COLT tries to explain why and when machine learning works.

It studies two aspects of machine learning to provide insights for the design of learning algorithms.

- Statistical: how much data is needed to learn good models?
- Algorithmic: how computationally hard is it to learn such models?

COLT usually assumes a simple learning scenario called *concept learning*, which is (roughly) noise-free binary classification learning.

More complex scenarios often have concept learning at their heart.

Concept Learning Elements

- Instance space: a set X. Elements $x \in X$ are instances.
- *Concept*: a subset $C \subseteq X$.

The algorithm should learn to decide whether $x \in C$ for any given $x \in X$.

Example: X = animals described as tuples of binary variables

	aquatic	airborne	backbone
<i>x</i> =	0	1	0

C =all mammals.

• Learning examples: the learner must get some instances $x \in X$ with the information whether $x \in C$ or not.

To decide $x \in C$ for any given $x \in X$, the learner must be able to *compute C*, i.e., the function

$$c(x) = \begin{cases} 1 \text{ if } x \in C \\ 0 \text{ if } x \notin C \end{cases}$$

- *Countable* number of computable concepts (any algorithm has a finite description so their number is countable)
- But *uncountable* number of concepts if X infinite, e.g. X = N
- ullet \to Non-computable concepts exist.

COLT studies the behavior of learners with respect to selected subsets $C \subset 2^X$ called *concept classes*.

A finite description of a learner's decision model is called a *hypothesis*. Learners use constrained languages (rules, polynomials, graphs, ...) to encode their hypotheses.

For example, the hypothesis

 $\mathsf{man} \land \overline{\mathsf{married}}$

which is a *logical conjunction* defines the 'bachelor' concept.

Hypothesis languages are typically not Turing-complete so not all computable concepts can be expressed by hypotheses.

The set of all hypotheses a learner can express is called its hypothesis class.

A *learning model* is an abstract description of real-life machine-learning scenarios. It defines

- The learner-environment interaction protocol
- How learning examples are conveyed to the learner
- What properties the examples must posses
- What it means to learn successfully

We will discuss two learning models:

- Mistake Bound Learning
- Probably Approximately Correct Learning.

A very simple model assuming an *online* interaction: a concept C is chosen from a fixed concept class and the following is then repeated indefinitely:

- The learner receives an example $x \in X$
- **2** It predicts whether x is positive $(x \in C)$ or negative $(x \notin C)$
- It is told the correct answer

To define the model, we assume there is a measure n of *instance complexity*. When X consists of fixed-arity tuples, we set n = their arity.

Denote poly(n) to mean "at most polynomial in n". In math expressions, $f(n) \le poly(n)$ means that f(n) grows at most polynomially. We say that an algorithm *learns concept class* C if for any $C \in C$, the number of mistakes it makes is poly(*n*); if such an algorithm exists, C is called *learnable* in the mistake bound model. We will omit "in the mistake bound model" in this section.

Note that the learner

- cannot assume anything about the choice of examples (no i.i.d. or order assumption etc.);
- $\bullet\,$ which learns ${\mathcal C}\,$ stops making mistakes after a finite number of decisions.

If an algorithm learns C and the maximum time it uses to process a single example is also poly(*n*), we say it learns C *efficiently* and we call C *efficiently* learnable.

Assume $X = \{0, 1\}^n$ $(n \in N)$ and C consists of all concepts expressible via conjunctions on n variables. Consider the following *generalization* algorithm.

- Initial hypothesis $h = h_1 \overline{h_1} h_2 \overline{h_2} \dots h_n \overline{h_n}$
- **2** Receive example x, decide "yes" iff h true for $x (x \models h)$
- **(a)** If decision was "no" and was wrong, remove all h's literals false for x
- If decision was "yes" and was wrong, output "Concept cannot be described by a conjunction."
- 5 Go to 2

Let $C \in C$ be the concept used to generate the examples and c the conjunction that encodes it. Observe and explain why:

- Initial h tautologically false, n literals get deleted from it on first mistake on a positive (in-concept) example, resulting in |h| = n.
- If a literal is in c, it is never deleted from h, so $c \subseteq h$ (literal-wise).
- At least one literal is deleted on each mistake.
- So the max number of mistakes is $n + 1 \le poly(n)$.

Thus the algorithm learns conjunctions (in the MB model) and does so efficiently (time per example is linear in n).

So conjunctions are efficiently learnable.

Efficient learnability of conjunctions implies the same for *disjunctions*.

If disjunction *c* defines concept *C* then \overline{c} is a *conjunction* defining the *complementary* concept $X \setminus C$.

Use any efficient conjunction learner to learn $X \setminus C$, so the correct answers provided to the learner are according to \overline{c} .

Then negate the hypothesis returned by the algorithm, obtaining a disjunction for C.

k-CNF (DNF) is the class of CNF (DNF) formulas whose clauses (terms) have at most k literals. For example, 3-CNF includes

 $(a \lor b)(b \lor \overline{c} \lor d)$

k-CNF is efficiently learnable.

With *n* variables, there are $n' = \sum_{i=1}^{k} {n \choose i} 2^i \le \text{poly}(n)$ different clauses.

Introduce a new variable for each of the n' clauses and use an efficient learner to learn a conjunction on these variables. Then plug the original clauses for the variables in the resulting conjunction, obtaining a k-CNF formula. This is efficient due to $n' \leq poly(n)$.

Analogically, also *k*-DNF is efficiently learnable.

k-term DNF (*k*-clause CNF): at most *k* terms (clauses).

No algorithm known for efficient learning of k-term DNF using k-term DNF as the hypothesis class. Same for k-clause CNF.

But k-term $DNF \subseteq k$ -CNF since any k-term DNF can be written as an equivalent k-CNF by "multiplying-out." E.g.,

 $(abc) \lor (de) \models (a \lor d)(a \lor e)(b \lor d)(b \lor e)(c \lor d)(c \lor e)$

So k-term DNF is efficiently learnable by an algorithm using k-CNF as its hypothesis class. This is called *improper* learning.

Analogically: k-clause CNF learnable using k-DNF.

An algorithm to learn linearly separable concepts on $\{0,1\}^n$.

Monotone (no negation) conjunctions and monotone disjunctions are linearly separable. Non-monotone convertible to monotone by doubling the number of variables.

WINNOW hypothesis space is R^n , $h = [h_1, h_2, \dots, h_n]$. h_i are "weights".

```
Initially h = [1, 1, ... 1].
```

Decision rule: decide "yes" if $\sum_{i=1}^{n} h_i \cdot x_i > n/2$, else "no".

Similar to the well-known perceptron algo. Main difference is the learning rule.

The WINNOW Algorithm: Learning rule

Unlike the perceptron, WINNOW adapts weights *multiplicatively*.

When an example x is misclassified, h changes to h':

• If x is positive (i.e., "false negative"), *double* all h_i where $x_i = 1$:

$$h_i' = 2h_i$$

• If x is negative (i.e., "false positive"), *nullify* all h_i where $x_i = 1$:

 $h_i'=0$

Other weights $(\forall i, x_i = 0)$ remain same.

Let us develop a mistake bound for WINNOW learning *monotone* k-*disjunctions*, i.e., monotone disjunctions of up to $k \in N$ variables.

No weight in h ever becomes negative.

• Only doublings and nullifications from the initial h = [1, 1, ..., 1]

No weight in h ever exceeds n.

- Assume for contradiction that some $h_j \le n$ gets doubled to $h'_j > n$ (i.e., $h_j > n/2$) after an example x.
- $x_j = 1$ as otherwise h_j would not get doubled.
- Doubling occurs only after a false negative so ∑_{i=1}ⁿ h_i ⋅ x_i ≤ n/2. But that contradicts h_i > n/2 considering none of h_i is negative.

The total increase in weights after a *false negative* x is at most n/2:

$$\sum_{i=1}^{n} h'_{i} - \sum_{i=1}^{n} h_{i} = \sum_{i=1}^{n} (h'_{i} - h_{i}) x_{i} = \sum_{i=1}^{n} (2h_{i} - h_{i}) x_{i} = \sum_{i=1}^{n} h_{i} x_{i} \le \frac{n}{2}$$

• first equality due to
$$h'_i = h_i$$
 when $x_i = 0$

- second equality due to the doubling rule
- last inequality due to the decision rule and the fact that x was classified negative

The total decrease in weights after a *false positive* x is larger than n/2 (shown analogically).

The WINNOW Algorithm: Analysis

For the initial hypothesis, $\sum_{i=1}^{n} h_i = \sum_{i=1}^{n} 1 = n$.

After N false negatives and P false positives (using the results from the previous page):

$$0 \leq \sum_{i=1}^{n} h_i \leq n + \mathcal{N}\frac{n}{2} - \mathcal{P}\frac{n}{2}$$
$$\mathcal{P}\frac{n}{2} \leq n + \mathcal{N}\frac{n}{2}$$
$$\mathcal{P} \leq 2 + \mathcal{N}$$

thus

i.e. (n > 0),

On each false negative, at least one of the k weights corresponding to the k variables in the concept disjunction gets doubled. (At least one of these variables must have been true for the disjunction to be true.)

So after $\mathcal N$ false negatives, one of them (h_j) was doubled at least $\mathcal N/k$ times so

$$h_j \geq 2^{\frac{N}{k}}$$

i.e.,

$$\lg h_j \geq \frac{\mathcal{N}}{k}$$

We have shown that no h_i exceeds n. So $\lg h_j \leq \lg n$ and

$$\lg n \geq \frac{\mathcal{N}}{k}$$

So we have a bound for the false negatives

 $\mathcal{N} \leq k \lg n$

and since we have shown that $\mathcal{P} \leq 2 + \mathcal{N}$, we have a total *mistake bound*

 $\mathcal{P} + \mathcal{N} \leq 2 + 2k \lg n$

The lg *n* factor makes WINNOW much faster than the generalization algorithm or the perceptron when *k* is a small $(k \ll n)$ constant.

 $k \ll n$ means a "sparse" target concept disjunction - many irrelevant attributes.