
The Halving Algorithm (Version Space)

Maintains a finite set of hypotheses H (“version space”) and on each
example x , deletes from it all hypotheses that misclassify it.

H′ = { h ∈ H : h(x) = c(x) }

Decides by majority vote among the current H, i.e., “yes” iff

| { h ∈ H : h(x) = 1 } | > | { h ∈ H : h(x) = 0 } |

On each mistake, at least half of the hypotheses were wrong so at least
half of them get deleted. This gives the mistake bound

lg |H|

where H is the initial version space, i.e., the learner’s hypothesis class.

Computational Learning Theory Mistake Bound Model 1 / 15

The Halving Algorithm (Version Space)

Any finite class C of computable concepts is learnable if lg |C| ≤ poly(n).

Proof: Use the halving algorithm with any H ⊇ C such that
lg |H| ≤ poly(n). 1

That does not mean C is learnable efficiently!

If |C| is exponentially large, then the halving algo is necessarily
non-efficient.

1We overload the symbol H to mean both a class of hypotheses (e.g. conjunctions)
and the concept class they define (subsets of X).

Computational Learning Theory Mistake Bound Model 2 / 15

Sizes of Some Concept Classes

Conjunctions or disjunctions: |C| = 22n resp. 3n if
contradictions/tautologies excluded.

Both halving and generalization algos have linear mistake bound, but
the latter is efficient

k-disjunctions: |C| =
∑k

i=1

(2n
i

)
resp.

∑k
i=1

(n
i

)
2i ≤ poly(n)

Both halving and WINNOW: logarithmic mistake bound, efficient
k-conjunctions: same, except WINNOW won’t apply

k-DNF, k-CNF: |C| = 2|k-disjunctions| ≤ 2poly(n)

Halving: poly mistake bound, non-efficient
Reduction to monotone conjuctions (disjuctions): poly m.b., efficient

Computational Learning Theory Mistake Bound Model 3 / 15

VC Dimension

We say that concept class C shatters a set of instances X ′⊆ X if for every
subset X ′′ ⊆ X ′ there is a concept C ∈ C such that C ∩ X ′ = X ′′.

In other words, X ′ is shattered by C if it can be split by concepts from C in
all 2|X

′| possible ways.

The VC-dimension of C denoted VC(C) is the size of the largest subset of
X shattered by C:

VC(C) = max { | X ′| : C shatters X ′, X ′ ⊆ X }

VC(H) for a hypothesis class H defined analogically.

Computational Learning Theory Mistake Bound Model 4 / 15

Determining VC-Dimension: Example

If some X ′ ⊆ X shattered by C then VC(C) ≥ |X ′|.
If none X ′ ⊆ X shattered by C then VC(C) < |X ′|.

Example: C = half-planes in R2 (i.e., linear separation)

Some 3 points can be shattered so VC(C) ≥ 3.

Computational Learning Theory Mistake Bound Model 5 / 15

Determining VC-Dimension: Example

No 4 points can be shattered. Obvious if 3 in line. Otherwise two
cases possible:

One point in the middle No point in the middle

In both cases, the colored subset cannot be separated by a line. So
VC(C) < 4

We have VC(C) ≥ 3 and VC(C) < 4, thus VC(C) = 3.

Computational Learning Theory Mistake Bound Model 6 / 15

Poly VC-Dimension Necessary for Learnability

Concept class C on X is learnable only if VC(C) ≤ poly(n).

Proof: There exists a set of VC(C) instances from X shattered by C so
there exists a sequence x1, x2, . . . xVC(C) of instances such that for any
sequence of the learner’s decisions there is a concept c ∈ C making all
these decisions wrong.

So lg |C| ≤ poly(n) implies VC(C) ≤ poly(n) but not the other way around.

VC(C) may be finite (even poly(n)) even if |C| =∞!

Computational Learning Theory Mistake Bound Model 7 / 15

PAC Learning Model

PAC = Probably Approximately Correct

Main differences from the mistake bound model:

A “batch” style of learning rather than “online”:

A training set of examples is provided to the learner.
The learner outputs a hypothesis.

Assumes an arbitrary probability distribution on X from which
examples are drawn mutually independently (“i.i.d. assumption”).

No bound on the total number of mistakes, instead the output
hypothesis should have a bounded error rate (mistake probability).

Probability of failure (good hypothesis not found) also bounded.

Size of the training set only polynomial in n and the inverse of the
two bounds.

Computational Learning Theory PAC Model 8 / 15

PAC Learning Model: Definition

Given a probability distribution P on X , a concept C and a hypothesis H,
define the error of H: err(H) = P(C4H) = P(c(x) 6= h(x))

Formally: err(h) = err(H) (h is the description of H)

We say that an algorithm PAC-learns concept class C if for any C ∈ C, an
arbitrary distribution P on X , and arbitrary numbers 0 < ε, δ < 1, the
algorithm, which receives a poly(1/ε, 1/δ, n) number of i.i.d. examples
from P(X), outputs with probability at least 1− δ a hypothesis h such
that err(h) ≤ ε. If such an algorithm exists, we call C PAC-Learnable.

If an algorithm PAC-learns C and runs in poly(1/ε, 1/δ, n) time, we say it
PAC-learns C efficiently and we call C efficiently PAC-learnable.

Computational Learning Theory PAC Model 9 / 15

PAC Learning Conjunctions

Use the generalization algo for PAC learning: provide m examples to it,
run it as if online, keep the last h.

Let Pic(z) be the prob. that literal z (z ∈
{
h1, h1, h2, . . . hn

}
) is

inconsistent with a random example drawn from P(X).

Call z bad if Pic(z) ≥ ε
2n .

Observe that err(h) ≤
∑

z Pic(z). So if h has no bad literals then

err(h) ≤
∑
z

ε

2n
= 2n

ε

2n
= ε

Computational Learning Theory PAC Model 10 / 15

PAC Learning Conjunctions

Prob. that a bad literal z “survived” (was consistent with) one random
example is

1− Pic(z) ≤ 1− ε

2n

Prob. that z survived m such i.i.d. examples is thus at most(
1− ε

2n

)m
So prob. that one of the 2n possible bad literals survived m i.i.d. examples
is at most

2n
(

1− ε

2n

)m
≤ 2ne−

mε
2n

because of the general inequality 1− x ≤ e−x for x ≥ 0.

Computational Learning Theory PAC Model 11 / 15

PAC Learning Conjunctions

To satisfy PAC-learning conditions, we need

2ne−
mε
2n < δ

after arrangements:

m ≥ 2n

ε

(
ln 2n + ln

1

δ

)
Thus m ≤ poly(1/ε, 1/δ, n) example suffice to make err(h) ≤ ε with
probability at least 1− δ.

So the generalization algorithm PAC-learns conjunctions.

Computational Learning Theory PAC Model 12 / 15

Mistake-Bound Learnability Implies PAC-Learnability

Any mistake-bound learner L can be transformed into a PAC-learner. Let
M ≤ poly(n) be the mistake bound of L.

Call L lazy if it changes its hypo h only following a mistake. If L is not
lazy, make it lazy (prevent changing h after correct decisions).

Run L on the example set but halt if any hypo h survives more than
1
ε ln
(
M
δ

)
consecutive examples. Output h.

Observe that this will terminate within m = M
ε ln

(
M
δ

)
examples.

(Otherwise more than M mistakes would be made.)

Computational Learning Theory PAC Model 13 / 15

Mistake-Bound Learnability Implies PAC-Learnability

Prob. that err(h) > ε is at most

M(1− ε)
1
ε
ln M

δ < Me−
ε
ε
ln M

δ = M
δ

M
= δ

Since M ≤ poly(n) (condition of MB learning), also

m =
M

ε
ln

(
M

δ

)
≤ poly(1/ε, 1/δ, n)

So all PAC-learning conditions satisfied: we have m ≤ poly(1/ε, 1/δ, n),
and err(h) ≤ ε with prob. at least 1− δ.

Computational Learning Theory PAC Model 14 / 15

PAC-Learning Implies Consistency

Although err(h) > 0 is allowed, the output h of a PAC-learner is necessarily
consistent with all the training examples (zero “training error”).

Assume that given training set { x1, x2, . . . xm }, the algo outputs h
inconsistent with some xj (1 ≤ j ≤ m).

Distribution P(x) and numbers ε, δ arbitrary so set them such that

∏m
i=1 P(xi) > δ implying that P(xj) > 0;

ε < P(xj)

So with prob. > δ the algo will output h such that err(h) ≥ P(xj) > ε, i.e.
it does not PAC-learn.

Computational Learning Theory PAC Model 15 / 15

	Computational Learning Theory
	Intro
	Mistake Bound Model
	PAC Model

