
1B35APO Computer Architectures

Computer Architectures

Branch Prediction and Speculative Execution
Pavel Píša, Richard Šusta, Petr Štěpán
Michal Štepanovský, Miroslav Šnorek

Ver.1.10

Czech Technical University in Prague, Faculty of Electrical Engineering

2B35APO Computer Architectures

What are
Dynamic multiple-issue

processors
aka Superscalar

processors ?

4B35APO Computer Architectures

Definition of Superscalar Processor

Wikipedia:
● In contrast to a scalar processor that can

execute at most one single instruction
per clock cycle, a superscalar processor
can execute more than one instruction
during a clock cycle by simultaneously
dispatching multiple instructions to different
execution units on the processor.

● Q: What does it actually mean "more than
one"?

5B35APO Computer Architectures

A Pipeline That Supports Multiple Outstanding FP Operations

Source of picture: J. L. Hennessy and D. A. Patterson,
Computer Architecture: A Quantitative Approach.

6B35APO Computer Architectures

Pentium 4 - Out-of-order Execution pipeline

[Source: Intel]

7B35APO Computer Architectures

Hyper-Threading

Processor Execution
Resources

Processor Execution
Resources

Arch State Arch State Arch State

Processor with out Hyper-
Threading Technology

Processor with Hyper-
Threading Technology

Ref: Intel Technology Journal, Volume 06 Issue 01, February 14, 2002

8B35APO Computer Architectures

Pentium 4: Netburst Microarchitecture’s execution pipeline

Picture is simplified because the pipeline has actually 20 steps.
The branch miss prediction penalty is here extremely high.

9B35APO Computer Architectures

Sample from: Hyper-Threading Benchtest

No influence on integer arithmetic
performance or memory bandwidth!

Why?

10B35APO Computer Architectures

AMD Bulldozer 15h (FX, Opteron) - 2011

• http://en.wikipedia.org/wiki/File:AMD_Bulldozer_block_diagram_(CPU_core_bloack).PNG

11B35APO Computer Architectures

Intel Nehalem (Core i7) - 2008

12B35APO Computer Architectures

AMD Zen 2 - Microarchitecture

Front End
FP

EX

LS

Schedulers

ALQ3

ALQ0
16 entries

ALQ1

ALQ2

AGQ
28 entries

RCU
Rename/Allocate

ALU0 ALU1 ALU2 ALU3 AGU0
Ld/St

AGU1
Ld/St

AGU2
St

Store Queue
48 entries

Load Queue
44 entries

DAT0 TLB1TLB0 DAT1

LD0 Pick LD1 Pick
Prefetch

ST Pick

STP

MAB

L1 Data Cache
32 KB, 8-way, 64 B/line

Store
Commit

WCB

L1/L2 DTLB,
DC Tags

Rename/Allocate

Scheduling Queue
36 entries

FADD
Pipe 2

FMA
Pipe 1

FADD
Pipe 3

FMA
Pipe 0

LDCVT

Retire Queue
224 entries

Non-Scheduling Queue
64 entries

Dispatch
≤ 6 mops/cycle

Pick

4-way Decoder

Micro-OP Queue

Microcode Sequencer
Microcode ROM

Stack Engine
Memfile

Instruction Byte Queue
20 × 16 B

Instruction Cache
 32 KB , 8-way , 64 B/line

Next Address Logic

L1/L2 BTB, Return Stack, ITA
L1 BTB: 512 , L2 BTB: 7168 , RAS: 32, ITA: 1024 entries

L0/L1/L2 ITLB
L1: 64, L2: 512 entries

L1 Hashed Perceptron
L2 TAGE

Prediction
QueueMicro-Tags

32 B/cycle
from L2

Op Cache
 4 K mops , 8-way, 8 mops/line

≤ 8 mops (≤ 8 x86 instr)

≤ ? mops (≤ 4 x86 instr)

Physical Register File
180 entries

PRFPhysical Register File
160 entries

Forwarding MuxesForwarding Muxes

≤ 6 mops ≤ 4 mops≤ 8 mops

32 B to/from L2 To L2

Competitively shared between threads

Watermarked

Statically partitioned

OC/IC mode

32 B

32 B

32 B

 32 B

To/from L2

32 B

Author: QuietRub
Source: https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

● 7 nm process (from 12 nm), I/O die utilizes 12 nm
● Core (8 cores on CPU chiplet), 6/8/4 µOPs in parallel

● Frontend, µOP cache (4096 entries)
● FPU, 256-bit Eus (256-bit FMAs) and LSU (2x256-bit L/S), 3

cycles DP vector mult latency
● Integer, 180 registers, 3x AGU, scheduler (4x16 ALU + 1x28

AGU)
● Reorder Buffer 224 entries

● Memory subsystem
● L1 i-cache and d-cache, 32 KiB each, 8-way associative
● L2 512 KiB per core, 8-way,
● L2 DTLB 2048-entry
● 48 entry store queue

● CCX
● L3, slices, 2x 16 MiB
● L3 latency (~40 cycles)

● In-silicon Spectre enhancements
● I/O, PCIe 4.0, Infinity Fabric 2, 25 GT/s

https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

13B35APO Computer Architectures

AMD Zen 2 - Microarchitecture

512KL2 (I+D)
Cache
8-way

32K D-Cache
8-way

Load/Store
Queues

2 loads +1 store per cycle

ALU ALU ALU ALU AGU AGU AGU MUL ADD MUL ADD

FP Register File

Scheduler

Floating Point Rename

FLOATING POINT

Integer Physical Register File

Integer Rename

INTEGER

32 K I-Cache
8-way

Decode

µOp Queue

Branch Prediction

Op Cache

µOps4 instructions/cycle

6 µOps dispatched

Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler

Control Hazards

15B35APO Computer Architectures

Control Hazards

● Jump and Branch processing and decision is
significant obstacle for pipelined execution.

● Jump instruction needs only the jump target
address

● Branch instruction depends on two sources:
● Branch Result Taken or Not Taken
● Branch Target Address

 Example of MIPS beq and bne:
● PC + 4 If Branch is NOT Taken
● PC + 4 + 4 × immediate If Branch is Taken

16B35APO Computer Architectures

Benchtests of Branch Statistics

• Branches occur every 4-7 instructions on average in integer
programs, commercial and desktop applications;
somewhat less frequently in scientific ones :-)

• Unconditional branches : approx. 20% (of branches)

• Conditional branches approx. 80% (of branches)

• 66% is forward. Most of them (~60%) are often Not Taken.

• 33% is backward. Almost all of them are Taken.

• We can estimate the probability that a branch is taken
ptaken = 0.2 + 0.8* (0.66 * 0.4 + 0.33) = 0.67

In fact, many simulations show that ptaken is from 60 to 70%.

See: Lizy Kurian John, Lieven Eeckhout:
Performance Evaluation and Benchmarking, CRC Press 2018

17B35APO Computer Architectures

Branch prediction – Motivation

Instruction / decode buffer

Dispatch buffer

Reservation
stations

Reorder /
Completion buffer

Store buffer

Branch

Decode

Fetch

Complete

Retire

Dispatch

Issue

Finish

Execute

• the penalty of three
cycles in fetching the

next instruction;
• number of empty

instruction slots
multiplied by the width of

the superscalar
machine;

• Amdahl’s law..

18B35APO Computer Architectures

Branch prediction – Motivation

Instruction / decode buffer

Dispatch buffer

Reservation
stations

Reorder /
Completion buffer

Store buffer

Branch

Decode

Fetch

Complete

Retire

Dispatch

Issue

Finish

Execute

Register
indirect with

offset

Register
indirect

PC-
relative

AMD Athlon: 10 stages in integer pipeline
Intel NetBurst (Pentium 4): 20 stages

19B35APO Computer Architectures

Branch prediction

● Two fundamental components:
• branch target speculation (where is next instruction),
• branch condition speculation (if the branch is taken).

● Branch target speculation:
• BTB (Branch Target Buffer) – cache (associative

memory) with two fields: BIA (Branch Instruction
Address) and BTA (Branch Target Adress) –
accessed during the instruction fetch using the
instruction fetch address (PC)

• When BIA matches with current PC, the corresponding
BTA is accessed and if the branch instruction is
predicted to be taken, BTA is used to modify PC

20B35APO Computer Architectures

One-bit Branch Prediction (usually local)

• A one-bit prediction scheme:
a one “history bit” tells what happened on the last branch
instruction execution:

• History bit = 1, branch was previously Taken
• History bit = 0, branch was previously Not taken

Predict
 branch

 not taken
0

Predict
 branch
taken

1

taken

taken

Not taken

Not taken

21B35APO Computer Architectures

Branch Prediction for a Loop – One Bit predictor

I = 0

I = I + 1

I – 10 = 0?

Store X in
memory

 X = X + R(I)

Y

N

1

2

3

4

5

Execu-
tion
seq.

Old
hist.
bit

Next instr.
New
hist.
bit

Predicti
onPred. I Act.

1 0 5 1 2 1 Bad

2 1 2 2 2 1 Good

3 1 2 3 2 1 Good

4 1 2 4 2 1 Good

5 1 2 5 2 1 Good

6 1 2 6 2 1 Good

7 1 2 7 2 1 Good

8 1 2 8 2 1 Good

9 1 2 9 2 1 Good

10 1 2 10 5 0 Bad

Execution of Instruction 4

bit = 0 branch not taken, bit = 1 branch taken.

22B35APO Computer Architectures

Demonstration in MARS MIPS Simulator

● MARS (MIPS Assembler and Runtime Simulator)

http://courses.missouristate.edu/kenvollmar/mars/
start: addi $v0, $zero, 0 # cycles = 0

addi $s1, $zero, 3
L1: # for (i = 3; i !=0; i--)

addi $s2, $zero, 5 # i = 3
L2: # for (j = 5; j !=0; j--)

addi $s3, $zero, 4
L3: # for (k = 4; k !=0; k--)

addi $v0, $v0, 1 # cycles++
addi $s3, $s3, -1 # k--
bne $s3, $zero, L3 # if (k != 0) goto L3

addi $s2, $s2, -1 # j--
bne $s2, $zero, L2 # if (j != 0) goto L2

addi $s1, $s1, -1 # i--
bne $s1, $zero, L1 # if (i != 0) goto L1

break

http://courses.missouristate.edu/kenvollmar/mars/

23B35APO Computer Architectures

Typical Organization of Branch Prediction Table

HashPC (32 bits) 2N entries

Prediction

N bits

FSM
Update
Logic

table update

Actual outcome

………

Note: FSM - Finite State Machine (cz: konečný automat)

● the simplest implementation
of hashing is to use the N
least significant bits of the
address

● excluding the two lowest
bits, which are zero

24B35APO Computer Architectures

Simple Dynamic Local Branch Predictor

for (i=0; i<100; i++)
 { if (arr[i] == 0) { … }
 …
 }

T

NT

T

T

NT

NT

.

.

.

 0x400100F8 la $18, arr
 0x400100FC addi $10, $0, 100
 0x40010100 or $1, $0, $0
Loop1:
 0x40010104 sll $3, $1, 2
 0x40010108 add $19, $18, $3
 0x4001010c lw $2, ($19)
 0x40010210 beq $2, $0, Loop2
 … …

 0x40010214 beq $0, $0, Loop3
Loop2:
 … … …
Loop3:
 0x40010B08 addi $1, $1, 1
 0x40010B0c bne $1, $10, Loop1

NT

T

1-bit
Branch
History
Table

T

NT

25B35APO Computer Architectures

Interference of Local Branch Predictor

T

NT

T

T

NT

NT

.

.

.

 … …

 0x40010210 beq $2, $0, Loop2
 … …

 0x40010310 beq $0, $0, Loop3
 … …

NT

T

1-bit
Branch
History
Table

T

NT

● interference of two different branches
● the behaviour of one branch

influences the prediction of the other

26B35APO Computer Architectures

Two-Bit Prediction Buffer Type I

● Smith’s algorithm (2-bit saturating counter)

Branch address

incrementation /
decrementation

of counter

Updated value

Actual branch outcomePrediction (MSB bit)

m

2
m
 k-bit counters

Source: wikipedia

27B35APO Computer Architectures

Two-Bit Prediction Buffer Type I

● Smith’s algorithm (2-bit saturating counter). This one has
no hysteresis.

Predict
 branch

 not taken
00

Predict
 branch
 taken

10

Predict
 branch
 taken

11

Predict
 branch

 not taken
01

taken

taken

taken

taken

Not taken

Not taken

Not taken

Not taken

Weakly Not Taken

Strongly Taken Weakly Taken

Strongly Not Taken

28B35APO Computer Architectures

Branch Prediction for a Loop – Smith's Predictor

I = 0

I = I + 1

I – 10 = 0?

Store X in
memory

 X = X + R(I)

Y

N

1

2

3

4

5

Execu
-tion
seq.

Old

Pred.
Buf

Next instr.
New
pred.
Buf

Predi
ctionPred. I Act.

1 10 2 1 2 11 Good

2 11 2 2 2 11 Good

3 11 2 3 2 11 Good

4 11 2 4 2 11 Good

5 11 2 5 2 11 Good

6 11 2 6 2 11 Good

7 11 2 7 2 11 Good

8 11 2 8 2 11 Good

9 11 2 9 2 11 Good

10 11 2 10 5 10 Bad

Execution of Instruction 4

29B35APO Computer Architectures

Two-Bit Prediction Buffer Type II.

This 2-bit saturating counter was modified by adding hysteresis.
Prediction must miss twice before it is changed.

Weakly Not Taken

Predict
 branch

 not taken
01

Predict
 branch
 taken

10

Predict
 branch
 taken

11

Predict
 branch

 not taken
00

taken

taken

taken

taken

Not taken

Not taken

Not taken

Not taken

Strongly Taken Weakly Taken

Strongly Not Taken

30B35APO Computer Architectures

Example of Results of Benchtest

Source: https://ieeexplore.ieee.org/document/6918861
H. Arora, S. Kotecha and R. Samyal, "Dynamic Branch Prediction Modeller for
RISC Architecture," 2013 International Conference on Machine Intelligence and
Research Advancement, Katra, 2013, pp. 397-401.

Note: This study has used saturating counter with hysteresis (type II).

Here, a higher number
means the better

prediction

https://ieeexplore.ieee.org/document/6918861

31B35APO Computer Architectures

Correlating Predictors with Local Predictors

We can look at other branches for clues

if (x==2) // branch b1
…

if (y==2) // branch b2
…

if(x!=y) { … } // branch b3 depends on the
results of b1 and b2

32B35APO Computer Architectures

Branch Condition Prediction – Global Predictor

● Global-History Two-Level Branch Predictor with a 4-bit
Branch History Register

PC = 0101001110110100

BHR (Branch
History Register)

PHT (Pattern History Table)

Prediction (MSB bit)
0110

000000
000001
000010

111111
111110
111101

01 0110 010110

Branch Address

What is the optimal number of bits for BHR a for BA?

33B35APO Computer Architectures

Branch Condition Prediction – Global Predictor

● Global-History Two-Level Branch Predictor with a 4-bit
Branch History Register

● Why use global history for PHT indexation?

a=0;
if(condition #1) a=3;
if(condition #2) b=10;
if(a <= 0) F();

● The behavior of a branch may be connected (or correlated) with a
different branches conditions evaluation in the past.

● In our example, execution of function F() depends on the
condition #1. The condition #2 is irrelevant. Predictor must be able to
learn this behavior (distinguish these branch conditions).

34B35APO Computer Architectures

(2,1) Correlated predictor

P00
This predictor is
used if the
previous 2
branches in the
program
have both status
Not taken.

P01
This predictor is
used if the
previous 2
branches have
history: 2nd last
branch Not taken,
and the last
branch Taken

P10
This predictor is
used if the
previous 2
branches have
history: 2nd last
branch Taken,
and the last
branch Not taken.

P11
This predictor is
used if the
previous 2
branches in the
program
have both status
Taken.

P00 | P01 | P10 | P11

A (2,1) correlated branch predictor
• (2,1) means 22 =4 predictors buffers each contains 1 bit
• and uses the behavior of the last 2 branches to choose

from 22 predictors.

We use 4 predictors:

35B35APO Computer Architectures

Branch Condition Prediction – Global Predictor

● Gshare – better use all available predictors

PC = 0101001110110100

BHR (Branch
History Register)

PHT (Pattern History Table)

Prediction (MSB bit)
110110

000000
000001
000010

111111
111110
111101

011011 010110

Branch Address

Xor mix all predictor in “random” way.

xor

36B35APO Computer Architectures

Perceptron Predictors

37B35APO Computer Architectures

AMD Zen2 Branch Prediction

● Input for perceptron is BHR Branch History Register
● Branch Address select weight for perceptron
● Incorrect prediction change weights for next prediction

● 10% improve prediction results than gshare (2,2)
● Can utilize longer branch histories

38B35APO Computer Architectures

AMD Zen2 Branch Prediction

● Perceptron is relatively slow, computation in real
arithmetic, fixed point or floating point

● Real implementation 3 level of predictors
● 1st level very fast, 0 clock delay, 16 predictors
● 2nd level fast and better prediction, 1 clock delay, 512

predictors
● 3rd level best prediction, 4 clock delay, 7168 predictors
● Better predictor can improve prediction or confirm fast

prediction
● The average misprediction penalty was measured to

approximately 18 clock cycles.

39B35APO Computer Architectures

Prediction in CPU

Source of picture: Analyzing Zen 2’s Cinebench R15 Lead
By clamchowder from https://chipsandcheese.com

40B35APO Computer Architectures

Tournament Predictors

• Motivation for correlating branch predictors is
2-bit predictor failed on important branches; by adding
global information, performance was improved.

• Tournament predictors: use 2 predictors, 1 based on
global information and 1 based on local information
(local branch was taken, not taken), and combine them
with a selector.

• They use n-bit saturating counter to choose between
predictors.

• Hopes to select right predictor for right branch.

41B35APO Computer Architectures

Benchtest of Accuracy – Test for Tournament Predictor

Total predictor size KBytes

2-bit predictor

42B35APO Computer Architectures

Prediction of indirect jumps

● Indirect jump is instruction from CISC processor:
● jump to address from memory
● lw s0,mem + jalr 0(s0) - jump to address from mem
● reading from memory is slow

● New type of prediction – where to jump
● Use last value from this address
● Have more values and select by predictor

● RET – return from function
● Is indirect jump, in RISC V - lw s0,*(stack--) + jalr 0(s0)
● CPU have local copy of address from stack for fast address

prediction
● Usually 4-32(Zen2) values

43B35APO Computer Architectures

A Small Example How to Avoid Branches

On web, you can found out many tricks suitable for time critical loops. This example
present how to calculate absolute value of 32 bit signed integer x without branches.

Fast C code MIPS if x in $2 Comment

int tmp = x>>31; sra $1, $2, 31 // tmp = x<0 ? -1 : 0

x ^= tmp; xor $2, $2, $1 // 1st compliment of x, if tmp=-1

x -= tmp; sub $2, $2, $1 // add 1 if tmp = 1

Code with unpredictable branch dependable on data
C code MIPS if x in $2 Comment

if(x<0) x=-x; slt $1, $2, $0 // tmp = x<0 ? 1 : 0

beq $1, $0, Skip1 // if(tmp==0) goto Skip

nop // delay slot

sub $2, $0, $2 // x = - x;

Skip1: …

Note: On MIPS with static prediction, we save just 1 instruction. If we compile the C code for
an Intel processor with longer pipeline, then a branch miss-prediction is more expensive.

44B35APO Computer Architectures

A Small Example How to Avoid Branches

● Removal of branches using tables:

a = (b) ? c : d;

replace by:

static const type lookup_table[] = { d, c };

a = lookup_table[b];
● More complicated branches:

a = b1 ? c : b2 ? d : b3 ? e : f;

replace by:

static const type lookup_table[] = { f, e, d, d, c, c, c, c };

a = lookup_table[b1 * 4 + b2 * 2 + b3];

	Pipelined Instruction Execution
	Spring in Czechia
	Slide 3
	Definition of Superscalar Processor
	A Pipeline That Supports Multiple Outstanding FP Operations
	Pentium 4 - Out-of-order Execution pipeline
	Hyper-Threading
	Pentium 4: Netburst Microarchitecture’s execution pipeline
	Sample from: Hyper-Threading Benchtest
	AMD Bulldozer 15h (FX, Opteron) - 2011
	Intel Nehalem (Core i7) - 2008
	AMD Zen 2 - Microarchitecture
	Slide 13
	Slide 14
	Control Hazards
	Benchtests of Branch Statistics
	Branch prediction – Motivation
	Branch prediction – Motivation
	Branch prediction
	One-bit Branch Prediction (usually local)
	Branch Prediction for a Loop – One Bit predictor
	Demonstration in MARS MIPS Simulator
	Typical Organization of Branch Prediction Table
	Simple Dynamic Local Branch Predictor
	Slide 25
	Two-Bit Prediction Buffer Type I
	Two-Bit Prediction Buffer Type I 1
	Branch Prediction for a Loop – Smith's Predictor
	Two-Bit Prediction Buffer Type II.
	Example of Results of Benchtest
	Correlating Predictors with Local Predictors
	Branch Condition Prediction – Global Predictor
	Branch Condition Prediction – Global Predictor 1
	(2,1) Correlated predictor
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Correlating Predictors in SPEC89
	Tournament Predictors
	Benchtest of Accuracy – Test for Tournament Predictor
	Slide 42
	A Small Example How to Avoid Branches
	Slide 44

