The Halving Algorithm (Version Space)

Maintains a finite set of hypotheses H (“version space”) and on each
example x, deletes from it all hypotheses that misclassify it.

H ={heH:h(x)=c(x)}
Decides by majority vote among the current H, i.e., "yes" iff
[{heH:h(x)=1}>|{heH: :h(x)=0}]

On each mistake, at least half of the hypotheses were wrong so at least
half of them get deleted. This gives the mistake bound

lg [H]

where H is the initial version space, i.e., the learner’s hypothesis class.

Computational Learning Theory Mistake Bound Model

The Halving Algorithm (Version Space)

Any finite class C of computable concepts is learnable if Ig|C| < poly(n).

Proof: Use the halving algorithm with any H D C such that
lg [H] < poly(n). *

That does not mean C is learnable efficiently!

If |C| is exponentially large, then the halving algo is necessarily
non-efficient.

"We overload the symbol H to mean both a class of hypotheses (e.g. conjunctions)
and the concept class they define (subsets of X).

Computational Learning Theory Mistake Bound Model

Sizes of Some Concept Classes

e Conjunctions or disjunctions: |C| = 22" resp. 3" if
contradictions/tautologies excluded.

e Both halving and generalization algos have linear mistake bound, but
the latter is efficient

o k-disjunctions: |C] = 32K, (2l.") resp. YK, ()2 < poly(n)
o Both halving and WINNOW: logarithmic mistake bound, efficient
e k-conjunctions: same, except WINNOW won't apply

o k-DNF, k-CNF: lc| — 2|k-disjunctions| < 2poly(n)
e Halving: poly mistake bound, non-efficient
o Reduction to monotone conjuctions (disjuctions): poly m.b., efficient

Computational Learning Theory Mistake Bound Model

We say that concept class C shatters a set of instances X'C X if for every
subset X” C X’ there is a concept C € C such that CN X' = X”.

In other words, X’ is shattered by C if it can be split by concepts from C in
all 21X’l possible ways.

The VC-dimension of C denoted VC(C) is the size of the largest subset of
X shattered by C:

VC(C) = max{ | X| : C shatters X', X' C X}

VC(H) for a hypothesis class H defined analogically.

Computational Learning Theory Mistake Bound Model

Determining VC-Dimension: Example

e If some X" C X shattered by C then VC(C) > |X’|.
o If none X' C X shattered by C then VC(C) < |X’|.

Example: C = half-planes in R? (i.e., linear separation)

@ Some 3 points can be shattered so VC(C) > 3.
(] @
(] (]
o
T
©) (]

Computational Learning Theory Mistake Bound Model

Determining VC-Dimension: Example

@ No 4 points can be shattered. Obvious if 3 in line. Otherwise two
cases possible:

() ()
@) O O
() (] ()
One point in the middle No point in the middle

In both cases, the colored subset cannot be separated by a line. So
VC(C) < 4

We have VC(C) > 3 and VC(C) < 4, thus VC(C) = 3.

Computational Learning Theory Mistake Bound Model

Poly VC-Dimension Necessary for Learnability

Concept class C on X is learnable only if VC(C) < poly(n).

Proof: There exists a set of VC(C) instances from X shattered by C so
there exists a sequence x1, x2, ... xyc(c) of instances such that for any

sequence of the learner’s decisions there is a concept ¢ € C making all

these decisions wrong.

So Ig|C| < poly(n) implies VC(C) < poly(n) but not the other way around.

VC(C) may be finite (even poly(n)) even if |C] = co!

Computational Learning Theory Mistake Bound Model

PAC Learning Model

PAC = Probably Approximately Correct

Main differences from the mistake bound model:

@ A "batch” style of learning rather than “online":

e A training set of examples is provided to the learner.
e The learner outputs a hypothesis.

@ Assumes an arbitrary probability distribution on X from which
examples are drawn mutually independently (“i.i.d. assumption”).

@ No bound on the total number of mistakes, instead the output
hypothesis should have a bounded error rate (mistake probability).

@ Probability of failure (good hypothesis not found) also bounded.

@ Size of the training set only polynomial in n and the inverse of the
two bounds.

Computational Learning Theory PAC Model

PAC Learning Model: Definition

Given a probability distribution P on X, a concept C and a hypothesis H,
define the error of H: err(H) = P(CAH) = P(c(x) # h(x))

Formally: err(h) = err(H) (h is the description of H)

We say that an algorithm PAC-learns concept class C if for any C € C, an
arbitrary distribution P on X, and arbitrary numbers 0 < ¢, < 1, the
algorithm, which receives a poly(1/e,1/d, n) number of i.i.d. examples
from P(X), outputs with probability at least 1 — ¢ a hypothesis h such
that err(h) < e. If such an algorithm exists, we call C PAC-Learnable.

If an algorithm PAC-learns C and runs in poly(1/e,1/d, n) time, we say it
PAC-learns C efficiently and we call C efficiently PAC-learnable.

Computational Learning Theory PAC Model

PAC Learning Conjunctions

Use the generalization algo for PAC learning: provide m examples to it,
run it as if online, keep the last h.

Let Pic(z) be the prob. that literal z (z € { hi,hi, ho, ... h, }) is
inconsistent with a random example drawn from P(X).

Call z bad if Pic(z) > 5.

Observe that err(h) < > Pic(z). So if h has no bad literals then

err(h) < ZQ_E,, = 2ni =¢
z

Computational Learning Theory PAC Model

PAC Learning Conjunctions

Prob. that a bad literal z “survived” (was consistent with) one random

example is
1-Pe(z)<1— =

2n
Prob. that z survived m such i.i.d. examples is thus at most

€ m
)
(2n
So prob. that one of the 2n possible bad literals survived m i.i.d. examples

is at most
€ m me
2n (1 _ —) <2ne %
2n

because of the general inequality 1 — x < e ™ for x > 0.

Computational Learning Theory PAC Model

PAC Learning Conjunctions

To satisfy PAC-learning conditions, we need
2ne 2 < §

after arrangements:

2 1
mz—n(|n2n+ln—)
€ 1)

Thus m < poly(1/e,1/d, n) example suffice to make err(h) < € with
probability at least 1 — 4.

So the generalization algorithm PAC-learns conjunctions.

Computational Learning Theory PAC Model

Mistake-Bound Learnability Implies PAC-Learnability

Any mistake-bound learner L can be transformed into a PAC-learner. Let
M < poly(n) be the mistake bound of L.

Call L /azy if it changes its hypo h only following a mistake. If L is not
lazy, make it lazy (prevent changing h after correct decisions).

Run L on the example set but halt if any hypo h survives more than
%In (%) consecutive examples. Output h.

Observe that this will terminate within m = % In (%) examples.
(Otherwise more than M mistakes would be made.)

Computational Learning Theory PAC Model

Mistake-Bound Learnability Implies PAC-Learnability

Prob. that err(h) > € is at most

M 1)
7:,\/’—:
5 v o)

LihnM

M(1—e)e"s < Me=c

Since M < poly(n) (condition of MB learning), also

m=M (%) < poly(1/e,1/5, n)

€

So all PAC-learning conditions satisfied: we have m < poly(1/¢,1/d, n),
and err(h) < e with prob. at least 1 — ¢.

Computational Learning Theory PAC Model

PAC-Learning Implies Consistency

Although err(h) > 0 is allowed, the output h of a PAC-learner is necessarily
consistent with all the training examples (zero “training error”).

Assume that given training set { x1, x2, ... Xm }, the algo outputs h
inconsistent with some x; (1 < j < m).

Distribution P(x) and numbers €, arbitrary so set them such that

o [", P(x;) > ¢ implying that P(x;) > 0;
e € < P(x)

So with prob. > ¢ the algo will output h such that err(h) > P(x;) > ¢, i.e.
it does not PAC-learn.

Computational Learning Theory PAC Model

	Computational Learning Theory
	Intro
	Mistake Bound Model
	PAC Model

