Maintains a *finite set of hypotheses* \mathcal{H} ("version space") and on each example x, deletes from it all hypotheses that misclassify it.

$$\mathcal{H}' = \{ h \in \mathcal{H} : h(x) = c(x) \}$$

Decides by *majority vote* among the current \mathcal{H} , i.e., "yes" iff

$$|\{ h \in \mathcal{H} : h(x) = 1 \}| > |\{ h \in \mathcal{H} : h(x) = 0 \}|$$

On each mistake, at least half of the hypotheses were wrong so at least *half* of them get deleted. This gives the *mistake bound*

$$\lg |\mathcal{H}|$$

where \mathcal{H} is the initial version space, i.e., the learner's hypothesis class.

Any finite class C of computable concepts is learnable if $\lg |C| \leq \operatorname{poly}(n)$.

Proof: Use the halving algorithm with any $\mathcal{H} \supseteq \mathcal{C}$ such that $\lg |\mathcal{H}| \le \operatorname{poly}(n)$.¹

That does not mean C is learnable *efficiently*!

If $\left|\mathcal{C}\right|$ is exponentially large, then the halving algo is necessarily non-efficient.

Computational Learning Theory

¹We overload the symbol \mathcal{H} to mean both a class of hypotheses (e.g. conjunctions) and the concept class they define (subsets of *X*).

- Conjunctions or disjunctions: |C| = 2²ⁿ resp. 3ⁿ if contradictions/tautologies excluded.
 - Both halving and generalization algos have linear mistake bound, but the latter is efficient
- k-disjunctions: $|\mathcal{C}| = \sum_{i=1}^{k} \binom{2n}{i}$ resp. $\sum_{i=1}^{k} \binom{n}{i} 2^{i} \leq \text{poly}(n)$
 - Both halving and WINNOW: logarithmic mistake bound, efficient
 - k-conjunctions: same, except WINNOW won't apply
- k-DNF, k-CNF: $|\mathcal{C}| = 2^{|k-\text{disjunctions}|} \le 2^{poly(n)}$
 - Halving: poly mistake bound, non-efficient
 - Reduction to monotone conjuctions (disjuctions): poly m.b., efficient

We say that concept class C shatters a set of instances $X' \subseteq X$ if for every subset $X'' \subseteq X'$ there is a concept $C \in C$ such that $C \cap X' = X''$.

In other words, X' is shattered by C if it can be split by concepts from C in all $2^{|X'|}$ possible ways.

The *VC-dimension* of C denoted VC(C) is the size of the largest subset of X shattered by C:

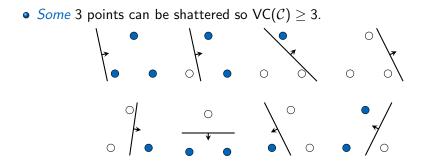
 $\mathsf{VC}(\mathcal{C}) = \max\{ |X'| : \mathcal{C} \text{ shatters } X', X' \subseteq X \}$

 $VC(\mathcal{H})$ for a *hypothesis* class \mathcal{H} defined analogically.

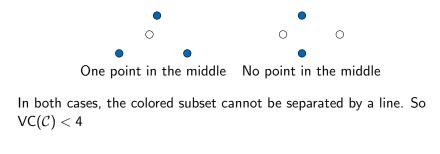
Determining VC-Dimension: Example

- If some $X' \subseteq X$ shattered by \mathcal{C} then $VC(\mathcal{C}) \ge |X'|$.
- If none $X' \subseteq X$ shattered by \mathcal{C} then $VC(\mathcal{C}) < |X'|$.

Example: C = half-planes in R^2 (i.e., linear separation)



• *No* 4 points can be shattered. Obvious if 3 in line. Otherwise two cases possible:



We have $VC(\mathcal{C}) \geq 3$ and $VC(\mathcal{C}) < 4$, thus $VC(\mathcal{C}) = 3$.

Concept class C on X is learnable *only if* $VC(C) \leq poly(n)$.

Proof: There exists a set of VC(C) instances from X shattered by C so there exists a sequence $x_1, x_2, \ldots x_{VC(C)}$ of instances such that for any sequence of the learner's decisions there is a concept $c \in C$ making all these decisions wrong.

So $\lg |\mathcal{C}| \le \operatorname{poly}(n)$ implies $VC(\mathcal{C}) \le \operatorname{poly}(n)$ but not the other way around.

VC(C) may be finite (even poly(n)) even if $|C| = \infty$!

PAC = Probably Approximately Correct

Main differences from the mistake bound model:

- A "batch" style of learning rather than "online":
 - A *training* set of examples is provided to the learner.
 - The learner outputs a hypothesis.
- Assumes an arbitrary probability distribution on X from which examples are drawn mutually independently ("i.i.d. assumption").
- No bound on the total number of mistakes, instead the output hypothesis should have a bounded *error* rate (mistake probability).
- Probability of failure (good hypothesis not found) also bounded.
- Size of the training set only polynomial in *n* and the inverse of the two bounds.

Given a probability distribution P on X, a concept C and a hypothesis H, define the *error* of H: $err(H) = P(C \triangle H) = P(c(x) \neq h(x))$

Formally: err(h) = err(H) (*h* is the description of *H*)

We say that an algorithm *PAC-learns concept class* C if for any $C \in C$, an arbitrary distribution P on X, and arbitrary numbers $0 < \epsilon, \delta < 1$, the algorithm, which receives a poly $(1/\epsilon, 1/\delta, n)$ number of i.i.d. examples from P(X), outputs with probability at least $1 - \delta$ a hypothesis h such that $err(h) \leq \epsilon$. If such an algorithm exists, we call C *PAC-Learnable*.

If an algorithm PAC-learns C and runs in $poly(1/\epsilon, 1/\delta, n)$ time, we say it PAC-learns C efficiently and we call C efficiently PAC-learnable.

Use the generalization algo for PAC learning: provide m examples to it, run it as if online, keep the last h.

Let $P_{ic}(z)$ be the prob. that literal z ($z \in \{h_1, \overline{h_1}, h_2, \dots, \overline{h_n}\}$) is inconsistent with a random example drawn from P(X).

Call z bad if $P_{ic}(z) \geq \frac{\epsilon}{2n}$.

Observe that $err(h) \leq \sum_{z} P_{ic}(z)$. So if h has no bad literals then

$$\operatorname{err}(h) \leq \sum_{z} \frac{\epsilon}{2n} = 2n \frac{\epsilon}{2n} = \epsilon$$

Prob. that a bad literal z "survived" (was consistent with) one random example is

$$1-P_{\rm ic}(z)\leq 1-rac{\epsilon}{2n}$$

Prob. that z survived m such i.i.d. examples is thus at most

$$\left(1-\frac{\epsilon}{2n}\right)^m$$

So prob. that one of the 2n possible bad literals survived m i.i.d. examples is at most

$$2n\left(1-rac{\epsilon}{2n}
ight)^m\leq 2ne^{-rac{m\epsilon}{2n}}$$

because of the general inequality $1 - x \le e^{-x}$ for $x \ge 0$.

To satisfy PAC-learning conditions, we need

$$2ne^{-\frac{m\epsilon}{2n}} < \delta$$

after arrangements:

$$m \ge rac{2n}{\epsilon} \left(\ln 2n + \ln rac{1}{\delta}
ight)$$

Thus $m \leq \text{poly}(1/\epsilon, 1/\delta, n)$ example suffice to make $\text{err}(h) \leq \epsilon$ with probability at least $1 - \delta$.

So the generalization algorithm PAC-learns conjunctions.

Any mistake-bound learner L can be transformed into a PAC-learner. Let $M \leq poly(n)$ be the mistake bound of L.

Call *L* lazy if it changes its hypo h only following a mistake. If *L* is not lazy, make it lazy (prevent changing h after correct decisions).

Run *L* on the example set but halt if any hypo *h* survives more than $\frac{1}{\epsilon} \ln \left(\frac{M}{\delta}\right)$ consecutive examples. Output *h*.

Observe that this will terminate within $m = \frac{M}{\epsilon} \ln \left(\frac{M}{\delta}\right)$ examples. (Otherwise more than M mistakes would be made.)

Prob. that $err(h) > \epsilon$ is at most

$$M(1-\epsilon)^{rac{1}{\epsilon}\lnrac{M}{\delta}} < Me^{-rac{\epsilon}{\epsilon}\lnrac{M}{\delta}} = Mrac{\delta}{M} = \delta$$

Since $M \leq \text{poly}(n)$ (condition of MB learning), also

$$m = rac{M}{\epsilon} \ln\left(rac{M}{\delta}
ight) \leq \operatorname{poly}(1/\epsilon, 1/\delta, n)$$

So all PAC-learning conditions satisfied: we have $m \le poly(1/\epsilon, 1/\delta, n)$, and $err(h) \le \epsilon$ with prob. at least $1 - \delta$.

Although err(h) > 0 is allowed, the output *h* of a PAC-learner is necessarily consistent with all the training examples (zero "training error").

Assume that given training set $\{x_1, x_2, \dots, x_m\}$, the algo outputs *h* inconsistent with some x_j $(1 \le j \le m)$.

Distribution P(x) and numbers ϵ, δ arbitrary so set them such that

•
$$\prod_{i=1}^{m} P(x_i) > \delta$$
 implying that $P(x_j) > 0$;
• $\epsilon < P(x_j)$

So with prob. $> \delta$ the algo will output h such that $err(h) \ge P(x_j) > \epsilon$, i.e. it *does not* PAC-learn.