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What are 
Dynamic multiple-issue 

processors
aka Superscalar 

processors ?
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Definition of Superscalar Processor

Wikipedia:
● In contrast to a scalar processor that can 

execute at most one single instruction 
per clock cycle, a superscalar processor 
can execute more than one instruction 
during a clock cycle by simultaneously 
dispatching multiple instructions to different 
execution units on the processor. 

● Q: What does it actually mean "more than 
one"?
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A Pipeline That Supports Multiple Outstanding FP Operations

Source of picture: J. L. Hennessy and D. A. Patterson, 
Computer Architecture: A Quantitative Approach.
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Pentium 4 - Out-of-order Execution pipeline

[ Source: Intel ]
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Hyper-Threading

Processor Execution 
Resources

Processor Execution 
Resources

Arch State Arch State Arch State

Processor with out Hyper-
Threading Technology

Processor with Hyper-
Threading Technology

Ref: Intel Technology Journal, Volume 06 Issue 01, February 14, 2002
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Pentium 4: Netburst Microarchitecture’s execution pipeline

Picture is simplified because the pipeline has actually 20 steps. 
The branch miss prediction penalty is here extremely high.
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Sample from: Hyper-Threading Benchtest

No influence on integer arithmetic 
performance or memory bandwidth! 

Why?
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AMD Bulldozer 15h (FX, Opteron) - 2011

• http://en.wikipedia.org/wiki/File:AMD_Bulldozer_block_diagram_(CPU_core_bloack).PNG
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Intel Nehalem (Core i7) - 2008
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AMD Zen 2 - Microarchitecture

Front End
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Schedulers
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28 entries
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Rename/Allocate

ALU0 ALU1 ALU2 ALU3 AGU0 
Ld/St

AGU1 
Ld/St
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Store Queue 
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Load Queue 
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STP
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L1 Data Cache 
32 KB, 8-way, 64 B/line

Store 
Commit
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DC Tags

Rename/Allocate

Scheduling Queue 
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Pipe 1
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Pipe 3
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Retire Queue 
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Microcode Sequencer 
Microcode ROM

Stack Engine 
Memfile

Instruction Byte Queue 
20 × 16 B

Instruction Cache 
  32 KB ,  8-way , 64 B/line

Next Address Logic

L1/L2 BTB, Return Stack, ITA 
L1 BTB:  512 , L2 BTB:  7168 , RAS: 32, ITA:  1024  entries

L0/L1/L2 ITLB 
L1: 64, L2: 512 entries

L1 Hashed Perceptron 
L2 TAGE
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QueueMicro-Tags

32 B/cycle 
from L2

Op Cache 
  4 K mops , 8-way, 8 mops/line

                                                                                                                                                                                                                                                               

≤  8 mops (≤ 8 x86 instr)

≤  ? mops (≤ 4 x86 instr)

Physical Register File 
180 entries

PRFPhysical Register File 
160 entries

Forwarding MuxesForwarding Muxes

≤  6 mops ≤  4 mops≤  8 mops

32 B to/from L2 To L2

Competitively shared between threads

Watermarked

Statically partitioned

OC/IC mode

32 B

32 B

32 B

  32 B

To/from L2

32 B

Author: QuietRub
Source: https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

● 7 nm process (from 12 nm), I/O die utilizes 12 nm
● Core (8 cores on CPU chiplet),  6/8/4 µOPs in parallel

● Frontend, µOP cache (4096 entries)
● FPU, 256-bit Eus (256-bit FMAs) and LSU (2x256-bit L/S), 3 

cycles DP vector mult latency
● Integer, 180 registers, 3x AGU, scheduler (4x16 ALU + 1x28 

AGU)
● Reorder Buffer 224 entries

● Memory subsystem
● L1 i-cache and d-cache, 32 KiB each,  8-way associative
● L2 512 KiB per core, 8-way, 
● L2 DTLB 2048-entry
● 48 entry store queue

● CCX
● L3, slices, 2x 16 MiB
● L3 latency (~40 cycles)

● In-silicon Spectre enhancements
● I/O, PCIe 4.0, Infinity Fabric 2, 25 GT/s

https://en.wikichip.org/wiki/amd/microarchitectures/zen_2
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AMD Zen 2 - Microarchitecture

512KL2 (I+D)
Cache
8-way

32K D-Cache
8-way

Load/Store
Queues

2 loads +1 store per cycle

ALU ALU ALU ALU AGU AGU AGU MUL ADD MUL ADD

FP Register File

Scheduler

Floating Point Rename

FLOATING POINT

Integer Physical Register File

Integer Rename

INTEGER

32 K I-Cache
8-way

Decode

µOp Queue

Branch Prediction

Op Cache

µOps4 instructions/cycle

6 µOps dispatched

Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler



Control Hazards
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Control Hazards

● Jump and Branch processing and decision is 
significant obstacle for pipelined execution.

● Jump instruction needs only the jump target 
address

● Branch instruction depends on two sources:
● Branch Result Taken or Not Taken
● Branch Target Address

      Example of MIPS beq and bne:
● PC + 4 If Branch is NOT Taken
● PC + 4 + 4 × immediate If Branch is Taken
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Benchtests of Branch Statistics

• Branches occur every 4-7 instructions on average in integer 
programs, commercial and desktop applications; 
somewhat less frequently in scientific ones :-)

• Unconditional branches : approx. 20% (of branches)

• Conditional branches approx. 80% (of branches)

• 66% is forward. Most of them (~60%) are often Not Taken.

• 33% is backward. Almost all of them are Taken.

• We can estimate the probability that a branch is taken
ptaken = 0.2 + 0.8* (0.66 * 0.4 + 0.33) = 0.67 

In fact, many simulations show that ptaken is from 60 to 70%.

See: Lizy Kurian John, Lieven Eeckhout: 
Performance Evaluation and Benchmarking, CRC Press 2018
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Branch prediction – Motivation 

Instruction / decode buffer

Dispatch buffer

Reservation 
stations

Reorder / 
Completion buffer

Store buffer

Branch

Decode

Fetch

Complete

Retire

Dispatch

Issue

Finish

Execute

• the penalty of three 
cycles in fetching the 

next instruction; 
• number of empty 

instruction slots 
multiplied by the width of 

the superscalar 
machine;

• Amdahl’s law..
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Branch prediction – Motivation

Instruction / decode buffer

Dispatch buffer

Reservation 
stations

Reorder / 
Completion buffer

Store buffer

Branch

Decode

Fetch

Complete

Retire

Dispatch

Issue

Finish

Execute

Register 
indirect with 

offset

Register 
indirect

PC-
relative

AMD Athlon: 10 stages in integer pipeline
Intel NetBurst (Pentium 4): 20 stages
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Branch prediction

● Two fundamental components:
• branch target speculation (where is next instruction),
• branch condition speculation (if the branch is taken).

● Branch target speculation:
• BTB (Branch Target Buffer) – cache (associative 

memory) with two fields: BIA (Branch Instruction 
Address) and BTA (Branch Target Adress) –  
accessed during the instruction fetch using the 
instruction fetch address (PC)

• When BIA matches with current PC, the corresponding 
BTA is accessed and if the branch instruction is 
predicted to be taken, BTA is used to modify PC
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One-bit Branch Prediction (usually local)

• A one-bit prediction scheme: 
a one “history bit” tells what happened on the last branch 
instruction execution:

• History bit = 1, branch was previously Taken
• History bit = 0, branch was previously Not taken

Predict
 branch

 not taken
0

Predict
 branch
taken

1

taken

taken

Not taken

Not taken
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Branch Prediction for a Loop – One Bit predictor

I = 0

I = I + 1

I – 10 = 0?

Store X in 
memory

 X = X + R(I)

Y

N

1

2

3

4

5

Execu-
tion 
seq.

Old
hist.
bit

Next instr.
New 
hist. 
bit

Predicti
onPred. I Act.

1 0 5 1 2 1 Bad

2 1 2 2 2 1 Good

3 1 2 3 2 1 Good

4 1 2 4 2 1 Good

5 1 2 5 2 1 Good

6 1 2 6 2 1 Good

7 1 2 7 2 1 Good

8 1 2 8 2 1 Good

9 1 2 9 2 1 Good

10 1 2 10 5 0 Bad

Execution of Instruction 4

bit = 0 branch not taken, bit = 1 branch taken.
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Demonstration in MARS MIPS Simulator

● MARS (MIPS Assembler and Runtime Simulator) 

http://courses.missouristate.edu/kenvollmar/mars/
start: addi $v0, $zero, 0 # cycles = 0

addi $s1, $zero, 3
L1: # for (i = 3; i !=0; i--)

addi $s2, $zero, 5 # i = 3
L2: # for (j = 5; j !=0; j--)

addi $s3, $zero, 4
L3: # for (k = 4; k !=0; k--)

addi $v0, $v0, 1 # cycles++
addi $s3, $s3, -1 # k--
bne  $s3, $zero, L3 # if (k != 0) goto L3

addi $s2, $s2, -1 # j--
bne  $s2, $zero, L2 # if (j != 0) goto L2

addi $s1, $s1, -1 # i--
bne  $s1, $zero, L1 # if (i != 0) goto L1

break

http://courses.missouristate.edu/kenvollmar/mars/
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Typical Organization of Branch Prediction Table

HashPC (32 bits) 2N entries

Prediction

N bits

FSM
Update
Logic

table update

Actual outcome

………

Note: FSM - Finite State Machine (cz: konečný automat)

● the simplest implementation 
of hashing is to use the N 
least significant bits of the 
address

● excluding the two lowest 
bits, which are zero 
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Simple Dynamic Local Branch Predictor

for (i=0; i<100; i++) 
  {  if (arr[i] == 0) {  … }      
       …
   }

T

NT

T

T

NT

NT

.

.

.

 0x400100F8 la $18, arr
 0x400100FC       addi  $10, $0, 100
 0x40010100 or  $1,  $0,  $0
Loop1:
 0x40010104 sll      $3, $1, 2
 0x40010108 add    $19, $18, $3
 0x4001010c       lw      $2, ($19)
 0x40010210 beq    $2, $0, Loop2
 … …

 0x40010214 beq    $0, $0, Loop3
Loop2:
      … … …
Loop3:
 0x40010B08 addi   $1, $1,   1
 0x40010B0c bne    $1, $10, Loop1

NT

T

1-bit
Branch
History 
Table

T

NT
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Interference of Local Branch Predictor

T

NT

T

T

NT

NT

.

.

.

 … …

 0x40010210 beq    $2, $0, Loop2
 … …

 0x40010310 beq    $0, $0, Loop3
 … … 

NT

T

1-bit
Branch
History 
Table

T

NT

● interference of two different branches
● the behaviour of one branch 

influences the prediction of the other
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Two-Bit Prediction Buffer Type I

● Smith’s algorithm (2-bit saturating counter)

Branch address

incrementation / 
decrementation 

of counter

Updated value

Actual branch outcomePrediction (MSB bit)

m

2 
m
  k-bit counters

Source: wikipedia



27B35APO   Computer Architectures

Two-Bit Prediction Buffer Type I

● Smith’s algorithm (2-bit saturating counter). This one has 
no hysteresis.

Predict
 branch

 not taken
00

Predict
 branch
 taken

10

Predict
 branch
 taken

11

Predict
 branch

 not taken
01

taken

taken

taken

taken

Not taken

Not taken

Not taken

Not taken

Weakly Not Taken

Strongly Taken Weakly Taken

Strongly Not Taken
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Branch Prediction for a Loop – Smith's Predictor 

I = 0

I = I + 1

I – 10 = 0?

Store X in 
memory

 X = X + R(I)

Y

N

1

2

3

4

5

Execu
-tion 
seq.

Old

Pred.
Buf

Next instr.
New 
pred.
Buf

Predi
ctionPred. I Act.

1 10 2 1 2 11 Good

2 11 2 2 2 11 Good

3 11 2 3 2 11 Good

4 11 2 4 2 11 Good

5 11 2 5 2 11 Good

6 11 2 6 2 11 Good

7 11 2 7 2 11 Good

8 11 2 8 2 11 Good

9 11 2 9 2 11 Good

10 11 2 10 5 10 Bad

Execution of Instruction 4
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Two-Bit Prediction Buffer Type II.

This 2-bit saturating counter was modified by adding hysteresis. 
Prediction must miss twice before it is changed. 

Weakly Not Taken

Predict
 branch

 not taken
01

Predict
 branch
 taken

10

Predict
 branch
 taken

11

Predict
 branch

 not taken
00

taken

taken

taken

taken

Not taken

Not taken

Not taken

Not taken

Strongly Taken Weakly Taken

Strongly Not Taken
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Example of Results of Benchtest

Source: https://ieeexplore.ieee.org/document/6918861
H. Arora, S. Kotecha and R. Samyal, "Dynamic Branch Prediction Modeller for 
RISC Architecture," 2013 International Conference on Machine Intelligence and 
Research Advancement, Katra, 2013, pp. 397-401.

Note: This study has used saturating counter with hysteresis (type II).

Here, a higher number 
means the better 

prediction

https://ieeexplore.ieee.org/document/6918861
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Correlating Predictors with Local Predictors

We can look at other branches for clues

if (x==2)   // branch b1
…

if (y==2)   // branch b2
…

if(x!=y)  { … }  // branch b3 depends on the 
results of b1 and b2
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Branch Condition Prediction – Global Predictor

● Global-History Two-Level Branch Predictor with a 4-bit 
Branch History Register

PC = 0101001110110100

BHR (Branch 
History Register)

PHT (Pattern History Table)

Prediction (MSB bit)
0110

000000
000001
000010

111111
111110
111101

01 0110 010110

Branch Address

What is the optimal number of bits for BHR a for BA?  
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Branch Condition Prediction – Global Predictor

● Global-History Two-Level Branch Predictor with a 4-bit 
Branch History Register

● Why use global history for PHT indexation?

a=0;
if(condition #1)   a=3;
if(condition #2)   b=10;
if(a <= 0)  F();

● The behavior of a branch may be connected (or correlated) with a 
different branches conditions evaluation in the past.

● In our example, execution of function F() depends on the 
condition #1. The condition #2 is irrelevant. Predictor must be able to 
learn this behavior (distinguish these branch conditions).
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(2,1) Correlated predictor

P00
This predictor is 
used if the 
previous 2
branches in the 
program
have both status
Not taken.

P01
This predictor is 
used if the 
previous 2
branches have 
history: 2nd last
branch Not taken,
and the last 
branch Taken 

P10
This predictor is 
used if the 
previous 2
branches have 
history: 2nd last
branch Taken,
and the last 
branch Not taken. 

P11
This predictor is 
used if the 
previous 2
branches in the 
program
have both status
Taken.

P00 | P01 | P10 | P11

A (2,1) correlated branch predictor
• (2,1) means 22 =4 predictors buffers each contains 1 bit
• and uses the behavior of the last 2 branches to choose 

from 22 predictors.

We use 4 predictors:
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Branch Condition Prediction – Global Predictor

● Gshare – better use all available predictors

PC = 0101001110110100

BHR (Branch 
History Register)

PHT (Pattern History Table)

Prediction (MSB bit)
110110

000000
000001
000010

111111
111110
111101

011011 010110

Branch Address

Xor mix all predictor in “random” way.  

xor
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Perceptron Predictors
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AMD Zen2 Branch Prediction

● Input for perceptron is BHR Branch History Register
● Branch Address select weight for perceptron
● Incorrect prediction change weights for next prediction

● 10% improve prediction results than gshare (2,2)
● Can utilize longer branch histories 
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AMD Zen2 Branch Prediction

● Perceptron is relatively slow, computation in real 
arithmetic, fixed point or floating point 

● Real implementation 3 level of predictors
● 1st level very fast, 0 clock delay, 16 predictors
● 2nd level fast and better prediction, 1 clock delay, 512 

predictors
● 3rd level best prediction, 4 clock delay, 7168 predictors
● Better predictor can improve prediction or confirm fast 

prediction
● The average misprediction penalty was measured to 

approximately 18 clock cycles.
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Prediction in CPU

Source of picture: Analyzing Zen 2’s Cinebench R15 Lead
By clamchowder from https://chipsandcheese.com
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Tournament Predictors

• Motivation for correlating branch predictors is 
2-bit predictor failed on important branches; by adding 
global information, performance was improved.

• Tournament predictors: use 2 predictors, 1 based on 
global information and 1 based on local information 
(local branch was taken, not taken), and combine them 
with a selector.

• They use n-bit saturating counter to choose between 
predictors.

• Hopes to select right predictor for right branch.
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Benchtest of Accuracy – Test for Tournament Predictor

Total predictor size KBytes

2-bit predictor
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Prediction of indirect jumps

● Indirect jump is instruction from CISC processor:
● jump to address from memory
● lw s0,mem + jalr 0(s0)  - jump to address from mem
● reading from memory is slow

● New type of prediction – where to jump
● Use last value from this address
● Have more values and select by predictor

● RET – return from function
● Is indirect jump, in RISC V - lw s0,*(stack--) + jalr 0(s0)
● CPU have local copy of address from stack for fast address 

prediction
● Usually 4-32(Zen2) values
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A Small Example How to Avoid Branches 

On web, you can found out many tricks suitable for time critical loops. This example 
present how to calculate absolute value of 32 bit signed integer x without branches.

Fast C code MIPS if x in $2 Comment

int tmp = x>>31; sra $1, $2, 31 //  tmp = x<0 ? -1 : 0

x ^= tmp; xor $2, $2, $1 //  1st compliment of x, if tmp=-1

x -= tmp; sub $2, $2, $1 //  add 1 if tmp = 1

Code with unpredictable branch dependable on data
C code MIPS if x in $2 Comment

if(x<0) x=-x; slt  $1, $2, $0 //  tmp = x<0 ? 1 : 0

beq $1, $0, Skip1 //  if(tmp==0) goto Skip

nop // delay slot

sub $2, $0, $2 //  x = - x;

Skip1: …

Note: On MIPS with static prediction, we save just 1 instruction. If we compile the C code for 
an Intel processor with longer pipeline, then a branch miss-prediction is more expensive.   
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A Small Example How to Avoid Branches

● Removal of branches using tables:

a = (b) ? c : d;

replace by:

static const type lookup_table[] = { d, c };

a = lookup_table[b];
● More complicated branches:

a = b1 ? c : b2 ? d : b3 ? e : f;

replace by:

static const type lookup_table[] = { f, e, d, d, c, c, c, c };

a = lookup_table[b1 * 4 + b2 * 2 + b3];
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