t. .

3. Let  be the -greedy policy w.r.t.  as defined on the previous 

slide.

Then . 

• Proof (Not this time but see the lectures of Emma Brunskill if you are 
interested.) 

Qπ Vπ

ε
πi ε
Qπi πi

πi+1 ε Qπi

Vπi+1(s) ≥ Vπi(s) for all s ∈ S



MC On Policy Improvement
Initialize: . 
Initialize:  
For : 

Sample episode  given .


For each time step :

(If  is the first occurrence of state  in the episode   -  Use this if you want first-visit MC)

    is the state visited at time  in the episode  
    is the action taken at time  in the episode 





 /* Increment total visits counter */ 
 /* Increment total return counter */ 

 /* Update current estimate * 
EndFor 

 

G(s, a) = 0, N(s, a) = 0, Q(s, a) = 0 for all s ∈ S, a ∈ A
ε = 1, k = 1

i = 1,…, N
ei := si,1, ai,1, ri,1, si,2, ai,2, ri,2, …, si,Ti

πk

1 ≤ t ≤ Ti

t s ei

st t ei
at t ei

gi,t := ri,t + γ ⋅ ri,t+1 + γ2 ⋅ ri,t+2 + … + γTi−t ⋅ ri,Ti

N(s) := N(s) + 1
G(st, at) := G(st, at) + gi,1

Q(st, at) := G(st, at)/N(st, at)

k = k + 1, ε = 1/k
πk = ε−greedy policy w.r.t. Q



GLIE
• GLIE = “greedy in the limit of infinite exploration”.


• Definition (GLIE conditions): 

1. If a state  is visited infinitely often, then each action in that state is 
chosen infinitely often (with probability 1)


2. In the limit (as t → ∞), the learning policy is greedy with respect to the 
learned Q-function (with probability 1). By greedy we mean (ignoring the 
possibility of ties in the  for simplicity) that 

s ∈ S

arg max

πk+1(a |s) = {1  for a = arg maxa∈A Qk(s, a),
0  otherwise. 



 is GLIEεi = 1/i
• For a proof, see, e.g. Singh, S., Jaakkola, T., Littman, M. L., & Szepesvári, 

C. (2000). Convergence results for single-step on-policy reinforcement-
learning algorithms. Machine learning, 38(3), 287-308. 

• The formal proof is a bit tricky…



A Theorem (Why GLIE Matters)
• Theorem: GLIE Monte-Carlo Control converges to the optimal state-

action value function, i.e.  as .Qk(s, a) → Q*(s, a) k → ∞



A Theorem (Why GLIE Matters)
• Theorem: GLIE Monte-Carlo Control converges to the optimal state-

action value function, i.e.  as .


• Partially this follows from the theorem about monotonic -greedy policy 
improvement (think of what happens when the estimates of Q-function 
w.r.t. some policy converge, but the real proof is more difficult than that 
and we will not show it.

Qk(s, a) → Q*(s, a) k → ∞

ε



Part 4: SARSA and Q-Learning



General Form of TD-Based Methods

• Basic idea:  

• Replace Monte Carlo Policy Evaluation by a temporal-difference 
method.


• Still use -greedy policies to guarantee that exploration will take place.ε



Bellman Equations for Q-Function
(Something we skipped when we talked about Q-functions for MDPs but 
something that will be useful now.) 
We have: 







Combining the above: 

Vπ(s) = ∑
a∈A

π(a |s) ⋅ Qπ(s, a)

Qπ(s, a) = R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′ )

Qπ(s, a) = R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ ∑
a′ ∈A

π(a′ |s′ ) ⋅ Qπ(s′ , a′ )



TD-Target
Bellman for Q-function: 

 

Temporal difference update (SARSA)… 

Qπ(st, at) = R(st, at) + γ ⋅ ∑
st+1∈S

P(st+1 |st, at) ⋅ ∑
at+1∈A

π(at+1 |st+1) ⋅ Qπ(st+1, at+1)

Q(st, at) := Q(st, at) + α (rt + γQ(st+1, at+1) − Q(st, at))

𝔼[Qπ(Xt+1, At+1) |Xt = st, At = at]



SARSA
• SARSA is an on-policy algorithm.

1. Initialize: set  to be some -greedy policy, set 

2. Sample  using the distribution given by  in the state  (for sampling, 

we will use the notation ). Take the action  and observe .

3. While  is not a terminal state:


1. Take action  and observe .

2. 


3. 

4. Set . Update   /* see next slides */

π ε t = 0
a π0 s0

a ∼ π(s) a r0, s1
st

a ∼ π(st) rt+1, st+a

Q(st, at) := Q(st, at) + α (rt + γQ(st+1, at+1) − Q(st, at))
π := ε-greedy(Q)

t := t + 1 ε, α



Convergence (SARSA)
• SARSA converges to the optimal state-value function  if the following conditions are 

satisfied:


1. The sequence of policies  satisfies the GLIE conditions (enough to have 
).


2. Step-sizes satisfy the Robbins-Monro conditions:


,


.

Q*

πt
εt = 1/t

∞

∑
t=1

αt = ∞

∞

∑
t=1

α2
t < ∞



Q-Learning (1/2)
• The Optimal Bellman Equation (we have not talked about it yet but it is 

similar to what we already saw):


.


• Q-Learning update rule:


Q*(s, a) = R(s, a) + γ ∑
st+1∈S

P(st+1 |s1, at) ⋅ max
at+1∈A

Q*(st+1, at+1)

Q(st, at) := Q(st, at) + α (rt + γ max
a∈A

Q(st+1, a) − Q(st, at))

𝔼 [ max
at+1∈A

Q*(Xt+1, at+1) Xt = st, At = at]



Q-Learning (2/2)
• Q-Learning is an off-policy algorithm.

1. Initialize: set  to be some -greedy policy, set 

2. Sample  using the distribution given by  in the state  (for sampling, we will 

use the notation ). Take the action  and observe .

3. While  is not a terminal state:


1. Take action  and observe .


2. 


3. 

4. Set . Update   /* see next slides */

π ε t = 0
a π0 s0

a ∼ π(s) a r0, s1
st

a ∼ π(st) rt+1, st+1

Q(st, at) := Q(st, at) + α (rt + γ max
a∈A

Q(st+1, a) − Q(st, at))
π := ε-greedy(Q)

t := t + 1 ε, α



Convergence (Q-Learning)
• For convergence of the state-value Q-function, we need only the Robbins-

Monro conditions + every state-action pair needs to be visited infinitely 
often (with probability 1).


• For convergence of the policy to the optimal policy, we need GLIE (i.e. it 
needs to also be greedy in the limit…).



Double Q-Learning



Why Double Q-Learning?
• To help with maximization bias…

• The following step causes the maximization bias:





because, in general:

, and in fact:

.


• So even if the estimates of  were unbiased,  would not 

have to be unbiased.

Q(st, at) := Q(st, at) + α (rt + γ max
a∈A

Q(st+1, a) − Q(st, at))
𝔼[max{X1, X2, …, Xk}] ≠ max{𝔼[X1], 𝔼[X2], …, 𝔼[Xk]}
𝔼[max{X1, X2, …, Xk}] ≥ max{𝔼[X1], 𝔼[X2], …, 𝔼[Xk]}

Q(s, a) max
a∈A

Q(st+1, a)



Double Q-Learning


