
Consistency + Polynomial ln |H| Imply PAC-Learning

An algorithm using hypothesis class H is C-consistent if, given an arbitrary
example set from an arbitrary concept C ∈ C, it returns a h ∈ H
consistent with the example set.

(H ⊇ C is a necessary condition for C-consistency.)

A C-consistent algorithm using H PAC-learns C if ln |H| ≤ poly(n). Why?

Prob. that a given bad h (err(h) > ε) survives (i.e., is consistent with) a
random example is at most (1− ε).

Computational Learning Theory PAC Model 1 / 22

Consistency + Polynomial ln |H| Imply PAC-Learning

Prob. that h survives m i.i.d. examples is at most (1− ε)m.

Prob. that one of the bad hypotheses h ∈ H survives is at most
|H|(1− ε)m ≤ |H|e−εm.

To make this smaller than δ, it suffices to set the number of examples to

m =
1

ε
ln
|H|
δ

which is ≤ poly(1/ε, 1/δ, n) iff ln |H| ≤ poly(n).

Compare this to the similar result in the mistake-bound model (Halving algorithm).

Computational Learning Theory PAC Model 2 / 22

Consistency + Polynomial VC(H) Imply PAC-Learning

Using VC(H), a bound can be established even for |H| =∞:

With probability at least δ, no bad hypothesis h ∈ H survives m i.i.d.
examples where

m ≥ 8

ε

(
VC(H) ln

16

ε
+ ln

2

δ

)
(We omit the proof.)

Thus a C-consistent algorithm using H PAC-learns C if VC(H) ≤ poly(n).

For example, let C = half-planes in Rn. |H| =∞ but
VC(H) = n + 1 ≤ poly(n).

Computational Learning Theory PAC Model 3 / 22

PAC-Learning k-term DNF

We know that C = k-term DNF is learnable efficiently using H = k-CNF
in the MB model and thus also in PAC.

But what if H = C (i.e., proper learning)?

ln |C| = ln |k-term DNF| ≤ ln |k-CNF| ≤ poly(n) so C is PAC-learnable
even with H = C.

BUT: this cannot be done efficiently. We show this for k = 3.

Finding a h ∈ H = k-term DNF consistent with the training examples is as
hard as the graph 3-coloring problem:

Give each vertex one of 3 colors, adjacent vertices - different colors

Computational Learning Theory PAC Model 4 / 22

3-Coloring as Finding a Consistent 3-term DNF

Efficient reduction:

vertex vi ∼ pos. example x , x [k] =

{
0 if k = i

1 otherwise

edge eij ∼ neg. example x , x [k] =

{
0 if k = i or k = j

1 otherwise

v1 v2

v3

v4 v5

01111 10111

11011

11101 11110

00111

01011

01101

10011

10110

11001 11010

11100

Computational Learning Theory PAC Model 5 / 22

3-Coloring as Finding a Consistent 3-term DNF

Graph 3-colorable iff a 3-term DNF exists consistent with the examples:

Given a 3-colored graph, a consistent 3-term DNF can be constructed:∨
color ∈
{ R,G ,Y }

∧
vk not of
color

vk

Given a consistent 3-term DNF, the graph can be validly colored

Give each vertex the color corresponding to any term consistent with
the vertex variable

Computational Learning Theory PAC Model 6 / 22

3-Coloring as Finding a Consistent 3-term DNF

Example:

01111 10111

11011

11101 11110

00111

01011

01101

10011

10110

11001 11010

11100

↔

v2 ∧ v3 ∧ v4∨
v1 ∧ v3 ∧ v5∨

v1 ∧ v2 ∧ v4 ∧ v5

3-colorability NP-hard → finding a consistent 3-term DNF NP-hard.

Generally, C = k-term DNF cannot be PAC-learned efficiently AND
properly (H = C).

Computational Learning Theory PAC Model 7 / 22

k-Decision Trees

(Binary) decision tree: a binary tree-graph

non-leaf vertices: binary variables

leafs: class indicators

Classification: go from root to leaf, path
according to truth-values of variables.

k-DT = dec. trees of max depth k

Like k-term DNF,

finding a consistent k-DT is NP-hard
(proof omitted).

k-DT thus cannot be PAC-learned
efficiently + properly.

Example:

v3

v5 1

1 0

0 1

0 1

3-Decision Tree

Computational Learning Theory PAC Model 8 / 22

PAC-Learning k-Decision Trees Efficiently

Every k-DT has an equivalent k-DNF:

For every path going from root to a 1 leaf, add to the DNF a
k-conjunction of all variables on the path (v3 ∨ v3 v5 for the example)

Thus
k-DT ⊆ k-DNF

and C = k-DT can be efficiently (but not properly) PAC-learned using
H = k-DNF.

Note that also
k-DT ⊆ k-CNF

Create a clause for each path to a 0 leaf (v3 ∨ v5 for the example)

Computational Learning Theory PAC Model 9 / 22

PAC-Learning k-Decision Trees Properly

We will show that lg |k-DT| ≤ poly(n):

|1-DT| = 2 (two options for the single vertex = leaf)

|(k + 1)-DT| = n|k-DT|2 (n options for vertex, |k-DT| options for
each of the 2 subtrees)

Denote cn = lg |k-DT|. We have c1 = 1 and

ck+1 = lg n + 2ck

i.e., a recursive formula for a geometric series. Solution exponential in k
but polynomial in n.

So C = k-DT can be properly (but not efficiently) PAC-learned by a
C-consistent algorithm.

Computational Learning Theory PAC Model 10 / 22

k-Decision Lists

k-Decision List: a list of k-conjunctions (each with a class indicator) +
default class indicator.

Example:
v1v3 → 0
v2 → 1

default 0

An example is classified to the class indicated at the first from top
conjunction satisfied by the example, or the default if none satisfied.

We will show an efficient consistent learning algorithm for k-DL.

Computational Learning Theory PAC Model 11 / 22

Finding a Consistent k-Decision List

Require: training set T = { (x1, y1), (x2, y2) . . . (xm, ym) } . (the
yi ∈ { 0, 1 } are class labels)

1: L := [] (empty list)
2: while T 6= ∅ do
3: γ = any k-conjunction true for some pos. and no neg. example in

T , or some neg. and no pos. example in T (respectively)
4: Remove examples covered by γ: T := T \ {(x , y) ∈ T : x |= γ}
5: if T = ∅ then
6: append default 1 or default 0 (respectively) to L.
7: else
8: append γ → 1 or γ → 0 (respectively) to L
9: end if

10: end while

Computational Learning Theory PAC Model 12 / 22

Finding a Consistent k-Decision List

In Step 3, the algorithm always succeeds in finding the required
k-conjunction γ.

Indeed, such a γ exists:

Let c be the DL encoding the target concept;

Let γ∗ → class be the top-most rule in c which ‘fires’ (x |= γ∗) for
least one x ∈ T ;

γ∗ → class must be consistent with T ; if inconsistent with any
x ′ ∈ T , a rule higher in c would have to fire for x ′ but that
contradicts the ‘top-most’ assumption above;

so γ = γ∗ is one possible choice.

In the worst case, the algo needs to search all of the ≤ poly(n) number of
k-conjunctions.

Computational Learning Theory PAC Model 13 / 22

PAC-Learning k-DL Properly Efficiently

The k-DL-consistent algorithm PAC-learns k-DL if ln |k-DL| ≤ poly(n).

|k-DL| = 3|k-conjunctions|!

base 3: each k-conjunction either absent, present with class 0 or
present with class 1

factorial: different order of k-conjunctions - different k-DL’s

Since |k-conjunctions| ≤ poly(n), we indeed have

ln |k-DL| ≤ poly(n)

Computational Learning Theory PAC Model 14 / 22

k-DL Subsumes k-DNF and k-CNF

For any k-DNF, an equivalent k-DL can be made:

for each k-conjunction c in the k-DNF, add c to the DL with class 1

add to the DL the default rule with class 0

So
k-DNF ⊆ k-DL

k-DL is closed under negation (just flip the class indicators) and each
k-CNF is the negation of some k-DNF. Therefore

k-CNF ⊆ k-DL

(The inclusions are actually strict because k-DNF 6= k-CNF.)

Computational Learning Theory PAC Model 15 / 22

Subset Hierarchy of Some Concept Classes

efficiently properly PAC-learnable efficiently or properly PAC-learnable

k-DL

k-CNF k-DNF

k-DTk-term DNF k-clause CNF

k-conjunctions k-clauses

Computational Learning Theory PAC Model 16 / 22

Inconsistent Learning

Returning a hypothesis consistent with the training set may not be
possible for reasons such as

H + C;

C is not known (‘agnostic learning’) so H + C cannot be excluded;

There is ‘noise’ in data so the training set may include the same
instance as both a positive and a negative example.

Define the training error êrr(h) as the proportion of training examples
inconsistent with h. êrr(h) is also called the empirical risk.

We are interested in the relationship btw. err(h) and êrr(h).

Computational Learning Theory Inconsistent Learning 17 / 22

Hoeffding Inequality

Hoeffding: Let { z1, z2, . . . , zm } be a set of i.i.d. samples from P(z) on
{ 0, 1 }. The probability that

∣∣P(1)− 1
m

∑m
i=1 zi

∣∣ > ε is at most 2e−2ε
2m.

Let zi = 1 iff i.i.d. example xi is misclassified by h. So

P(1) = err(h)

1

m

m∑
i=1

zi = êrr(h)

Thus for a given h, |err(h)− êrr(h)| > ε with prob. at most 2e−2ε
2m.

Computational Learning Theory Inconsistent Learning 18 / 22

Error Bound for Inconsistent Learning

For a finite H, the prob. that |err(h)− êrr(h)| > ε for some h ∈ H is at
most

|H|2e−2ε2m

We want to make this no greater than δ. Solving δ = |H|2e−2ε2m gives

ε =

√
1

m
ln

2|H|
δ

So with prob. at least 1− δ, the difference btw. err(h) and êrr(h) is at
most as above for all h ∈ H.

Dilemma: A large H allows to achieve a small êrr(h) but means a loose
bound on err(h).

Computational Learning Theory Inconsistent Learning 19 / 22

Sample Complexity for Inconsistent Learning

Solving δ = |H|2e−2ε2m instead for m gives

m =
1

2ε2
ln

2|H|
δ

which is thus a number of examples sufficient to make |err(h)− êrr(h)| ≤ ε
with prob. at least 1− δ for all h ∈ H.

m ≤ poly(1/ε, 1/δ, n) iff ln |H| ≤ poly(n)

Computational Learning Theory Inconsistent Learning 20 / 22

Error Bound for ERM

Assume the learner returns

h = arg min
h∈H

êrr(h)

This is called empirical risk minimization (ERM principle).

Let h∗ = arg minh∈H err(h), i.e. h∗ is the best hypothesis.

Let further m = 1
2ε2

ln 2|H|
δ . Then with prob. at least 1− δ:

∀h ∈ H : err(h) ≤ êrr(h) + ε which we just proved

≤ êrr(h∗) + ε because h minimizes êrr

≤ err(h∗) + 2ε because êrr(h∗) ≤ err(h∗) + ε

Computational Learning Theory Inconsistent Learning 21 / 22

Bias-Variance Trade-Off

Put differently, with prob. at least 1− δ:

err(h) ≤ min
h∈H

err(h) + 2

√
1

2m
ln

2|H|
δ

Large H - large variance - small bias - first summand lower, second larger

Too large H: overfitting, too small H: underfitting

The more training data (m), the larger H can be ‘afforded’.

Computational Learning Theory Inconsistent Learning 22 / 22

	Computational Learning Theory
	Intro
	Mistake Bound Model
	PAC Model
	Inconsistent Learning

