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2.1.3 Eigenvectors of R.

Let us now look at eigenvectors of R and let’s first investigate the situation
when all eigenvalues of R are real.

§1 λ1 “ λ2 “ λ3 “ 1: Let λ1 “ λ2 “ λ3 “ 1. Then ppλq “ pλ ´ 1q3 “
λ3 ´ 3λ2 ` 3λ ´ 1. It means that r11 ` r22 ` r33 “ 3 and since r11 ď 1,
r22 ď 1, r33 ď 1, it leads to r11 “ r22 “ r33 “ 1, which implies R “ I. Then
I´ R “ 0 and all non-zero vectors of R3 are eigenvectors of R. Notice that
rank of R´ I is zero in this case.

Next, consider λ1 “ 1 and λ2 “ λ3 “ ´1. The eigenvectors "v corre-
sponding to λ2 “ λ3 “ ´1 are solutions to

R "v “ ´"v (2.17)

There is always at least one one-dimensional space of such vectors. We
also see that there is a rotation matrix

R “

»

–

1 0 0
0 ´1 0
0 0 ´1

fi

fl (2.18)

with real eigenvectors

r

»

–

1
0
0

fi

fl , r ‰ 0, and s

»

–

0
1
0

fi

fl ` t

»

–

0
0
1

fi

fl , s2 ` t2 ‰ 0, (2.19)

which means that there is a one-dimensional space of real eigenvectors
corresponding to 1 and a two-dimensional space of real eigenvectors cor-
responding to ´1. Notice that rank of R´ I is two here.
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§2 λ1 “ 1,λ2 “ λ3 “ ´1: How does the situation look for a general R
with eigenvalues 1,´1,´1? Consider an eigenvector "v1 corresponding to 1
and an eigenvector"v2 corresponding to ´1. They are linearly independent.
Otherwise there has to be s P R such that "v2 “ s "v1 ‰ 0 and then

"v2 “ s "v1 (2.20)

R "v2 “ s R "v1 (2.21)

´"v2 “ s "v1 (2.22)

leading to s “ ´s and therefore s “ 0 which contradicts "v2 ‰ 0. Now, let
us look at vectors "v3 P R3 defined by

„

"vJ
1
"vJ

2



"v3 “ 0 (2.23)

The above linear system has a one-dimensional space of solutions since
the rows of its matrix are independent. Chose a fixed solution "v3 ‰ 0.
Then

„

"vJ
1
"vJ

2



RJ "v3 “

„

"vJ
1 R

J

"vJ
2 R

J



"v3 “

„

"vJ
1

´"vJ
2



"v3 “ 0 (2.24)

We see that RJ"v3 and "v3 are in the same one-dimensional space, i.e. they
are linearly dependent and we can write

RJ"v3 “ s "v3 (2.25)

for some non-zero s P C. Multiplying equation 2.25 by R from the left and
dividing both sides by s gives

1

s
"v3 “ R "v3 (2.26)

Clearly, "v3 is an eigenvector of R. Since it is not a multiple of "v1, it must
correspond to eigenvalue ´1. Moreover, "vJ

2
"v3 “ 0 and hence they are
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linearly independent. We have shown that if ´1 is an eigenvalue of R, then
there are always at least two linearly independent vectors corresponding
to the eigenvalue ´1, and therefore there is a two-dimensional space of
eigenvectors corresponding to ´1. Notice that the rank of R´ I is two in
this case since the two-dimensional subspace corresponding to ´1 can be
complemented only by a one-dimensional subspace corresponding to 1 to
avoid intersecting the subspaces in a non-zero vector.

§3 General λ1,λ2,λ3: Finally, let us look at arbitrary (even non-real)
eigenvalues. Assume λ “ x ` yi for real x, y. Then we have

R "v “ px ` yiq "v (2.27)

If y ‰ 0, vector "v must be non-real since otherwise we would have
a real vector on the left and a non-real vector on the right. Further-
more, the eigenvalues are pairwise distinct and hence there are three one-
dimensional subspaces of eigenvectors (we now understand the space as
C3 over C). In particular, there is exactly one one-dimensional subspace
corresponding to eigenvalue 1. The rank of R´ I is two.

Let "v be an eigenvector of a rotation matrix R. Then

R "v “ px ` yiq "v (2.28)

RJR "v “ px ` yiq RJ"v (2.29)

"v “ px ` yiq RJ"v (2.30)

1

px ` yiq
"v “ RJ"v (2.31)

px ´ yiq "v “ RJ"v (2.32)

We see that the eigenvector "v of R corresponding to eigenvalue x ` yi is the
eigenvector of RJ corresponding to eigenvalue x´ yi and vice versa. Thus,
there is the following interesting correspondence between eigenvalues
and eigenvectors of R and RJ. Considering eigenvalue-eigenvector pairs
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p1, "v1q, px ` yi, "v2q, px ´ yi, "v3q of R we have p1, "v1q, px ´ yi, "v2q, px ` yi, "v3q
pairs of RJ, respectively.

§4 Orthogonality of eigenvectors The next question to ask is what are
the angles between eignevectors of R? We will considers pairs pλ1 “ 1, "v1q,
pλ2 “ x ` yi, "v2q, pλ3 “ x ´ yi, "v3q of eigenvectors associated with their
respective eigenvalues. For instance, vector "v1 denotes an eigenvector
associated with egenvalue 1.

If all eigenvalues are equal to 1, i.e. R “ I, then all non-zero vectors of
R3 are eigenvectors of R and hence we can alway find two eignevectors
containing a given angle. In particular, we can choose three mutually
orthogonal eignevectors.

If λ1 “ 1 and λ2 “ λ3 “ ´1, then we have seen that every "v1 is perpen-
dicular to "v2 and "v3 and that "v2 and "v3 can be any two non-zero vectors in
a two-dimensional subspace of R3, which is orthogonal to "v1. Therefore,
for every angle, there are "v2 and "v3 which contain it. In particular, it is
possible to choose "v2 to be orthogonal to "v3 and hence there are three
mutually orthogonal eigenvectors.

Finally, if λ2, λ3 are non-real, i.e. y ‰ 0, we have three mutually distinct
eigenvalues and hence there are exactly three one-dimensional subspaces
(each without the zero vector) of eigenvectors. If two eigenvectors are
from the same subspace, then they are linearly dependent and hence they
contain the zero angle.

Let us now evaluate "v:
1
"v2

"v:
1
"v2 “ "vJ

1 "v2 “ "vJ
1 R

JR "v2 “ "vJ
1 px ` yiq "v2 “ px ` yiq "vJ

1 "v2 (2.33)

We conclude that either px ` yiq “ 1 or "vJ
1
"v2 “ 0. Since the latter can’t be

the case as y ‰ 0, the former must hold true. We see that "v1 is orthogonal
to "v2. We can show that "v1 is orthogonal to "v3 exactly in the same way.
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Let us next consider the angle between eigenvectors "v2 and "v3

"v:
3
"v2 “ "v:

3R
JR "v2 “ pR "v3q:R "v2 “ ppx ´ yiq "v3q:px ` yiq "v2 (2.34)

“ "v:
3 px ` yiq px ` yiq "v2 (2.35)

"v:
3
"v2 “ px2 ` 2 xyi ´ y2q "v:

3
"v2 (2.36)

We conclude that either px2 ` 2xyi ´ y2q “ 1 or "v:
3
"v2 “ 0. The former

implies xy “ 0 and threfore x “ 0 since y ‰ 0 but then ´y2 “ 1, which is,

for a real y, impossible. We see that "v:
3
"v2 “ 0, i.e. vectors "v2 are orthogonal

to vectors "v3.
Clearly, it is always possible to choose three mutually orhogonal eigen-

vectors. We can further normalize them to unit legth and thus obtain an
orthonormal basis as non-zero orthogonal vectors are linearly indepen-
dent. Therefore

R
“

"v1 "v2 "v3
‰

“
“

"v1 "v2 "v3
‰

»

–

λ1

λ2

λ3

fi

fl(2.37)

“

"v1 "v2 "v3
‰:
R

“

"v1 "v2 "v3
‰

“

»

–

λ1

λ2

λ3

fi

fl (2.38)

Let us further investigate the structure of eigenvectors "v2, "v3. We shall
show that they are “conjugated”. Let’s write "v2 “ "u ` "wi with real vectors
"u, "w. There holds true

R "v2 “ R p"u ` "wiq “ R "u ` R "w i (2.39)

px ` yiq "v2 “ px ` yiq p"u ` "wiq “ x "u ´ y "w ` px"w ` y"uqi (2.40)

which implies

R "u “ x "u ´ y "w and R "w “ x "w ` y "u (2.41)
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Now, let us compare two expressions: R p"u ´ "wiq and px ´ yiq p"u ´ "wiq

R p"u ´ "wiq “ R "u ´ R "wi “ x "u ´ y "w ´ px "w ` y "uq i (2.42)

px ´ yiq p"u ´ "wiq “ x "u ´ y "w ´ px "w ` y "uq i (2.43)

We see that
R p"u ´ "wiq “ px ´ yiq p"u ´ "wiq (2.44)

which means that px ´ yi, "u ´ "wiq are an eigenvalue-eigenvector pair of
R. It is importatnt to understand what has been shown. We have shown
that if "u ` "wi is an eigenvector of R corresponding to an eigenvalue λ,
then the conjugated vector "u ´ "wi is an eignevector of R corresponding to
eigenvalue, which is conjugated to λ (This does not mean that every two
eigenvectors corresponding to x ` yi and x ´ yi must be conjugated).

The conclusion from the previous analysis is that the both non-real
eigenvectors of R are generated by the same two real vectors "u and "w. Let
us look at the angle between "u and "w. Consider that

0 “ "v:
3
"v2 “ p"u ´ "wiq:p"u ` "wiq “ p"uJ ` "wJiqp"u ` "wiq (2.45)

“ p"uJ"u ´ "wJ"wq ` p"uJ"w ` "wJ"uq i (2.46)

“ p"uJ"u ´ "wJ"wq ` 2 "wJ"u i (2.47)

and therefore
"uJ"u “ "wJ"w and "wJ"u “ 0 (2.48)

which means that vectors "u and "w are orthogonal.
Finally, let us consider

0 “ "vJ
1 "v2 “ "vJ

1 "u ` "vJ
1 "wi (2.49)

and hence
"vJ

1 "u “ 0 and "vJ
1 "w “ 0 (2.50)

which means that "u and "w are also orthogonal to "v1.
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2.1.4 Rotation axis

A one-dimensional subspace generated by an eigenvector "v1 of R corre-
sponding to λ “ 1, is called the rotation axis (or axis of rotation) of R. If
R “ I, then there is an infinite number of rotation axes, otherwise there is
exactly one. Vectors "v, which are in a rotation axis of rotation R, remain
unchanged by R, i.e. R "v “ "v.

Consider that the eigenvector of R corresponding to 1 is also an eigen-
vector of RJ since

R "v1 “ "v1 (2.51)

RJR "v1 “ RJ"v1 (2.52)

"v1 “ RJ"v1 (2.53)

It implies

pR´ RJq "v1 “ 0 (2.54)
»

–

0 r12 ´ r21 r13 ´ r31

r21 ´ r12 0 r23 ´ r32

r31 ´ r13 r32 ´ r23 0

fi

fl "v1 “ 0 (2.55)

and we see that
»

–

0 r12 ´ r21 r13 ´ r31

r21 ´ r12 0 r23 ´ r32

r31 ´ r13 r32 ´ r23 0

fi

fl

»

–

r32 ´ r23

r13 ´ r31

r21 ´ r12

fi

fl “

»

–

0
0
0

fi

fl (2.56)

Clearly, we have a nice formula for an eigenvector corresponding to λ1 “

1, when vector
“

r32 ´ r23 r13 ´ r31 r21 ´ r12
‰J

is non-zero. That is when
R´ RJ is a non-zero matrix, which is exactly when R is not symmetric.

Let us now investigate the situation when R is symmetric. Then, R “
RJ “ R´1 and therefore

R pR` Iq “ R R` R “ I` R “ R` I (2.57)
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which shows that the non-zero columns of the matrix R`I are eigenvectors
corresponding to the unit eigenvalue. Clearly, at least one of the columns
must be non-zero since otherwise, R “ ´I and |R| would be minus one,
which is impossible for a rotation.

2.1.5 Rotation angle

Rotation angle θ of rotation R is the angle between a non-zero real vector
"x which is orthogonal to "v1 and its image R "x. There holds

cosθ “
"xJR "x
"xJ"x

(2.58)

Let us set
"x “ "u ` "w (2.59)

Clearly, "x is a real vector which is orthogonal to "v1 since both "u and "w are.
Let’s see that it is non-zero. Vector "v2 is an eigenvector and thus

0 ‰ "vJ
2 "v2 “ "uJ"u ` "wJ"w (2.60)

and therefore "u ‰ "0 or "w ‰ "0. Vectors "u, "w are orthogonal and therefore
their sum can be zero only if they both are zero since otherwise for, e.g., a
non-zero "u we get the following contradiction

0 “ "uJ"0 “ "uJp"u ` "vq “ "uJ"u ` "uJ"v “ "uJ"u ‰ 0 (2.61)

Let us now evaluate

cosθ “
"xJR "x
"xJ"x

“
p"u ` "wqJR p"u ` "wq

p"u ` "wqJp"u ` "wq
“

p"u ` "wqJpx "u ´ y "w ` x "w ` y "uq

"uJ"u ` "wJ"w

“
x p"uJ"u ` "wJ"wq ` y p"uJ"u ´ "wJ"wq

"uJ"u ` "wJ"w
(2.62)

“ x (2.63)
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We have used equation 2.41 and equation 2.48. We see that the rotation
angle is given by the real part of λ2 (or λ3). Consider the characteristic
equation of R, Equation 2.13

0 “ λ3 ´ trace Rλ2 ` pR11 ` R22 ` R33qλ´ |R| (2.64)

“ pλ´ 1qpλ´ x ´ yiqpλ´ x ` yiq (2.65)

“ λ3 ´ p2 x ` 1qλ2 ` px2 ` 2 x ` y2qλ´ px2 ` y2q (2.66)

We see that trace R “ 2 x ` 1 and thus

cosθ “
1

2
ptrace R´ 1q (2.67)

2.1.6 Matrix pR´ Iq.

We have seen that rank pR ´ Iq “ 0 for R “ I and rank pR ´ Iq “ 2 for all
rotation matrices R ‰ I.

Let us next investigate the relationship between the range and the null
space of pR ´ Iq. The null space of pR ´ Iq is generated by eigenvectors
corresponding to 1 since pR´ Iq "v “ 0 implies R "v “ "v.

Now assume that vector "v is also in the range of pR´ Iq. Then, there is
a vector "a P R3 such that "v “ pR ´ Iq"a. Let us evaluate the square of the
length of "v

"vJ"v “ "vJpR´ Iq"a “ p"vJR´ "vJq"a “ p"vJ ´ "vJq"a “ 0 (2.68)

which implies "v “ "0. We have used result 2.32 with x “ 1 and y “ 0.
Hence, the range of R ´ I intersects the null space of R ´ I in the zero
vector.

2.1.7 Tangent space to rotations

The set of rotation matrices

R “
"

R P R3ˆ3 | RJR “ I, |R| “ 1
(

(2.69)
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can be understood as a subset of R9 with

r “
“

r11 r21 r31 r12 r22 r32 r12 r23 r3
‰J

representing R “

»

–

r11 r12 r13

r21 r22 r23

r31 r32 r33

fi

fl

(2.70)
Rotation constraints in definition 2.69 are algebraic and thusR is a an affine
variety.3. Let us investigate how does look the tangent space to R.

To get the tangent space to R, we will first find the normal NR to R at
rotation R and then take its orthogonal complement TR, which is tangent
toR at R. In the end, we will write it all down in a convenient matrix form.

The space NR, normal to R, is generated by columns of the Jacobian
matrix [?] of constraints in 2.69, written in a matrix form as

C “

»

—

—

—

—

—

—

—

—

–

r11 r12 ` r21 r22 ` r31 r32

r11 r13 ` r21 r23 ` r31 r33

r12 r13 ` r22 r23 ` r32 r33

r2
11 ` r2

21 ` r2
31 ´ 1

r2
12 ` r2

22 ` r2
32 ´ 1

r2
13 ` r2

23 ` r2
33 ´ 1

r11 r22 r33 ´ r11 r23 r32 ´ r12 r21 r33 ` r12 r23 r31 ` r13 r21 r32 ´ r13 r22 r31 ´ 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.71)

3Affine variety is a subset of a linear space defined by algebraic constraints
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The Jacobian matrix of C is obtained as

Ji j “
BCi

Br j
, J “

»

—

—

—

—

—

—

—

—

–

r12 r22 r32 r11 r21 r31 0 0 0
r13 r23 r33 0 0 0 r11 r21 r31

0 0 0 r13 r23 r33 r12 r22 r32

2 r11 2 r21 2 r31 0 0 0 0 0 0
0 0 0 2 r12 2 r22 2 r32 0 0 0
0 0 0 0 0 0 2 r13 2 r23 2 r33

J71 J72 J73 J74 J75 J76 J77 J78 J79

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

with

J71 “ r22 r33 ´ r23 r32

J72 “ ´r12 r33 ` r13 r32

J73 “ r12 r23 ´ r13 r22

J74 “ ´r21 r33 ` r23 r31

J75 “ r11 r33 ´ r13 r31

J76 “ ´r11 r23 ` r13 r21

J77 “ r21 r32 ´ r22 r31

J78 “ ´r11 r32 ` r12 r31

J79 “ r11 r22 ´ r12 r21

Jacobian matrix J is a 7 ˆ 9 matrix. The first three rows of J contain the
elements of two columns of R. The next three rows contain one column
of R. It suggests to construct a basis T of the tangent space TR to R from
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columns of R. We can check that

J T “ 0 with T “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

0 ´r13 r12

0 ´r23 r22

0 ´r33 r32

r13 0 ´r11

r23 0 ´r21

r33 0 ´r31

´r12 r11 0
´r22 r21 0
´r32 r31 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (2.72)

Next, we can see that each column of T contains two different columns of
R and hence T x “ 0 for a non-zero x implies that every two columns of R
are linearly dependent, which is impossible. Therefore, T has rank equal
to three at least.

Finally, the first six rows of J contain columns of R. We see that
“

xJ 0
‰

J “ 0 for a non-zero x implies that columns of R are linearly
dependent, which is impossible. Therefore, the rank of NR is not smaller
than six. Hence, the dimension of the tangent space TR is exactly three at
every R P R and T is indeed a basis of TR.

Let us now rewrite the above back into a matrix form by inverting the
matrix vectorization used in 2.70. We rewrite columns of T into three
matrices

T1 “

»

–

0 r13 ´r12

0 r23 ´r22

0 r33 ´r32

fi

fl , T2 “

»

–

´r13 0 r11

´r23 0 r21

´r33 0 r31

fi

fl , T3 “

»

–

r12 ´r11 0
r22 ´r21 0
r32 ´r31 0

fi

fl

(2.73)
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and then can write the reformated tangent space of rotations at R for some
real vector s “

“

s1 s2 s3
‰

as

TRpsq “ T1 s1 ` T2 s2 ` T3 s3 (2.74)

“

»

–´s2

»

–

r13

r23

r33

fi

fl ` s3

»

–

r12

r22

r32

fi

fl , s1

»

–

r13

r23

r33

fi

fl ´ s3

»

–

r11

r21

r31

fi

fl , ´s1

»

–

r12

r22

r32

fi

fl ` s2

»

–

r11

r21

r31

fi

fl

fi

fl

“

»

–

r11 r12 r13

r21 r22 r23

r31 r32 r33

fi

fl

»

–

0 ´s3 s2

s3 0 ´s1

´s2 s1 0

fi

fl (2.75)

“ R rssˆ (2.76)

The first order approximation of rotations around R is then obtained as

R` TRpsq “ R` R rssˆ “ R pI` rssˆq (2.77)

In particular, vectors in the tangent spaces to the space of rotations at the
identity, which are called infinitesimal rotations, are

TIpsq “ rssˆ (2.78)

and the first order approximation of rotations at identity is

I` TIpsq “ I` rssˆ (2.79)

END
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