
Computational Learning Theory

COLT tries to explain why and when machine learning works.

It studies two aspects of machine learning to provide insights for the
design of learning algorithms.

Statistical: how much data is needed to learn good models?

Algorithmic: how computationally hard is it to learn such models?

COLT usually assumes a simple learning scenario called concept learning,
which is (roughly) noise-free binary classification learning.

More complex scenarios often have concept learning at their heart.

Computational Learning Theory Intro 1 / 19

Concept Learning Elements

Instance space: a set X . Elements x ∈ X are instances.

Concept: a subset C ⊆ X .

The algorithm should learn to decide whether x ∈ C for any given x ∈ X .

Example: X = animals described as tuples of binary variables

aquatic airborne backbone

x = 0 1 0

C = all mammals.

Learning examples: the learner must get some instances x ∈ X with
the information whether x ∈ C or not.

Computational Learning Theory Intro 2 / 19

Concept Class

To decide x ∈ C for any given x ∈ X , the learner must be able to compute
C , i.e., the function

c(x) =

{
1 if x ∈ C

0 if x /∈ C

Countable number of computable concepts (any algorithm has a finite
description so their number is countable)

But uncountable number of concepts if X infinite, e.g. X = N

→ Non-computable concepts exist.

COLT studies the behavior of learners with respect to selected subsets
C ⊂ 2X called concept classes.

Computational Learning Theory Intro 3 / 19

Hypothesis Class

A finite description of a learner’s decision model is called a hypothesis.
Learners use constrained languages (rules, polynomials, graphs, ...) to
encode their hypotheses.

For example, the hypothesis

man ∧married

which is a logical conjunction defines the ‘bachelor’ concept.

Hypothesis languages are typically not Turing-complete so not all
computable concepts can be expressed by hypotheses.

The set of all hypotheses a learner can express is called its hypothesis class.

Computational Learning Theory Intro 4 / 19

Learning Models

A learning model is an abstract description of real-life machine-learning
scenarios. It defines

The learner-environment interaction protocol

How learning examples are conveyed to the learner

What properties the examples must posses

What it means to learn successfully

We will discuss two learning models:

Mistake Bound Learning

Probably Approximately Correct Learning.

Computational Learning Theory Intro 5 / 19

Mistake Bound Model

A very simple model assuming an online interaction: a concept C is chosen
from a fixed concept class and the following is then repeated indefinitely:

1 The learner receives an example x ∈ X

2 It predicts whether x is positive (x ∈ C) or negative (x /∈ C)

3 It is told the correct answer

To define the model, we assume there is a measure n of instance
complexity. When X consists of fixed-arity tuples, we set n = their arity.

Denote poly(n) to mean “at most polynomial in n”.

In math expressions, f (n) ≤ poly(n) means that f (n) grows at most polynomially.

Computational Learning Theory Mistake Bound Model 6 / 19

Mistake Bound Model

We say that an algorithm learns concept class C if for any C ∈ C, the
number of mistakes it makes is poly(n); if such an algorithm exists, C is
called learnable in the mistake bound model.
We will omit “in the mistake bound model” in this section.

Note that the learner

cannot assume anything about the choice of examples (no i.i.d. or
order assumption etc.);

which learns C stops making mistakes after a finite number of
decisions.

If an algorithm learns C and the maximum time it uses to process a single
example is also poly(n), we say it learns C efficiently and we call C
efficiently learnable.

Computational Learning Theory Mistake Bound Model 7 / 19

Learning Conjunctions

Assume X = { 0, 1 }n (n ∈ N) and C consists of all concepts expressible
via conjunctions on n variables. Consider the following generalization
algorithm.

1 Initial hypothesis h = h1h1h2h2 . . . hnhn

2 Receive example x , decide “yes” iff h true for x (x |= h)

3 If decision was “no” and was wrong, remove all h’s literals false for x

4 If decision was “yes” and was wrong, output “Concept cannot be
described by a conjunction.”

5 Go to 2

Computational Learning Theory Mistake Bound Model 8 / 19

Learning Conjunctions

Let C ∈ C be the concept used to generate the examples and c the
conjunction that encodes it. Observe and explain why:

Initial h tautologically false, n literals get deleted from it on first
mistake on a positive (in-concept) example, resulting in |h| = n.

If a literal is in c , it is never deleted from h, so c ⊆ h (literal-wise).

At least one literal is deleted on each mistake.

So the max number of mistakes is n + 1 ≤ poly(n).

Thus the algorithm learns conjunctions (in the MB model) and does so
efficiently (time per example is linear in n).

So conjunctions are efficiently learnable.

Computational Learning Theory Mistake Bound Model 9 / 19

Learning Disjunctions

Efficient learnability of conjunctions implies the same for disjunctions.

If disjunction c defines concept C then c is a conjunction defining the
complementary concept X \ C .

Use any efficient conjunction learner to learn X \ C , so the correct answers
provided to the learner are according to c .

Then negate the hypothesis returned by the algorithm, obtaining a
disjunction for C .

Computational Learning Theory Mistake Bound Model 10 / 19

Learning k-CNF and k-DNF

k-CNF (DNF) is the class of CNF (DNF) formulas whose clauses (terms)
have at most k literals. For example, 3-CNF includes

(a ∨ b)(b ∨ c ∨ d)

k-CNF is efficiently learnable.

With n variables, there are n′ =
∑k

i=1

(n
i

)
2i ≤ poly(n) different clauses.

Introduce a new variable for each of the n′ clauses and use an efficient
learner to learn a conjunction on these variables. Then plug the original
clauses for the variables in the resulting conjunction, obtaining a k-CNF
formula. This is efficient due to n′ ≤ poly(n).

Analogically, also k-DNF is efficiently learnable.

Computational Learning Theory Mistake Bound Model 11 / 19

Learning k-term DNF and k-clause CNF

k-term DNF (k-clause CNF): at most k terms (clauses).

No algorithm known for efficient learning of k-term DNF using k-term
DNF as the hypothesis class. Same for k-clause CNF.

But k-term DNF ⊆ k-CNF since any k-term DNF can be written as an
equivalent k-CNF by “multiplying-out.” E.g.,

(abc) ∨ (de) |=| (a ∨ d)(a ∨ e)(b ∨ d)(b ∨ e)(c ∨ d)(c ∨ e)

So k-term DNF is efficiently learnable by an algorithm using k-CNF as its
hypothesis class. This is called improper learning.

Analogically: k-clause CNF learnable using k-DNF.

Computational Learning Theory Mistake Bound Model 12 / 19

The WINNOW Algorithm

An algorithm to learn linearly separable concepts on { 0, 1 }n.

Monotone (no negation) conjunctions and monotone disjunctions are
linearly separable. Non-monotone convertible to monotone by doubling the
number of variables.

WINNOW hypothesis space is Rn, h = [h1, h2, . . . , hn]. hi are “weights”.

Initially h = [1, 1, . . . 1].

Decision rule: decide “yes” if
∑n

i=1 hi · xi > n/2, else “no”.

Similar to the well-known perceptron algo. Main difference is the learning
rule.

Computational Learning Theory Mistake Bound Model 13 / 19

The WINNOW Algorithm: Learning rule

Unlike the perceptron, WINNOW adapts weights multiplicatively.

When an example x is misclassified, h changes to h′:

If x is positive (i.e., “false negative”), double all hi where xi = 1:

h′i = 2hi

If x is negative (i.e., “false positive”), nullify all hi where xi = 1:

h′i = 0

Other weights (∀i , xi = 0) remain same.

Let us develop a mistake bound for WINNOW learning monotone
k-disjunctions, i.e., monotone disjunctions of up to k ∈ N variables.

Computational Learning Theory Mistake Bound Model 14 / 19

The WINNOW Algorithm: Analysis

No weight in h ever becomes negative.

Only doublings and nullifications from the initial h = [1, 1, . . . , 1]

No weight in h ever exceeds n.

Assume for contradiction that some hj ≤ n gets doubled to h′j > n
(i.e., hj > n/2) after an example x .

xj = 1 as otherwise hj would not get doubled.

Doubling occurs only after a false negative so
∑n

i=1 hi · xi ≤ n/2. But
that contradicts hj > n/2 considering none of hi is negative.

Computational Learning Theory Mistake Bound Model 15 / 19

The WINNOW Algorithm: Analysis

The total increase in weights after a false negative x is at most n/2:

n∑
i=1

h′i −
n∑

i=1

hi =
n∑

i=1

(h′i − hi)xi =
n∑

i=1

(2hi − hi)xi =
n∑

i=1

hixi ≤
n

2

first equality due to h′i = hi when xi = 0

second equality due to the doubling rule

last inequality due to the decision rule and the fact that x was
classified negative

The total decrease in weights after a false positive x is larger than n/2
(shown analogically).

Computational Learning Theory Mistake Bound Model 16 / 19

The WINNOW Algorithm: Analysis

For the initial hypothesis,
∑n

i=1 hi =
∑n

i=1 1 = n.

After N false negatives and P false positives (using the results from the
previous page):

0 ≤
n∑

i=1

hi ≤ n +N n

2
− P n

2

thus
P n

2
≤ n +N n

2

i.e. (n > 0),
P ≤ 2 +N

Computational Learning Theory Mistake Bound Model 17 / 19

The WINNOW Algorithm: Analysis

On each false negative, at least one of the k weights corresponding to the
k variables in the concept disjunction gets doubled. (At least one of these
variables must have been true for the disjunction to be true.)

So after N false negatives, one of them (hj) was doubled at least N/k
times so

hj ≥ 2
N
k

i.e.,

lg hj ≥
N
k

We have shown that no hi exceeds n. So lg hj ≤ lg n and

lg n ≥ N
k

Computational Learning Theory Mistake Bound Model 18 / 19

The WINNOW Algorithm: Analysis

So we have a bound for the false negatives

N ≤ k lg n

and since we have shown that P ≤ 2 +N , we have a total mistake bound

P +N ≤ 2 + 2k lg n

The lg n factor makes WINNOW much faster than the generalization
algorithm or the perceptron when k is a small (k � n) constant.

k � n means a “sparse” target concept disjunction - many irrelevant
attributes.

Computational Learning Theory Mistake Bound Model 19 / 19

	Computational Learning Theory
	Intro
	Mistake Bound Model

