Computational Learning Theory

COLT tries to explain why and when machine learning works.

It studies two aspects of machine learning to provide insights for the
design of learning algorithms.

o Statistical: how much data is needed to learn good models?

o Algorithmic: how computationally hard is it to learn such models?

COLT usually assumes a simple learning scenario called concept learning,
which is (roughly) noise-free binary classification learning.

More complex scenarios often have concept learning at their heart.
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Concept Learning Elements

@ Instance space: a set X. Elements x € X are instances.
o Concept: a subset C C X.

The algorithm should learn to decide whether x € C for any given x € X.
Example: X = animals described as tuples of binary variables

aquatic airborne backbone
X = 0 1 0

C = all mammals.

o Learning examples: the learner must get some instances x € X with
the information whether x € C or not.

Computational Learning Theory




Concept Class

To decide x € C for any given x € X, the learner must be able to compute

C, i.e., the function
lifxeC
c(x) =+ .
0ifx¢ C

e Countable number of computable concepts (any algorithm has a finite
description so their number is countable)

@ But uncountable number of concepts if X infinite, e g. X = N

@ — Non-computable concepts exist.

COLT studies the behavior of learners with respect to selected subsets
C c 2% called concept classes.
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Hypothesis Class

A finite description of a learner’s decision model is called a hypothesis.
Learners use constrained languages (rules, polynomials, graphs, ...) to
encode their hypotheses.

For example, the hypothesis
man A married

which is a logical conjunction defines the ‘bachelor’ concept.

Hypothesis languages are typically not Turing-complete so not all
computable concepts can be expressed by hypotheses.

The set of all hypotheses a learner can express is called its hypothesis class.
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Learning Models

A learning model is an abstract description of real-life machine-learning
scenarios. It defines

@ The learner-environment interaction protocol

@ How learning examples are conveyed to the learner

@ What properties the examples must posses

@ What it means to learn successfully

We will discuss two learning models:

o Mistake Bound Learning
@ Probably Approximately Correct Learning.
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Mistake Bound Model

A very simple model assuming an online interaction: a concept C is chosen
from a fixed concept class and the following is then repeated indefinitely:

@ The learner receives an example x € X
@ It predicts whether x is positive (x € C) or negative (x ¢ C)
© It is told the correct answer

To define the model, we assume there is a measure n of instance
complexity. When X consists of fixed-arity tuples, we set n = their arity.

Denote poly(n) to mean “at most polynomial in n".

In math expressions, f(n) < poly(n) means that f(n) grows at most polynomially.
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Mistake Bound Model

We say that an algorithm learns concept class C if for any C € C, the
number of mistakes it makes is poly(n); if such an algorithm exists, C is
called learnable in the mistake bound model.

We will omit “in the mistake bound model” in this section.

Note that the learner

@ cannot assume anything about the choice of examples (no i.i.d. or
order assumption etc.);

@ which learns C stops making mistakes after a finite number of
decisions.

If an algorithm learns C and the maximum time it uses to process a single
example is also poly(n), we say it learns C efficiently and we call C
efficiently learnable.

Computational Learning Theory Mistake Bound Model



Learning Conjunctions

Assume X = {0,1}" (n € N) and C consists of all concepts expressible
via conjunctions on n variables. Consider the following generalization
algorithm.

O Initial hypothesis h = hihihohs ... hph,
@ Receive example x, decide “yes" iff h true for x (x = h)
© If decision was “no” and was wrong, remove all h's literals false for x

@ If decision was “yes” and was wrong, output “Concept cannot be
described by a conjunction.”

@ Goto?2
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Learning Conjunctions

Let C € C be the concept used to generate the examples and c the
conjunction that encodes it. Observe and explain why:

o Initial h tautologically false, n literals get deleted from it on first
mistake on a positive (in-concept) example, resulting in |h| = n.

e If a literal is in ¢, it is never deleted from h, so ¢ C h (literal-wise).
@ At least one literal is deleted on each mistake.

@ So the max number of mistakes is n+ 1 < poly(n).

Thus the algorithm learns conjunctions (in the MB model) and does so
efficiently (time per example is linear in n).

So conjunctions are efficiently learnable.
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Learning Disjunctions

Efficient learnability of conjunctions implies the same for disjunctions.

If disjunction ¢ defines concept C then T is a conjunction defining the
complementary concept X \ C.

Use any efficient conjunction learner to learn X \ C, so the correct answers
provided to the learner are according to €.

Then negate the hypothesis returned by the algorithm, obtaining a
disjunction for C.
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Learning k-CNF and k-DNF

k-CNF (DNF) is the class of CNF (DNF) formulas whose clauses (terms)
have at most k literals. For example, 3-CNF includes

(aV b)(bVEVd)

k-CNF is efficiently learnable.

With n variables, there are n' = Sk, (7)27 < poly(n) different clauses.

Introduce a new variable for each of the n’ clauses and use an efficient
learner to learn a conjunction on these variables. Then plug the original
clauses for the variables in the resulting conjunction, obtaining a k-CNF
formula. This is efficient due to n’ < poly(n).

Analogically, also k-DNF is efficiently learnable.
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Learning k-term DNF and k-clause CNF

k-term DNF (k-clause CNF): at most k terms (clauses).

No algorithm known for efficient learning of k-term DNF using k-term
DNF as the hypothesis class. Same for k-clause CNF.

But k-term DNF C k-CNF since any k-term DNF can be written as an
equivalent k-CNF by “multiplying-out.” E.g.,

(abc) Vv (de) H (aVvd)(aVe)bVd)(bVe)cVd)(cVe)

So k-term DNF is efficiently learnable by an algorithm using k-CNF as its
hypothesis class. This is called improper learning.

Analogically: k-clause CNF learnable using k-DNF.
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The WINNOW Algorithm

An algorithm to learn linearly separable concepts on { 0,1 }".

Monotone (no negation) conjunctions and monotone disjunctions are
linearly separable. Non-monotone convertible to monotone by doubling the
number of variables.

WINNOW hypothesis space is R", h = [h1, ha, ..., hy]. h; are "weights".
Initially h=[1,1,...1].

Decision rule: decide "yes” if Y°7 | hj-x; > n/2, else "no".

Similar to the well-known perceptron algo. Main difference is the learning
rule.
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The WINNOW Algorithm: Learning rule

Unlike the perceptron, WINNOW adapts weights multiplicatively.
When an example x is misclassified, h changes to H':
e If x is positive (i.e., “false negative”), double all h; where x; = 1:
h, = 2h;
o If x is negative (i.e., “false positive”), nullify all h; where x; = 1:

h; =0

1
Other weights (i, x; = 0) remain same.

Let us develop a mistake bound for WINNOW learning monotone
k-disjunctions, i.e., monotone disjunctions of up to k € N variables.
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The WINNOW Algorithm: Analysis

No weight in h ever becomes negative.
@ Only doublings and nullifications from the initial h = [1,1,...,1]
No weight in h ever exceeds n.

@ Assume for contradiction that some h; < n gets doubled to hj- >n
(i.e., hj > n/2) after an example x.

@ x; = 1 as otherwise h; would not get doubled.

e Doubling occurs only after a false negative so Y i, hj - x; < n/2. But
that contradicts h; > n/2 considering none of h; is negative.
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The WINNOW Algorithm: Analysis

The total increase in weights after a false negative x is at most n/2:

Zh’ Zh_z Z(2h—hx, th,_—

i=1

o first equality due to h: = h; when x; =0
@ second equality due to the doubling rule

@ last inequality due to the decision rule and the fact that x was
classified negative

The total decrease in weights after a false positive x is larger than n/2
(shown analogically).
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The WINNOW Algorithm: Analysis

For the initial hypothesis, >.7 ; hi=>"";1=n.

After N false negatives and P false positives (using the results from the
previous page):

n
n n
0< h; < - —P=
_; _n+J\/2 P2
thus " "
I« Z
732 _n+N2
i.e. (n>0),
P<24N
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The WINNOW Algorithm: Analysis

On each false negative, at least one of the k weights corresponding to the
k variables in the concept disjunction gets doubled. (At least one of these
variables must have been true for the disjunction to be true.)

So after N false negatives, one of them (h;) was doubled at least N'/k
times so N
h; > 2%

N

We have shown that no h; exceeds n. So Ig h; <lgn and

N
lgn> —
gn_k
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The WINNOW Algorithm: Analysis

So we have a bound for the false negatives
N <klgn
and since we have shown that P < 2 + A, we have a total mistake bound

P+N<2+2klgn
The Ig n factor makes WINNOW much faster than the generalization
algorithm or the perceptron when k is a small (k < n) constant.

k < n means a “sparse” target concept disjunction - many irrelevant
attributes.
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