
SMU: Lecture 3
Monday, February 28, 2022

(Heavily inspired by the Stanford RL Course of Prof. Emma Brunskill, but all potential errors are mine.)

Plan for Today

• Recap of important concepts from lectures 1 and 2.

• Model-free control:

• Monte-Carlo Online Control

• SARSA

• Q-Learning

Part 1: Where are we? (Recap
from the previous lectures)

Markov Decision Process
• Markov decision process = Markov reward process + Actions
• An MDP is given by:

• A set of states .

• A set of actions .

•
A transition model

• A reward , i.e. the expected reward
that the agent receives when performing action in state .

• Discount factor .

S
A

P[Xt+1 = s′ |Xt = s, At = a] = P(s′ |s, a)

notation
R(s, a) = 𝔼[Rt |Xt = s, At = a]

a s
γ

4

Policy
• Policy determines which action to take in each state .

• It can be either deterministic or random — that is also why policy will not
simply be a function from states to actions.

• We define policy: .

• Example (policy for our ant 🐜):

•

•

s

π(a |s) = P(At = a |Xt = s)

A = {left, right}
π(left |1) = 0, π(right |1) = 1, π(left |2) = 0.5, π(right |1) = 0.5,…

5

State Value Function of MDP
General case:

Version for deterministic policy:

Vπ(s) = ∑
a∈A

π(a, s) ⋅ [R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′)]

Vπ(s) = R(s, π(s)) + γ ⋅ ∑
s′ ∈S

P(s′ |s, π(s)) ⋅ Vπ(s′)

6

(Bellman equation for MDP)

MDP Control Problem

How to find ???π*(s) = arg max
π

Vπ(s)

7

State-Action Value Q
• Definition:

 .

• Intuition:

• The value of the return that we obtain if we first take the action in the
state and then follow the policy (including when we visit again).

• Think of it as perturbing the policy — we deviate from following the policy
 only in the first step in .

Qπ(s, a) = R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′)

a
s π s

π
π s

8

Policy Improvement Step
• Given: An MDP and a policy that we want to improve (if possible).

• DO:

• For all , compute as defined on the previous slide, i.e.
.

• Compute new policy for all :

πi

s ∈ S Qπi(s, a)
Qπi(s, a) = R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ Vπi(s′)

s ∈ S

πi+1(s) = arg max
a∈S

Qπi(s, a)

Here, we use the fact that our policy is deterministic
for simpler notation (treating policy as a function).
Using our previous notation we could write:

 π(a |s) = {1 if a = arg maxa∈A Qπi(s, a)
0 otherwise

9

Policy Iteration

Initialize randomly.
DO

 .

 .

WHILE

Policy iteration finds the globally optimal policy!

i = 0
π0

Vπi = Compute the state-value function, evaluating πi

πi+1 = Policy improvement of πi

i = i + 1
∥πi − πi−1∥1 > 0 /* if policy changed */

10

Value Iteration
Set

Initialize for all

DO:

WHILE

• To extract an optimal policy, we can extract a deterministic (not necessarily
unique) policy: 

.

k = 1
V0(s) = 0 s ∈ S

Vk(s) = max
a∈A [R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ Vk−1(s′)]
∥Vk − Vk−1∥∞ ≥ ε

π(s) = arg max
a∈A [R(s, a) + ∑

s′ ∈S

P(s′ |s, a) ⋅ V(s′)]
11

Bellman backup B[V]

Problem: Model-Free Policy Evaluation

• Given a policy and an MDP with unknown parameters (or generally an
environment with which we can interact), estimate the value function.

Example
🐸Agent:

States are given:

c

b

a

END

??

1

??

??

??

??

??
??

??

????

??
??

Rewards??

Actions are given:
 A = {l, r}
🐸
📡

Policy is given, e.g.: 
 

…

π(l |a) = 0.2, π(r |a) = 0.8,
π(l |b) = 0.3, π(r |b) = 0.7,

First/Every-Visit Monte-Carlo Evaluation
Initialize: .
For :

Sample episode .

For each time step :

If is the first occurrence of state in the episode /* This is for first-visit MC */

 is the state visited at time in the episode

 /* Increment total visits counter */
 /* Increment total return counter */

 /* Update current estimate */

G(s) = 0, N(s) = 0 for all s ∈ S
i = 1,…, N

ei := si,1, ai,1, ri,1, si,2, ai,2, ri,2, …, si,Ti

1 ≤ t ≤ Ti

t s ei

s t ei

gi,t := ri,t + γ ⋅ ri,t+1 + γ2 ⋅ ri,t+2 + … + γTi−t ⋅ ri,Ti

N(s) := N(s) + 1
G(s) := G(s) + gi,1

Vπ(s) := G(s)/N(s)

Temporal Difference Learning
• TD learning combines Monte-Carlo estimation and dynamic

programming ideas.

• TD learning can be used both in episodic and infinite-horizon non-
episodic settings,

• TD learning updates estimates of continually, after every consecutive
tuple state-action-reward-state (therefore we do not need to wait till the
end of an episode).

….

Vπ

TD-Learning: Pseudocode

Initialize:

Loop:

Sample tuple .

Update

Vπ(s) = 0 for all s ∈ S

(st, at, rt, st+1)
Vπ(st) := Vπ(st) + α ⋅ (ri,t + γ ⋅ Vπ(st+1)

TD target

− Vπ(st))

Part 2: Model-Free Control
(Problem Statement)

Model-Free Control

• Given a policy and an MDP with unknown parameters (or generally an
environment with which we can interact), find the optimal policy .π

Part 3: Model-Free Policy
Iteration

On-Policy and Off-Policy Methods
• On-policy methods: samples must be from the policy that we are

learning.

• Off-policy methods: samples do not have to be from the policy that we
are learning.

• We will see examples of these methods and then it will become clearer.

MC Estimation of Qπ(s, a)

• Last time we talked about MC Estimation of the value function. We can
now try to use the same idea for the estimation of the state-action value
function .Qπ(s, a)

Exploration vs Exploitation
• A simple idea (that will not work yet… and will illustrate why we need to think about exploration):

• THIS WILL NOT WORK (YET):
Initialize: .
For :

Sample episode using .

For each time step :

(If is the first occurrence of state in the episode - Use this if you want first-visit MC)

 is the state visited at time in the episode  
 is the action taken at time in the episode

 /* Increment total visits counter */
 /* Increment total return counter */

 /* Update current estimate */

G(s, a) = 0, N(s, a) = 0 for all s ∈ S
i = 1,…, N

ei := si,1, ai,1, ri,1, si,2, ai,2, ri,2, …, si,Ti
π

1 ≤ t ≤ Ti

t s ei

st t ei
at t ei

gi,t := ri,t + γ ⋅ ri,t+1 + γ2 ⋅ ri,t+2 + … + γTi−t ⋅ ri,Ti

N(s) := N(s) + 1
G(st, at) := G(st, at) + gi,1

Qπ(st, at) := G(st, at)/N(st, at)

Exploration vs Exploitation
• A simple idea (that will not work yet… and will illustrate why we need to think about exploration):

• THIS WILL NOT WORK (YET):
Initialize: .
For :

Sample episode using .

For each time step :

(If is the first occurrence of state in the episode - Use this if you want first-visit MC)

 is the state visited at time in the episode  
 is the action taken at time in the episode

 /* Increment total visits counter */
 /* Increment total return counter */

 /* Update current estimate */

G(s, a) = 0, N(s, a) = 0 for all s ∈ S
i = 1,…, N

ei := si,1, ai,1, ri,1, si,2, ai,2, ri,2, …, si,Ti
π

1 ≤ t ≤ Ti

t s ei

st t ei
at t ei

gi,t := ri,t + γ ⋅ ri,t+1 + γ2 ⋅ ri,t+2 + … + γTi−t ⋅ ri,Ti

N(s) := N(s) + 1
G(st, at) := G(st, at) + gi,1

Qπ(st, at) := G(st, at)/N(st, at)

Exploration vs Exploitation
• A simple idea (that will not work yet… and will illustrate why we need to think about exploration):

• Why this does not work? Suppose that the policy is deterministic. Then we will only see actions
where . So, essentially, we will only be able to have for actions taken by , which is useless
for what we want to use for.

Initialize: .
For :

Sample episode using .

For each time step :

(If is the first occurrence of state in the episode - Use this if you want first-visit MC)

 is the state visited at time in the episode  
 is the action taken at time in the episode

 /* Increment total visits counter */
 /* Increment total return counter */

 /* Update current estimate */

π (s, a)
a = π(s) Qπ π

Q
G(s, a) = 0, N(s, a) = 0 for all s ∈ S

i = 1,…, N
ei := si,1, ai,1, ri,1, si,2, ai,2, ri,2, …, si,Ti

π
1 ≤ t ≤ Ti

t s ei

st t ei
at t ei

gi,t := ri,t + γ ⋅ ri,t+1 + γ2 ⋅ ri,t+2 + … + γTi−t ⋅ ri,Ti

N(s) := N(s) + 1
G(st, at) := G(st, at) + gi,1

Qπ(st, at) := G(st, at)/N(st, at)

Let’s see why it will not work!
,

, ,

But how can we ever estimate, e.g.,
??

S = {a, b, c, END} A = {l, r}
π1(a) = l π1(b) = l π1(c) = l
e1 = a, l,1,b, l,1,a, l,1,c, l,2,END
e2 = …

Qπ(a, r)

• A simple idea (that will not work yet… and will illustrate why
we need to think about exploration):

• THIS WILL NOT WORK (YET):
Initialize: .
For :

Sample episode
using .

For each time step :

(If is the first occurrence of state in the episode
- Use this if you want first-visit MC)

 is the state visited at time in the episode  
 is the action taken at time in the episode

 /* Increment total visits counter
*/

 /* Increment total
return counter */

 /* Update current
estimate */

G(s, a) = 0, N(s, a) = 0 for all s ∈ S
i = 1,…, N

ei := si,1, ai,1, ri,1, si,2, ai,2, ri,2, …, si,Ti

π
1 ≤ t ≤ Ti

t s ei

st t ei
at t ei

gi,t := ri,t + γ ⋅ ri,t+1 + γ2 ⋅ ri,t+2 + … + γTi−t ⋅ ri,Ti

N(s) := N(s) + 1

G(st, at) := G(st, at) + gi,1

Qπ(st, at) := G(st, at)/N(st, at)

🐸
📡

-Modified* Policy (Deterministic Case)ε
• We will now modify a given policy to “sometimes take a random action”.

• Definition: Given a deterministic policy the -greedy of , denoted ,
is the policy which is given as follows:

π ε π πε

πε(a |s) =
1 − ε ⋅ (1 + 1

|A |) for a = π(s),

ε ⋅ (1 + 1
|A |) otherwise .

Number of actions

*This is not a standard terminology.

-Modified Policy (General Case)ε
• We will now modify a given policy to “sometimes take a random action”.

• Definition: Given a policy the -modified version of , denoted , is the
policy which is given as follows:

.

π ε π πε

πε(a |s) = (1 − ε) ⋅ π(a |s) +
ε

|A |

Example: Q-Value Estimation with -Modified Policyε

,

, ,

Suppose that is an

But how can we ever estimate, e.g.,
?? This time we are guaranteed to

see the pair infinitely many times (in
the limit and with probability 1) as long as b
has non-zero probability of being visited.

S = {a, b, c, END} A = {l, r}
π1(a) = l π1(b) = l π1(c) = l

πε

e1 = a, l,1,b, l,1,a, l,1,c, l,2,END
e2 = …

Qπ(b, r)
(b, r)

• A simple idea (that will not work yet… and will illustrate why
we need to think about exploration):

• THIS WILL NOT WORK (YET):
Initialize: .
For :

Sample episode
using .

For each time step :

(If is the first occurrence of state in the episode
- Use this if you want first-visit MC)

 is the state visited at time in the episode  
 is the action taken at time in the episode

 /* Increment total visits counter
*/

 /* Increment total
return counter */

 /* Update current
estimate */

G(s, a) = 0, N(s, a) = 0 for all s ∈ S
i = 1,…, N

ei := si,1, ai,1, ri,1, si,2, ai,2, ri,2, …, si,Ti

π
1 ≤ t ≤ Ti

t s ei

st t ei
at t ei

gi,t := ri,t + γ ⋅ ri,t+1 + γ2 ⋅ ri,t+2 + … + γTi−t ⋅ ri,Ti

N(s) := N(s) + 1

G(st, at) := G(st, at) + gi,1

Qπ(st, at) := G(st, at)/N(st, at)

🐸
📡

-Greedy Policyε
• Given a Q-function , we define the -greedy policy w.r.t. as

Q(s, a) ε Q

π(a |s) =
1 − ε ⋅ (1 − 1

|A |) when a = arg maxa∈A Q(s, a)
ε

|A |
 when a ≠ arg maxa∈A Q(s, a)

We assume ties are decided consistently

Monotonic -Greedy Policy Improvementε
• Theorem: Assume that we can compute and exactly (which is not

always the case where we will use -greedy policy improvements).

1. Let be some -greedy policy.

2. Let be the Q-function w.r.t. .

3. Let be the -greedy policy w.r.t. as defined on the previous

slide.

Then .

• Proof (Not this time but see the lectures of Emma Brunskill if you are
interested.)

Qπ Vπ

ε
πi ε
Qπi πi

πi+1 ε Qπi

Vπi+1(s) ≥ Vπi(s) for all s ∈ S

MC On Policy Improvement
Initialize: .
Initialize:
For :

Sample episode given .

For each time step :

(If is the first occurrence of state in the episode - Use this if you want first-visit MC)

 is the state visited at time in the episode  
 is the action taken at time in the episode

 /* Increment total visits counter */
 /* Increment total return counter */

 /* Update current estimate *
EndFor 

G(s, a) = 0, N(s, a) = 0, Q(s, a) = 0 for all s ∈ S, a ∈ A
ε = 1, k = 1

i = 1,…, N
ei := si,1, ai,1, ri,1, si,2, ai,2, ri,2, …, si,Ti

πk

1 ≤ t ≤ Ti

t s ei

st t ei
at t ei

gi,t := ri,t + γ ⋅ ri,t+1 + γ2 ⋅ ri,t+2 + … + γTi−t ⋅ ri,Ti

N(s) := N(s) + 1
G(st, at) := G(st, at) + gi,1

Q(st, at) := G(st, at)/N(st, at)

k = k + 1, ε = 1/k
πk = ε−greedy policy w.r.t. Q

GLIE
• GLIE = “greedy in the limit of infinite exploration”.

• Definition (GLIE conditions):

1. If a state is visited infinitely often, then each action in that state is
chosen infinitely often (with probability 1)

2. In the limit (as t → ∞), the learning policy is greedy with respect to the
learned Q-function (with probability 1). By greedy we mean (ignoring the
possibility of ties in the for simplicity) that

s ∈ S

arg max

πk+1(a |s) = {1 for a = arg maxa∈A Qk(s, a),
0 otherwise.

 is GLIEεi = 1/i
• For a proof, see, e.g. Singh, S., Jaakkola, T., Littman, M. L., & Szepesvári,

C. (2000). Convergence results for single-step on-policy reinforcement-
learning algorithms. Machine learning, 38(3), 287-308.

• The formal proof is a bit tricky…

A Theorem (Why GLIE Matters)
• Theorem: GLIE Monte-Carlo Control converges to the optimal state-

action value function, i.e. as .Qk(s, a) → Q*(s, a) k → ∞

A Theorem (Why GLIE Matters)
• Theorem: GLIE Monte-Carlo Control converges to the optimal state-

action value function, i.e. as .

• Partially this follows from the theorem about monotonic -greedy policy
improvement (think of what happens when the estimates of Q-function
w.r.t. some policy converge, but the real proof is more difficult than that
and we will not show it.

Qk(s, a) → Q*(s, a) k → ∞

ε

Part 4: SARSA and Q-Learning

General Form of TD-Based Methods

• Basic idea:

• Replace Monte Carlo Policy Evaluation by a temporal-difference
method.

• Still use -greedy policies to guarantee that exploration will take place.ε

Bellman Equations for Q-Function
(Something we skipped when we talked about Q-functions for MDPs but
something that will be useful now.)
We have:

Combining the above:

Vπ(s) = ∑
a∈A

π(a |s) ⋅ Qπ(s, a)

Qπ(s, a) = R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′)

Qπ(s, a) = R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ ∑
a′ ∈A

π(a′ |s′) ⋅ Qπ(s′ , a′)

TD-Target
Bellman for Q-function:

Temporal difference update (SARSA)…

Qπ(st, at) = R(st, at) + γ ⋅ ∑
st+1∈S

P(st+1 |st, at) ⋅ ∑
at+1∈A

π(at+1 |st+1) ⋅ Qπ(st+1, at+1)

Q(st, at) := Q(st, at) + α (rt + γQ(st+1, at+1) − Q(st, at))

𝔼[Qπ(Xt+1, At+1) |Xt = st, At = at]

SARSA
• SARSA is an on-policy algorithm.

1. Initialize: set to be some -greedy policy, set

2. Sample using the distribution given by in the state (for sampling,

we will use the notation). Take the action and observe .

3. While is not a terminal state:

1. Take action and observe .

2.

3.

4. Set . Update /* see next slides */

π ε t = 0
a π0 s0

a ∼ π(s) a r0, s1
st

a ∼ π(st) rt+1, st+a

Q(st, at) := Q(st, at) + α (rt + γQ(st+1, at+1) − Q(st, at))
π := ε-greedy(Q)

t := t + 1 ε, α

Convergence (SARSA)
• SARSA converges to the optimal state-value function if the following conditions are

satisfied:

1. The sequence of policies satisfies the GLIE conditions (enough to have
).

2. Step-sizes satisfy the Robbins-Monro conditions:

,

.

Q*

πt
εt = 1/t

∞

∑
t=1

αt = ∞

∞

∑
t=1

α2
t < ∞

Q-Learning (1/2)
• The Optimal Bellman Equation (we have not talked about it yet but it is

similar to what we already saw):

.

• Q-Learning update rule:

Q*(s, a) = R(s, a) + γ ∑
st+1∈S

P(st+1 |s1, at) ⋅ max
at+1∈A

Q*(st+1, at+1)

Q(st, at) := Q(st, at) + α (rt + γ max
a∈A

Q(st+1, a) − Q(st, at))

𝔼 [max
at+1∈A

Q*(Xt+1, at+1) Xt = st, At = at]

Q-Learning (2/2)
• Q-Learning is an off-policy algorithm.

1. Initialize: set to be some -greedy policy, set

2. Sample using the distribution given by in the state (for sampling, we will

use the notation). Take the action and observe .

3. While is not a terminal state:

1. Take action and observe .

2.

3.

4. Set . Update /* see next slides */

π ε t = 0
a π0 s0

a ∼ π(s) a r0, s1
st

a ∼ π(st) rt+1, st+1

Q(st, at) := Q(st, at) + α (rt + γ max
a∈A

Q(st+1, a) − Q(st, at))
π := ε-greedy(Q)

t := t + 1 ε, α

Convergence (Q-Learning)
• For convergence of the state-value Q-function, we need only the Robbins-

Monro conditions + every state-action pair needs to be visited infinitely
often (with probability 1).

• For convergence of the policy to the optimal policy, we need GLIE (i.e. it
needs to also be greedy in the limit…).

Double Q-Learning

Why Double Q-Learning?
• To help with maximization bias…

• The following step causes the maximization bias:

because, in general:

, and in fact:

.

• So even if the estimates of were unbiased, would not

have to be unbiased.

Q(st, at) := Q(st, at) + α (rt + γ max
a∈A

Q(st+1, a) − Q(st, at))
𝔼[max{X1, X2, …, Xk}] ≠ max{𝔼[X1], 𝔼[X2], …, 𝔼[Xk]}
𝔼[max{X1, X2, …, Xk}] ≥ max{𝔼[X1], 𝔼[X2], …, 𝔼[Xk]}

Q(s, a) max
a∈A

Q(st+1, a)

Double Q-Learning

