Monday, February 28, 2022

(Heavily inspired by the Stanford RL Course of Prof. Emma Brunskill, but all potential errors are mine.)

SMU: Lecture 3

Plan for Today

- Recap of important concepts from lectures 1 and 2.
- Model-free control:
 - Monte-Carlo Online Control
 - SARSA
 - **Q-Learning** \bullet

Part 1: Where are we? (Recap from the previous lectures)

Markov Decision Process

- Markov decision process = Markov reward process + Actions
- An MDP is given by:
 - A set of states S.
 - A set of actions A. A transition model $P[X_{t+1} =$
 - A reward $R(s, a) = \mathbb{E}[R_t | X_t]$ that the agent receives when
 - Discount factor γ .

$$s' | X_t = s, A_t = a] = P(s' | s, a)$$

notation
 $= s, A_t = a]$, i.e. the expected reward
performing action a in state s .

Policy

- Policy determines which action to take in each state s.
- It can be either deterministic or random that is also why policy will not simply be a function from states to actions.
- We define policy: $\pi(a \mid s) = P(A \mid s)$
- **Example** (policy for our ant):
 - $A = \{\text{left, right}\}$

$$_{t} = a | X_{t} = s).$$

• $\pi(|\text{left}||1) = 0, \pi(|\text{right}||1) = 1, \pi(|\text{left}||2) = 0.5, \pi(|\text{right}||1) = 0.5, \dots$

(Bellman equation for MDP) State Value Function of MDP

General case:

$$V^{\pi}(s) = \sum_{a \in A} \pi(a, s) \cdot \left[R(s, a) \right]$$

Version for deterministic policy:

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma$$

 $(a) + \gamma \cdot \sum_{s' \in S} P(s' | s, a) \cdot V^{\pi}(s')$

 $\cdot \sum P(s' | s, \pi(s)) \cdot V^{\pi}(s')$ s′∈S

MDP Control Problem

How to find $\pi^*(s) = \arg \max_{\pi} V^{\pi}(s)$??

State-Action Value Q

Definition:

$$Q^{\pi}(s,a) = R(s,a) + \gamma \cdot \sum_{s' \in S} P(s)$$

- Intuition:

 - π only in the first step in s.

 $(s' \mid s, a) \cdot V^{\pi}(s')$

• The value of the return that we obtain if we first take the action a in the state s and then follow the policy π (including when we visit s again).

• Think of it as perturbing the policy π — we deviate from following the policy

Policy Improvement Step

- Given: An MDP and a policy π_i that we want to improve (if possible).
- DO:

• For all $s \in S$, compute $Q^{\pi_i}(s, a)$ as defined on the previous slide, i.e. $Q^{\pi_i}(s,a) = R(s,a) + \gamma \cdot \sum P(s'|s,a) \cdot V^{\pi_i}(s').$ $s' \in S$

• Compute new policy for all $s \in S$:

 $\pi_{i+1}(s) = \arg\max_{a \in S} Q^{\pi_i}(s, a)$

Here, we use the fact that our policy is deterministic for simpler notation (treating policy as a function). Using our previous notation we could write:

$$\pi(a \mid s) = \begin{cases} 1 & \text{if } a = \arg \max_{a \in A} Q^{\pi_i}(s, a) \\ 0 & \text{otherwise} \end{cases}$$

$$i = 0$$

Initialize π_0 randomly.

 V^{π_i} = Compute the state-value function, evaluating π_i . π_{i+1} = Policy improvement of π_i . i = i + 1

WHILE $\|\pi_{i} - \pi_{i-1}\|_{1} > 0$ /* if policy changed */

Policy iteration finds the globally optimal policy!

Policy Iteration

Set k = 1Initialize $V_0(s) = 0$ for all $s \in S$ DO:

$$V_k(s) = \max_{a \in A} \left[R(s, a) + \gamma \cdot \sum_{s' \in S} R(s, a) + \gamma \cdot \sum_{s' \in S} R(s, a) + \gamma \cdot \sum_{s' \in S} R(s, a) \right]$$
WHILE $\|V_k - V_{k-1}\|_{\infty} \ge \varepsilon$

unique) policy:

 $\pi(s) = \arg \max_{a \in A} \left| R(s, a) + \sum_{s' \in S} P(s) \right|$

Value Iteration Bellman backup B[V] $P(s'|s,a) \cdot V_{k-1}(s')$

• To extract an optimal policy, we can extract a deterministic (not necessarily

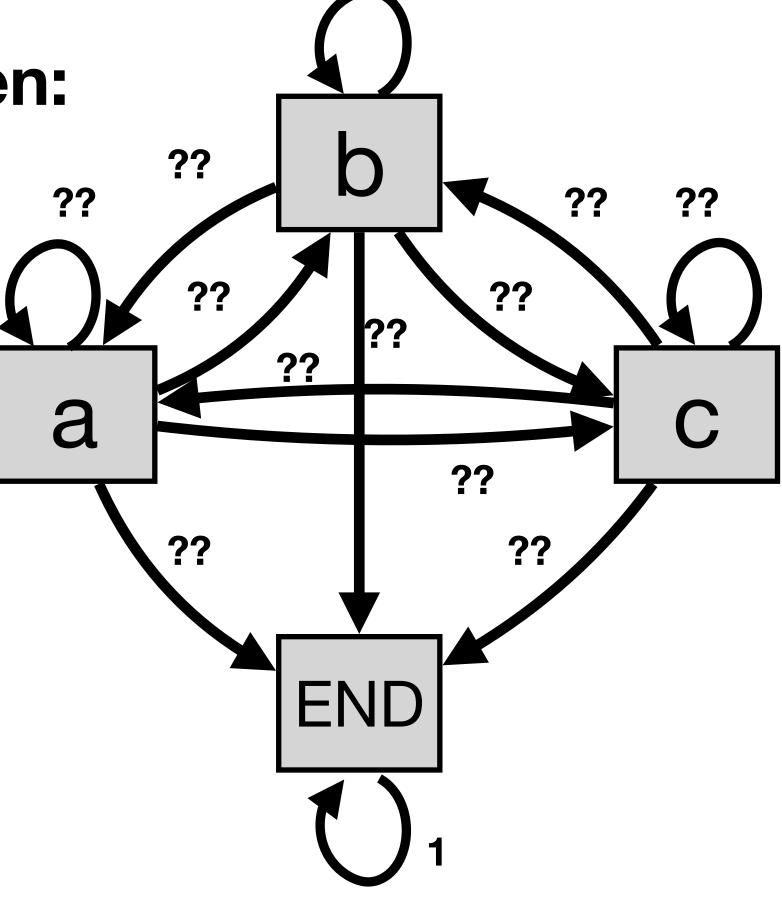
٦

$$(s' \mid s, a) \cdot V(s')$$

Problem: Model-Free Policy Evaluation

 Given a policy and an MDP with unknown parameters (or generally an environment with which we can interact), estimate the value function.

States are given:



??

Example

Rewards??

Actions are given: $A = \{l, r\}$

Policy is given, e.g.: $\pi(l \mid a) = 0.2, \, \pi(r \mid a) = 0.8,$ $\pi(l \mid b) = 0.3, \, \pi(r \mid b) = 0.7,$

First/Every-Visit Monte-Carlo Evaluation

Initialize: G(s) = 0, N(s) = 0 for all $s \in S$. For i = 1, ..., N:

Sample episode $e_i := s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$ **For** each time step $1 \le t \le T_i$:

- If t is the first occurrence of state s in the episode e_i /* This is for first-visit MC */ s is the state visited at time t in the episode e_i

 $g_{i,t} := r_{i,t} + \gamma \cdot r_{i,t+1} + \gamma^2 \cdot r_{i,t+2} + \dots + \gamma^{T_i - t} \cdot r_{i,T_i}$ N(s) := N(s) + 1 / * Increment total visits counter */ $G(s) := G(s) + g_{i,1} / *$ Increment total return counter */ $V^{\pi}(s) := G(s)/N(s) / Update current estimate */$

Temporal Difference Learning

• **TD learning** combines Monte-Carlo estimation and dynamic programming ideas.

. . . .

- **TD learning** can be used both in episodic and infinite-horizon non-episodic settings,
- **TD learning** updates estimates of V^{π} continually, after every consecutive tuple *state-action-reward-state* (therefore we do not need to wait till the end of an episode).

TD-Learning: Pseudocode

Initialize: $V^{\pi}(s) = 0$ for all $s \in S$ Loop: Sample tuple (s_t, a_t, r_t, s_{t+1}) . Update $V^{\pi}(s_t) := V^{\pi}(s_t) + \alpha \cdot (r_{i,t} + \gamma \cdot V^{\pi}(s_{t+1}) - V^{\pi}(s_t))$

TD target

Part 2: Model-Free Control (Problem Statement)

Model-Free Control

 Given a policy and an MDP with unknown parameters (or generally an environment with which we can interact), find the optimal policy π .

Part 3: Model-Free Policy Iteration

On-Policy and Off-Policy Methods

- On-policy methods: samples must be from the policy that we are learning.
- are learning.

• Off-policy methods: samples do not have to be from the policy that we

• We will see examples of these methods and then it will become clearer.

MC Estimation of $Q^{\pi}(s, a)$

function $Q^{\pi}(s, a)$.

• Last time we talked about MC Estimation of the value function. We can now try to use the same idea for the estimation of the state-action value

Exploration vs Exploitation

- \bullet
 - THIS WILL NOT WORK (YET):

Initialize: G(s, a) = 0, N(s, a) = 0 for all $s \in S$. For i = 1, ..., N:

Sample episode $e_i := s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$ using π .

For each time step $1 \le t \le T_i$:

 S_t is the state visited at time t in the episode e_i a_t is the action taken at time t in the episode e_i $g_{i,t} := r_{i,t} + \gamma \cdot r_{i,t+1} + \gamma^2 \cdot r_{i,t+2} + \dots + \gamma^{T_i - t} \cdot r_{i,T_i}$ N(s) := N(s) + 1 / * Increment total visits counter */ $G(s_t, a_t) := G(s_t, a_t) + g_{i,1} / *$ Increment total return counter */ $Q^{\pi}(s_t, a_t) := G(s_t, a_t) / N(s_t, a_t) / Update current estimate */$

A simple idea (that will not work yet... and will illustrate why we need to think about exploration):

(If t is the first occurrence of state s in the episode e_i - Use this if you want first-visit MC)

Exploration vs Exploitation

 \bullet

THIS WILL NOT WORK (YET):

Initialize: G(s, a) = 0, N(s, a) = 0 for all $s \in S$. For i = 1, ..., N:

Sample episode $e_i := s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$ using π .

For each time step $1 \le t \le T_i$:

(If t is the first occurrence of state s in the episode e_i - Use this if you want first-visit MC) S_t is the state visited at time t in the episode e_i a_t is the action taken at time t in the episode e_i $g_{i,t} := r_{i,t} + \gamma \cdot r_{i,t+1} + \gamma^2 \cdot r_{i,t+2} + \dots + \gamma^{T_i - t} \cdot r_{i,T_i}$ N(s) := N(s) + 1 /* Increment total visits counter */ $G(s_t, a_t) := G(s_t, a_t) + g_{i,1} / *$ Increment total return counter */ $Q^{\pi}(s_t, a_t) := G(s_t, a_t) / N(s_t, a_t) / * Update current estimate */$

A simple idea (that will not work yet... and will illustrate why we need to think about exploration):

Exploration vs Exploitation

- **A simple idea** (that will not work yet... and will illustrate why we need to think about exploration): lacksquare
 - for what we want to use Q for.

Initialize: G(s, a) = 0, N(s, a) = 0 for all $s \in S$. For i = 1, ..., N:

Sample episode $e_i := s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$ using π . For each time step $1 \le t \le T_i$:

(If t is the first occurrence of state s in the episode e_i - Use this if you want first-visit MC)

 S_t is the state visited at time t in the episode e_i a_t is the action taken at time t in the episode e_i $g_{i,t} := r_{i,t} + \gamma \cdot r_{i,t+1} + \gamma^2 \cdot r_{i,t+2} + \dots + \gamma^{T_i - t} \cdot r_{i,T_i}$ N(s) := N(s) + 1 / * Increment total visits counter */ $G(s_t, a_t) := G(s_t, a_t) + g_{i,1} / *$ Increment total return counter */ $Q^{\pi}(s_t, a_t) := G(s_t, a_t) / N(s_t, a_t) / * Update current estimate */$

• Why this does not work? Suppose that the policy π is deterministic. Then we will only see actions (s, a)where $a = \pi(s)$. So, essentially, we will only be able to have Q^{π} for actions taken by π , which is useless

 $S = \{a, b, c, \text{END}\}, A = \{l, r\}$ $\pi_1(a) = l, \pi_1(b) = l, \pi_1(c) = l$ $e_1 = a, l, 1, b, l, 1, a, l, 1, c, l, 2, \text{END}$ $e_2 = \dots$

But how can we ever estimate, e.g., $Q^{\pi}(a, r)$??

Let's see why it will not work!

• A simple idea (that will not work yet... and will illustrate why we need to think about exploration):

• THIS WILL NOT WORK (YET):

Initialize: G(s, a) = 0, N(s, a) = 0 for all $s \in S$.

For i = 1, ..., N:

Sample episode $e_i := s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$ using π .

For each time step $1 \le t \le T_i$:

(If t is the first occurrence of state s in the episode e_i

- Use this if you want first-visit MC)

 s_t is the state visited at time *t* in the episode e_i a_t is the action taken at time *t* in the episode e_i

 $g_{i,t} := r_{i,t} + \gamma \cdot r_{i,t+1} + \gamma^2 \cdot r_{i,t+2} + \dots + \gamma^{T_i - t} \cdot r_{i,T_i}$ N(s) := N(s) + 1 /* Increment total visits counter*/

 $G(s_t, a_t) := G(s_t, a_t) + g_{i,1} / *$ Increment total return counter */

 $Q^{\pi}(s_t, a_t) := G(s_t, a_t) / N(s_t, a_t) / *$ Update current estimate */

ɛ-Modified* Policy (Deterministic Case)

- We will now modify a given policy to "sometimes take a random action".
- **Definition:** Given a **deterministic** policy π the ε -greedy of π , denoted π_{ε} , is the policy which is given as follows:

$$\pi_{\varepsilon}(a \mid s) = \begin{cases} 1 - \varepsilon \cdot \left(1 + \frac{1}{|A|}\right) \\ \varepsilon \cdot \left(1 + \frac{1}{|A|}\right) \end{cases}$$

*This is not a standard terminology.

Number of actions

for
$$a = \pi(s)$$
,

otherwise.

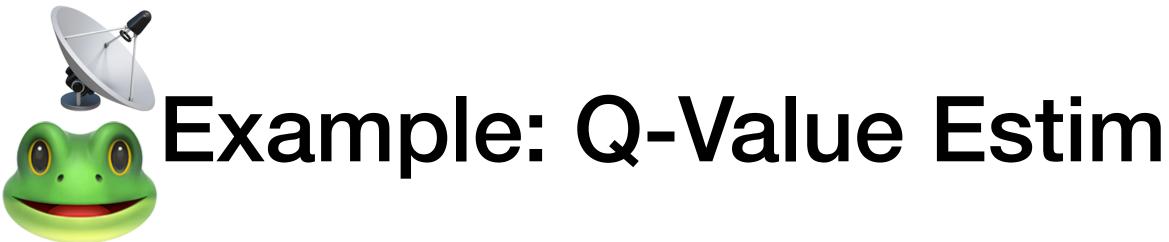
ε -Modified Policy (General Case)

- \bullet policy which is given as follows:

$$\pi_{\varepsilon}(a \mid s) = (1 - \varepsilon) \cdot \pi(a \mid s) + \frac{\varepsilon}{|A|}$$

• We will now modify a given policy to "sometimes take a random action".

Definition: Given a policy π the ε -modified version of π , denoted π_{ε} , is the



 $S = \{a, b, c, END\}, A = \{l, r\}$ $\pi_1(a) = l, \pi_1(b) = l, \pi_1(c) = l$ Suppose that π_{ε} is an $e_1 = a, l, 1, b, l, 1, a, l, 1, c, l, 2, END$ $e_2 = \dots$

But how can we ever estimate, e.g., $Q^{\pi}(b,r)$?? This time we are guaranteed to see the pair (b, r) infinitely many times (in the limit and with probability 1) as long as b has non-zero probability of being visited.

Example: Q-Value Estimation with ε -Modified Policy

• A simple idea (that will not work yet... and will illustrate why we need to think about exploration):

• THIS WILL NOT WORK (YET):

Initialize: G(s, a) = 0, N(s, a) = 0 for all $s \in S$.

For i = 1, ..., N:

Sample episode $e_i := s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$ using π .

For each time step $1 \le t \le T_i$:

(If t is the first occurrence of state s in the episode e_i)

- Use this if you want first-visit MC)

 S_t is the state visited at time t in the episode e_i a_t is the action taken at time t in the episode e_i

 $g_{i,t} := r_{i,t} + \gamma \cdot r_{i,t+1} + \gamma^2 \cdot r_{i,t+2} + \dots + \gamma^{T_i - t} \cdot r_{i,T_i}$ N(s) := N(s) + 1 / * Increment total visits counter

 $G(s_t, a_t) := G(s_t, a_t) + g_{i,1} / *$ Increment total return counter */

 $Q^{\pi}(s_t, a_t) := G(s_t, a_t) / N(s_t, a_t) / Update current$ estimate */

*E***-Greedy Policy**

• Given a Q-function Q(s, a), we define the ε -greedy policy w.r.t. Q as

$$\pi(a \mid s) = \begin{cases} 1 - \varepsilon \cdot \left(1 - \frac{1}{|A|}\right) \\ \frac{\varepsilon}{|A|} \end{cases}$$

We assume ties are decided consistently

when $a = \arg \max_{a \in A} Q(s, a)$

when $a \neq \arg \max_{a \in A} Q(s, a)$

Monotonic ε -Greedy Policy Improvement

- Theorem: Assume that we can compute Q^{π} and V^{π} exactly (which is not always the case where we will use ε -greedy policy improvements).
 - **1.** Let π_i be some ε -greedy policy.
 - **2.** Let Q^{π_i} be the Q-function w.r.t. π_i .
 - **3.** Let π_{i+1} be the ε -greedy policy w.r.t. Q^{π_i} as defined on the previous slide.

Then $V^{\pi_{i+1}}(s) \geq V^{\pi_i}(s)$ for all $s \in S$.

- Proof (Not this time but see the lectures of Emma Brunskill if you are interested.)

MC On Policy Improvement

Initialize: G(s, a) = 0, N(s, a) = 0, Q(s, a) = 0 for all $s \in S, a \in A$. Initialize: $\varepsilon = 1$, k = 1

For i = 1, ..., N:

Sample episode $e_i := s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$ given π_k . For each time step $1 \le t \le T_i$:

(If *t* is the first occurrence of state *s* in the episode e_i - Use this if you want first-visit MC) s_t is the state visited at time *t* in the episode e_i a_t is the action taken at time *t* in the episode e_i $g_{i,t} := r_{i,t} + \gamma \cdot r_{i,t+1} + \gamma^2 \cdot r_{i,t+2} + \ldots + \gamma^{T_i - t} \cdot r_{i,T_i}$ N(s) := N(s) + 1 / * Increment total visits counter */ $G(s_t, a_t) := G(s_t, a_t) + g_{i,1} / *$ Increment total return counter */ $Q(s_t, a_t) := G(s_t, a_t) / N(s_t, a_t) / *$ Update current estimate * EndFor

 $k = k + 1, \varepsilon = 1/k$ $\pi_k = \varepsilon$ -greedy policy w.r.t. Q

- GLIE = "greedy in the limit of infinite exploration".
- **Definition** (GLIE conditions): lacksquare

chosen infinitely often (with probability 1)

possibility of ties in the arg max for simplicity) that $\pi_{k+1}(a \mid s) = \begin{cases} 1 & \text{for } a = \arg \max_{a \in A} Q_k(s, a), \\ 0 & \text{otherwise.} \end{cases}$ otherwise.

GLIE

- 1. If a state $s \in S$ is visited infinitely often, then each action in that state is
- 2. In the limit (as t $\rightarrow \infty$), the learning policy is greedy with respect to the learned Q-function (with probability 1). By greedy we mean (ignoring the

$\varepsilon_i = 1/i$ is GLIE

- learning algorithms. Machine learning, 38(3), 287-308.
- The formal proof is a bit tricky...

• For a proof, see, e.g. Singh, S., Jaakkola, T., Littman, M. L., & Szepesvári, C. (2000). Convergence results for single-step on-policy reinforcement-

A Theorem (Why GLIE Matters)

• **Theorem**: GLIE Monte-Carlo Control converges to the optimal stateaction value function, i.e. $Q_k(s, a) \rightarrow Q^*(s, a)$ as $k \rightarrow \infty$.

A Theorem (Why GLIE Matters)

• **Theorem:** GLIE Monte-Carlo Control converges to the optimal stateaction value function, i.e. $Q_k(s, a) \rightarrow Q^*(s, a)$ as $k \rightarrow \infty$.

and we will not show it.

• Partially this follows from the theorem about monotonic ε -greedy policy improvement (think of what happens when the estimates of Q-function w.r.t. some policy converge, but the real proof is more difficult than that

Part 4: SARSA and Q-Learning

General Form of TD-Based Methods

- Basic idea:
 - Replace Monte Carlo Policy Evaluation by a temporal-difference method.

• Still use ε -greedy policies to guarantee that exploration will take place.

Bellman Equations for Q-Function

(Something we skipped when we talked about Q-functions for MDPs but something that will be useful now.) **We have:**

$$V^{\pi}(s) = \sum_{a \in A} \pi(a \mid s) \cdot Q^{\pi}(s, a)$$
$$Q^{\pi}(s, a) = R(s, a) + \gamma \cdot \sum_{s' \in S} P(s' \mid s, s')$$

Combining the above:

$$Q^{\pi}(s,a) = R(s,a) + \gamma \cdot \sum_{s' \in S} P(s' \mid s, s' \in S)$$

a) · $V^{\pi}(s')$

 $(a) \cdot \sum \pi(a' \mid s') \cdot Q^{\pi}(s', a')$ $a' \in A$

Bellman for Q-function:

$$Q^{\pi}(s_{t}, a_{t}) = R(s_{t}, a_{t}) + \gamma \cdot \sum_{s_{t+1} \in S} P(s_{t+1} | s_{t}, a_{t}) \cdot \sum_{a_{t+1} \in A} \pi(a_{t+1} | s_{t+1}) \cdot Q^{\pi}(s_{t+1}, a_{t+1})$$
$$\mathbb{E}[Q^{\pi}(X_{t+1}, A_{t+1}) | X_{t} = s_{t}, A_{t} = a_{t}]$$

Temporal difference update (SARSA)...

$$Q(s_t, a_t) := Q(s_t, a_t) + \alpha \left(r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right)$$

TD-Target

SARSA

- SARSA is an on-policy algorithm.
- **1. Initialize:** set π to be some ε -greedy policy, set t = 0
- **2.** Sample a using the distribution given by π_0 in the state s_0 (for sampling, we will use the notation $a \sim \pi(s)$). Take the action a and observe r_0, s_1 .
- **3.** While S_t is not a terminal state:
 - 1. Take action $a \sim \pi(s_t)$ and obtain
 - 2. $Q(s_t, a_t) := Q(s_t, a_t) + \alpha (r_t \alpha)$
 - 3. $\pi := \varepsilon$ -greedy(Q)
 - 4. Set t := t + 1. Update ε , α /* see next slides */

$$+ \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t))$$

Convergence (SARSA)

- satisfied:
 - $\varepsilon_t = 1/t$).
 - 2. Step-sizes satisfy the Robbins-Monro conditions:

$$\sum_{t=1}^{\infty} \alpha_t = \infty,$$
$$\sum_{t=1}^{\infty} \alpha_t^2 < \infty.$$

• SARSA converges to the optimal state-value function Q^* if the following conditions are

1. The sequence of policies π_t satisfies the GLIE conditions (enough to have

Q-Learning (1/2)

 The Optimal Bellman Equation (w similar to what we already saw):

$$Q^*(s, a) = R(s, a) + \gamma \sum_{s_{t+1} \in S} P(s_{t+1} | s_1, a_t) \cdot \max_{a_{t+1} \in A} Q^*(s_{t+1}, a_{t+1}).$$
$$\mathbb{E} \left[\max_{a_{t+1} \in A} Q^*(X_{t+1}, a_{t+1}) \middle| X_t = s_t, A_t = a_t \right]$$

• Q-Learning update rule:

$$Q(s_t, a_t) := Q(s_t, a_t) + \alpha \left(r_t + \gamma \max_{a \in A} Q(s_{t+1}, a) - Q(s_t, a_t) \right)$$

The Optimal Bellman Equation (we have not talked about it yet but it is

Q-Learning (2/2)

- Q-Learning is an off-policy algorithm.
- **1.** Initialize: set π to be some ε -greedy policy, set t = 0
- **2.** Sample a using the distribution given by π_0 in the state s_0 (for sampling, we will use the notation $a \sim \pi(s)$. Take the action a and observe r_0, s_1 .
- **3.** While S_t is not a terminal state:
 - 1. Take action $a \sim \pi(s_t)$ and observed
 - 2. $Q(s_t, a_t) := Q(s_t, a_t) + \alpha \left(r_t + q_t \right)$
 - 3. $\pi := \varepsilon$ -greedy(Q)
 - 4. Set t := t + 1. Update ε , $\alpha / *$ see next slides */

$$\gamma \max_{a \in A} Q(s_{t+1}, a) - Q(s_t, a_t)$$

Convergence (Q-Learning)

- often (with probability 1).
- needs to also be greedy in the limit...).

 For convergence of the state-value Q-function, we need only the Robbins-Monro conditions + every state-action pair needs to be visited infinitely

• For convergence of the policy to the optimal policy, we need GLIE (i.e. it

Double Q-Learning

Double Q-Learning

1: Initialize $Q_1(s, a)$ and $Q_2(s, a)$

2: **loop**

- Select a_t using ϵ -greedy $\pi(t)$ 3:
- 4: Observe (r_t, s_{t+1})
- 5: **if** (with 0.5 probability) **then**
- $Q_1(s_t, a_t) \leftarrow Q_1(s_t, a_t) +$ 6: $Q_1(s_t, a_t))$
- else 7:

8:
$$Q_2(s_t, a_t) \leftarrow Q_2(s_t, a_t) + lpha(r_t + \gamma Q_1(s_{t+1}, \operatorname{arg\,max}_a Q_2(s_{t+1}, a)) - Q_2(s_t, a_t))$$

- end if 9:
- t = t + 110:

11: end loop

Compared to Q-learning, how does this change the: memory requirements, $\mathcal{O}\mathcal{O}$ Lecture 4: Model Free Control Winter 2022 60 / 64

computation requirements per step, amount of data required? Emma Brunskill (CS234 Reinforcement Learn

),
$$orall s \in S, a \in A$$
 $t=$ 0, initial state $s_t=s_0$

$$m{s}) = {\sf arg\,max}_{a}\, Q_1(s_t,a) + Q_2(s_t,a)$$

$$-\alpha(r_t + \gamma Q_2(s_{t+1}, \operatorname{arg\,max}_a Q_1(s_{t+1}, a)) -$$

Why Double Q-Learning?

- To help with maximization bias...
- The following step causes the maximization bias: $Q(s_t, a_t) := Q(s_t, a_t) + \alpha \left(r_t + \gamma \right)$ because, in general:
 - $\mathbb{E}[\max\{X_1, X_2, \dots, X_k\}] \ge \max\{\mathbb{E}[X_1], \mathbb{E}[X_2], \dots, \mathbb{E}[X_k]\}.$
- have to be unbiased.

$$\max_{a \in A} Q(s_{t+1}, a) - Q(s_t, a_t) \bigg)$$

 $\mathbb{E}[\max\{X_1, X_2, \dots, X_k\}] \neq \max\{\mathbb{E}[X_1], \mathbb{E}[X_2], \dots, \mathbb{E}[X_k]\}, \text{ and in fact:}$

• So even if the estimates of Q(s, a) were unbiased, max $Q(s_{t+1}, a)$ would not $a \in A$

 \mathbf{N}

Double Q-Learning

Double Q-Learning

1: Initialize $Q_1(s, a)$ and $Q_2(s, a)$

2: **loop**

- Select a_t using ϵ -greedy $\pi(t)$ 3:
- 4: Observe (r_t, s_{t+1})
- 5: if (with 0.5 probability) the
- $Q_1(s_t, a_t) \leftarrow Q_1(s_t, a_t) +$ 6: $Q_1(s_t, a_t))$
- else 7:

8:
$$Q_2(s_t, a_t) \leftarrow Q_2(s_t, a_t) + \alpha(r_t + \gamma Q_1(s_{t+1}, \operatorname{arg\,max}_a Q_2(s_{t+1}, a)) - Q_2(s_t, a_t))$$

- end if 9:
- t = t + 110:

11: end loop

Compared to Q-learning, how does this change the: memory requirements, $\mathcal{O}\mathcal{O}$ Lecture 4: Model Free Control Winter 2022 60 / 64

<u>computation requirements per step</u>, amount of data required? Emma Brunskill (CS234 Reinforcement Learn

),
$$orall s \in S, a \in A \; t = 0$$
, initial state $s_t = s_0$

$$(s) = {\sf arg\,max}_a\, Q_1(s_t,a) + Q_2(s_t,a)$$

$$-\alpha(r_t + \gamma Q_2(s_{t+1}, \operatorname{arg\,max}_a Q_1(s_{t+1}, a)) -$$