
1 Rotation representation and

parameterization

We have seen Chapter ?? that rotation can be represented by an orthonormal
matrix R. Matrix R has nine elements and there are six constraints RJR “ I and
one constratint |R| “ 1. Hence, we can view the space of all rotation matrices
as a subset of R9. This subset1 is determined by seven polynomial equations in
nine variables. We will next investigate how to describe, i.e. parameterize, this
set with fewer parameters and fewer constraints.

1.1 Angle-axis representation of rotation

We know, Paragraph ??, that every rotation is etermined by a rotation axis and
a rotation angle. Let us next give a classical construction of the rotation matrix
from an axis and angle.

Figure 1.1 shows how the vector ~x rotates by angle θ around an axis given by
a unit vector ~v into vector ~y. To find the relationship between ~x and ~y, we shall
construct a special basis of R3. Vector ~x either is, or it is not a multiple of ~v. If it
is, than ~y “ ~x and R “ I. Let us alternatively consider ~x, which is not a multiple
of ~v (an hence is not the zero vector!). Futher, let us consider the standard basis σ
of R3 and coordinates of vectors ~xσ and ~vσ. We construct three non-zero vectors

~x‖σ “ p~vJ
σ ~xσq ~vσ (1.1)

~xKσ “ ~x ´ p~vJ
σ ~xσq ~vσ (1.2)

~xˆσ “ ~vσ ˆ ~xσ (1.3)

which are mutually orthogonal and hence form a basis of R3. We may notice
that cooridate vectors ~x P R3, are actually equal to their coordinates w.r.t. the
standard basis σ. Hence we can drop σ index and write

~x‖ “ p~vJ~xq ~v “ ~v p~vJ~xq “ p~v ~vJq ~x “ r~vs‖ ~x (1.4)

~xK “ ~x ´ p~vJ~xq ~v “ ~x ´ p~v ~vJq ~x “ pI´ ~v ~vJq ~x “ r~vsK ~x (1.5)

~xˆ “ ~v ˆ ~x “ r~vsˆ ~x (1.6)

1It is often called algebraic variaty in specialized literature [1].

1

T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-12-7 (pajdla@cvut.cz)

We have introduced two new matrices

r~vs‖ “ ~v ~vJ and r~vsK “ I´ ~v ~vJ (1.7)

Let us next study how the three matrices r~vs‖, r~vsK, r~vsˆ behave under the
transposition and mutual multiplication. We see that the following indentities

r~vsJ
‖ “ r~vs‖ , r~vs‖ r~vs‖ “ r~vs‖ , r~vs‖ r~vsK “ 0, r~vs‖ r~vsˆ “ 0,

r~vsJ
K “ r~vsK , r~vsK r~vs‖ “ 0, r~vsK r~vsK “ r~vsK , r~vsK r~vsˆ “ r~vsˆ ,

r~vsJ
ˆ “ ´ r~vsˆ , r~vsˆ r~vs‖ “ 0, r~vsˆ r~vsK “ r~vsˆ , r~vsˆ r~vsˆ “ ´ r~vsK

(1.8)
hold true. The last identity is obtained as follows

r~vsˆ r~vsˆ “

»

–

0 ´v3 v2

v3 0 ´v1

´v2 v1 0

fi

fl

»

–

0 ´v3 v2

v3 0 ´v1

´v2 v1 0

fi

fl (1.9)

“

»

–

´v2
2

´ v2
3

v1v2 v1v3

v1v2 ´v2
1

´ v2
3

v2v3

v1v3 v2v3 ´v2
1

´ v2
2

fi

fl (1.10)

“

»

–

v2
1

´ 1 v1v2 v1v3

v1v2 v2
2

´ 1 v2v3

v1v3 v2v3 v2
3

´ 1

fi

fl “ r~vs‖ ´ I “ ´ r~vsK (1.11)

It is also interesting to investigate the norms of vectors ~xK and ~xˆ. Consider

}~xˆ}2 “ ~xJ
ˆ~xˆ “ ~xJ r~vsJ

ˆ r~vsˆ ~x “ ~xJp´ r~vs2
ˆq~x “ ~xJ r~vsK ~x (1.12)

}~xK}2 “ ~xJ
K
~xK “ ~xJ r~vsJ

K r~vsK ~x “ ~xJ r~vs2
K ~x “ ~xJ r~vsK ~x (1.13)

Since norms are non-negaive, we conclude that }~xK} “ }~xˆ}.
We can now write ~y in the basis r~x‖, ~xK, ~xˆs as

~y “ ~x‖ ` ||~xK|| cosθ
~xK

||~xK|| ` ||~xK|| sinθ
~xˆ

||~xˆ|| (1.14)

“ ~x‖ ` cosθ~xK ` sinθ~xˆ (1.15)

“ r~vs‖ ~x ` cosθ r~vsK ~x ` sinθ r~vsˆ ~x (1.16)

“ pr~vs‖ ` cosθ r~vsK ` sinθ r~vsˆq ~x “ R ~x (1.17)

We obtained matrix

R “ r~vs‖ ` cosθ r~vsK ` sinθ r~vsˆ (1.18)

2

T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-12-7 (pajdla@cvut.cz)

Let us check that this indeed is a rotation matrix

RJR “
`

r~vs‖ ` cosθ r~vsK ` sinθ r~vsˆ

˘J `

r~vs‖ ` cosθ r~vsK ` sinθ r~vsˆ

˘

“
`

r~vs‖ ` cosθ r~vsK ´ sinθ r~vsˆ

˘ `

r~vs‖ ` cosθ r~vsK ` sinθ r~vsˆ

˘

“ r~vs‖ ` cos2 θ r~vsK ` sinθ cosθ r~vsˆ ´ sinθ cosθ r~vsˆ ` sin2 θ r~vsK

“ r~vs‖ ` r~vsK “ I (1.19)

R can be wrtten in many variations, which are useful in different situations
when simplifying formulas. Let us provide the most common of them using
r~vs‖ “ ~v ~vJ, r~vsK “ I´ r~vs‖ “ I´ ~v ~vJ and r~vsˆ

R “ r~vs‖ ` cosθ r~vsK ` sinθ r~vsˆ (1.20)

“ ~v ~vJ ` cosθ pI´ ~v ~vJq ` sinθ r~vsˆ (1.21)

“ cosθ I` p1 ´ cosθq ~v ~vJ ` sinθ r~vsˆ (1.22)

“ cosθ I` p1 ´ cosθq r~vs‖ ` sinθ r~vsˆ (1.23)

“ cosθ I` p1 ´ cosθq pI` r~vs2
ˆq ` sinθ r~vsˆ (1.24)

“ I` p1 ´ cosθq r~vs2
ˆ ` sinθ r~vsˆ (1.25)

1.1.1 Angle-axis parameterization

Let us write R in more detail

R “ cosθ I` p1 ´ cosθq ~v ~vJ ` sinθ r~vsˆ (1.26)

“ p1 ´ cosθq ~v ~vJ ` cosθ I` sinθ r~vsˆ (1.27)

“ p1 ´ cosθq

»

–

v1v1 v1v2 v1v3

v2v1 v2v2 v2v3

v3v1 v3v2 v3v3

fi

fl ` cosθ

»

–

1 0 0
0 1 0
0 0 1

fi

fl ` sinθ

»

–

0 ´v3 v2

v3 0 ´v1

´v2 v1 0

fi

fl

“

»

–

v1v1p1 ´ cosθq ` cosθ v1v2p1 ´ cosθq ´ v3 sinθ v1v3p1 ´ cosθq ` v2 sinθ
v2v1p1 ´ cosθq ` v3 sinθ v2v2p1 ´ cosθq ` cosθ v2v3p1 ´ cosθq ´ v1 sinθ
v3v1p1 ´ cosθq ´ v2 sinθ v3v2p1 ´ cosθq ` v1 sinθ v3v3p1 ´ cosθq ` cosθ

fi

fl

(1.28)

which allows us to parameterize rotation by four numbers

“

θ v1 v2 v3

‰J
with v2

1 ` v2
2 ` v2

3 “ 1 (1.29)

The parameterization uses goniometric functions.

3

T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-12-7 (pajdla@cvut.cz)

1.1.2 Computing the axis and the angle of rotation from R

Let us now discuss how to get a unit vector ~v of the axis and the corresponding
angle θ of rotation from a rotation matrix R, such that the pair rθ, ~vs gives R by
Equation 1.28. To avoid multiple representations due to periodicity of θ, we
will confine θ to real interval p´π, πs.

We can get cospθq from Equation ??.
If cosθ “ 1, then sinθ “ 0, and thus θ “ 0. Then, R “ I and any unit vector

can be taken as ~v, i.e. all paris r0, ~vs for unit vector ~v P R3 represent I.
If cosθ “ ´1, then sinθ “ 0, and thus θ “ π. Then R is a symmetrical matrix

and we use Equation ?? to get ~v1, a non-zero multiple of ~v, i.e. ~v “ α~v1, with real
non-zero α, and therefore ~v1{||~v1|| “ s ~v with s “ ˘1. We are getting

R “ 2 r~vs‖ ´ I “ 2 ~v ~vJ ´ I “ 2 s2~v ~vJ ´ I “ 2 ps ~v q ps ~v qJ ´ I (1.30)

“ 2

ˆ

~v1

}~v1}

˙ ˆ

~v1

}~v1}

˙J

´ I “ 2

ˆ

´ ~v1

}~v1}

˙ ˆ

´ ~v1

}~v1}

˙J

´ I (1.31)

from Equation 1.27 and hence we can form two pairs
„

π,` ~v1

}~v1}

,

„

π,´ ~v1

}~v1}

(1.32)

representing this rotation.
Let’s now move to ´1 ă cosθ ă 1. We construct matrix

R´ RJ “ p1 ´ cosθq r~vs‖ ` cosθ I` sinθ r~vsˆ

´
`

p1 ´ cosθq r~vs‖ ` cosθ I` sinθ r~vsˆ

˘J
(1.33)

“ p1 ´ cosθq r~vs‖ ` cosθ I` sinθ r~vsˆ

´
`

p1 ´ cosθq r~vs‖ ` cosθ I´ sinθ r~vsˆ

˘

(1.34)

“ 2 sinθ r~vsˆ (1.35)

which gives
»

–

0 r12 ´ r21 r13 ´ r31

r21 ´ r12 0 r23 ´ r32

r31 ´ r13 r32 ´ r23 0

fi

fl “ 2 sinθ

»

–

0 ´v3 v2

v3 0 ´v1

´v2 v1 0

fi

fl (1.36)

and thus

sinθ~v “ 1

2

»

–

r32 ´ r23

r13 ´ r31

r21 ´ r12

fi

fl (1.37)

4

T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-12-7 (pajdla@cvut.cz)

We thus get

| sinθ| ||~v|| “ | sinθ| “ 1

2

b

pr23 ´ r32q2 ` pr31 ´ r13q2 ` pr12 ´ r21q2 (1.38)

There holds
sinθ~v “ sinp´θq p´~vq (1.39)

true and hence we define

θ “ arccos

ˆ

1

2
ptrace pRq ´ 1q

˙

, ~r “ 1

2

»

–

r32 ´ r23

r13 ´ r31

r21 ´ r12

fi

fl (1.40)

and write two pairs

„

`θ,` ~r

sinθ

,

„

´θ,´ ~r

sinθ

(1.41)

representing rotation R.
We see that all rotations are represented by two pairs of rθ, ~vs except for the

identity, which is represented by an infinite number of pairs.

1.2 Euler vector representation and the exponential

map

Let us now discuss another classical and natural representation of rotations. It
may seem as only a slight variation of the angle-axis representation but it leads
to several interesting connections and properties.

Let us consider the euler vector defined as

~e “ θ~v (1.42)

where θ is the rotation angle and ~v is the unit vector representing the rotation
axis in the angle-axis representation as in Equation 1.27.

5

T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-12-7 (pajdla@cvut.cz)

Next, let us recall the very fundamental real functions [2] and their related
power series

exp x “
8
ÿ

n“0

xn

n!
(1.43)

sin x “
8
ÿ

n“0

p´1qn

p2n ` 1q!
x2n`1 (1.44)

cos x “
8
ÿ

n“0

p´1qn

p2nq!
x2n (1.45)

It makes sense to define the exponential function of an mˆm real matrixA P Rmˆm

as

exp A “
8
ÿ

n“0

An

n!
(1.46)

We will now show that the rotation matrix R corresponding to the angle-axis
parameterization rθ, ~vs can be obtained as

Rprθ, ~vsq “ exp r~esˆ “ exp rθ~vsˆ (1.47)

The basic tool we have to employ is the relationship between r~es3
ˆ and r~esˆ. It

will allow us to pass form the ifinite summantion of matrix powers to the infinite
summation of the powers of the θ and hence to sinθ and cosθ, which will, at
the end, give the rodrigues formula. We write, Equation 1.11,

rθ~vs2
ˆ “ θ2 p~v ~vJ ´ Iq

rθ~vs3
ˆ “ ´θ2 rθ~vsˆ

rθ~vs4
ˆ “ ´θ2 rθ~vs2

ˆ (1.48)

rθ~vs5
ˆ “ θ4 rθ~vsˆ

rθ~vs6
ˆ “ θ4 rθ~vs2

ˆ

...

and substitute into Equation 1.46 to get

exp rθ~vsˆ “
8
ÿ

n“0

rθ~vsn
ˆ

n!
(1.49)

“
8
ÿ

n“0

rθ~vs2n
ˆ

p2nq!
`

8
ÿ

n“0

rθ~vs2n`1
ˆ

p2n ` 1q!
(1.50)

6

T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-12-7 (pajdla@cvut.cz)

Let us notice the identities, which are obtained by generalizing Equations 1.48
to an arbitrary power n

rθ~vs0
ˆ “ I (1.51)

rθ~vs2n
ˆ “ p´1qn´1 θ2pn´1q rθ~vs2

ˆ for n “ 1, . . . (1.52)

rθ~vs2n`1
ˆ “ p´1qn θ2n rθ~vsˆ for n “ 0, . . . (1.53)

and substitute them into Equation 1.50 to get

exp rθ~vsˆ “ I`
˜

8
ÿ

n“1

p´1qn´1θ2pn´1q

p2nq!

¸

rθ~vs2
ˆ `

˜

8
ÿ

n“0

p´1qnθ2n

p2n ` 1q!

¸

rθ~vsˆ

“ I`
˜

8
ÿ

n“1

p´1qn´1θ2n

p2nq!

¸

r~vs2
ˆ `

˜

8
ÿ

n“0

p´1qnθ2n`1

p2n ` 1q!

¸

r~vsˆ

“ I´
˜

8
ÿ

n“0

p´1qnθ2n

p2nq!
´ 1

¸

r~vs2
ˆ ` sinθ r~vsˆ

“ I´ pcosθ´ 1q r~vs2
ˆ ` sinθ r~vsˆ

“ I` sinθ r~vsˆ ` p1 ´ cosθq r~vs2
ˆ

“ I` sin }~e}
„

~e

}~e}

ˆ

` p1 ´ cos }~e}q
„

~e

}~e}

2

ˆ

“ Rprθ, ~vsq (1.54)

by the comparison with Equation 1.25.

1.3 Quaternion representation of rotation

1.3.1 Quaternion parameterization

We shall now introdude another parameterization of R by four numbers but this
time we will not use goniometric functions but polynomials only. We shall see
later that this parameterization has other useful properties.

This paramterization is known as unit quaternion parameterization of rotations
since rotations are represented by unit vectors from R4. In general, it may
sense to talk even about non-unit quaternions and we will see how to use
them later when applying rotations represented by unit quaternions on points

7

T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-12-7 (pajdla@cvut.cz)

represented by non-unit quaternions. To simplify our notation, we will often
write “quaternions” insted of more correct “unit quaternions”.

Let us do a seemingly unnecessary trick. We will pass from θ to θ
2 and

introduce

~q “
„

cos θ2
~v sin θ2

“

»

—

—

–

q1

q2

q3

q4

fi

ffi

ffi

fl

“

»

—

—

–

cos θ2
v1 sin θ2
v2 sin θ2
v3 sin θ2

fi

ffi

ffi

fl

(1.55)

There still holds

}~q} “ q2
1`q2

2`q2
3`q2

4 “ cos2 θ

2
`sin2 θ

2
v2

1`sin2 θ

2
v2

2`sin2 θ

2
v2

3 “ cos2 θ

2
`sin2 θ

2
“ 1

(1.56)
true. We can verify that the following identities

cosθ “ 2 cos2 θ

2
´ 1 “ 2 q2

1 ´ 1 (1.57)

sinθ “ 2 cos
θ

2
sin
θ

2
(1.58)

sinθ~v “ 2 cos
θ

2
sin
θ

2
~v “ 2 q1

“

q2 q3 q4

‰J
(1.59)

cosθ “ 1 ´ 2 sin2 θ

2
“ 1 ´ 2 pq2

2 ` q2
3 ` q2

4q “ q2
1 ´ q2

2 ´ q2
3 ´ q2

4 (1.60)

1 ´ cosθ “ 2 sin2 θ

2
“ 2 pq2

2 ` q2
3 ` q2

4q (1.61)

8

T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-12-7 (pajdla@cvut.cz)

hold true. We can now substitute the above into Equation 1.23 to get

R “ I` sinθ r~vsˆ ` p1 ´ cosθq r~vs2
ˆ (1.62)

“ I` 2 cos
θ

2
sin
θ

2
r~vsˆ ` 2 sin2 θ

2
r~vs2

ˆ (1.63)

“ I` 2 cos
θ

2

„

sin
θ

2
~v

ˆ

` 2

„

sin
θ

2
~v

2

ˆ

(1.64)

“ I` 2 cos
θ

2

„

sin
θ

2
~v

ˆ

` 2

˜

„

sin
θ

2
~v

‖

´ I
¸

(1.65)

“ I` 2 q1

»

–

»

–

q2

q3

q4

fi

fl

fi

fl

ˆ

` 2

¨

˚

˝

»

–

»

–

q2

q3

q4

fi

fl

fi

fl

‖

´ I

˛

‹

‚
(1.66)

“

»

–

1 ´2 q1q4 2 q1q3

2 q1q4 1 ´2 q1q2

´2 q1q3 2 q1q2 1

fi

fl `

»

–

2 q2q2 ´ 2 2 q2q3 2 q2q4

2 q3q2 2 q3q3 ´ 2 2 q3q4

2 q4q2 2 q4q3 2 q4q4 ´ 2

fi

fl

“

»

–

q2
1

` q2
2

´ q2
3

´ q2
4

2 pq2q3 ´ q1q4q 2 pq2q4 ` q1q3q
2 pq2q3 ` q1q4q q2

1
´ q2

2
` q2

3
´ q2

4
2 pq3q4 ´ q1q2q

2 pq2q4 ´ q1q3q 2 pq3q4 ` q1q2q q2
1

´ q2
2

´ q2
3

` q2
4

fi

fl (1.67)

which uses only second order polynomials in elements of ~q.

1.3.2 Computing quaternions from R

To get the quaternions representing a rotation matrix R, we start with Equa-
tion 1.64. Let us first confine θ to the real interval p´π, πs as we did for the
angle-axis parameterization.

Matrix R either is or it is not symmetric.

If R is symmetric, then either sinθ{2 ~v “ ~0 or cosθ{2 “ 0. If sinθ{2 ~v “ ~0,
then sinθ{2 “ 0 since }~v} “ 1 and thus cosθ{2 “ ˘1. However, cosθ{2 “ ´1
for no θ P p´π, πs and hence cosθ{2 “ 1. This corresponds to θ “ 0 and hence
to R “ Iwhich is thus represented by quaternion

“

1 0 0 0
‰J

(1.68)

If cosθ{2 “ 0, then sinθ{2 “ ˘1 but sinθ{2 “ ´1 for no θ P p´π, πs and hence
sinθ{2 “ 1. This corresponds to the rotation the by θ “ π around the axis given

9

T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-12-7 (pajdla@cvut.cz)

by unit ~v “ rv1, v2, v3sJ. This rotation is thus represented by quaternion

“

0 v1 v2 v3

‰J
(1.69)

Notice that ~v and ´~v generate the same rotation matrix R and hence every
rotation by θ “ π is represented by two quaternions.

If R is not symmetric, then R ´ RJ ‰ 0 and hence we are geting a useful
relationship

R´ RJ “ 4 cos
θ

2

„

sin
θ

2
~v

ˆ

(1.70)

and next continue with writing

cos2 θ

2
“ 1´sin2 θ

2
“ 1´1

2
p1 ´ cosθq “ 1´1

2

ˆ

1 ´ 1

2
ptrace R´ 1q

˙

“ 1

4
p1`trace Rq

(1.71)
using trace R, and thus

q1 “ cos
θ

2
“ s

2

a

trace R` 1 (1.72)

with s “ ˘1. We can form equation

»

–

0 r12 ´ r21 r13 ´ r31

r21 ´ r12 0 r23 ´ r32

r31 ´ r13 r32 ´ r23 0

fi

fl “

»

–

»

–

r32 ´ r23

r13 ´ r31

r21 ´ r12

fi

fl

fi

fl

ˆ

“ s
a

trace R` 1

»

–

»

–

q2

q3

q4

fi

fl

fi

fl

ˆ
(1.73)

which gives the following two quaternions

`1

2
?

trace R` 1

»

—

—

–

trace R` 1
r32 ´ r23

r13 ´ r31

r21 ´ r12

fi

ffi

ffi

fl

,
´1

2
?

trace R` 1

»

—

—

–

trace R` 1
r32 ´ r23

r13 ´ r31

r21 ´ r12

fi

ffi

ffi

fl

(1.74)

which represent the same rotation as R.
We see that all rotations are represented by the above by two quaternions ~q

and ´~q except for the identity, which is represented by exactly one quaternion.
The quaternion representation of rotation presented above represents every

rotation by a finite number of quaternions whereas angle-axis repesentation
allowed for an infinite number of angle-axis pairs to correspond to the indentity.

10

T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-12-7 (pajdla@cvut.cz)

Yet, even this still has an “aesthetic flaw” at the identity, which has only one
quaternion whereas all other rotations have two quaternions. The “flaw” can be
removed by realizing that ~q “ r´1, 0, 0, 0sJ also maps to the identity. However,
if we look for θ that corresponds to cosθ{2 “ ´1 we see that such θ{2 “ ˘kπ
and hence θ “ ˘2 kπ for k “ 1, 2, . . ., which are points isolated from p´π, πs.
Now, if we allow θ to be in interval p´2π,`2πs, then the set

"„

cosθ{2
~v sinθ{2

 ˇ

ˇ

ˇ

ˇ

θ P r´2π, `2πs, ~v P R3, }~v} “ 1

*

(1.75)

of quaternions contains exactly two quaternions for every rotation matrix R and
is obtained by a continuous mapping of a closed interval of angles, which is
boundend, times a sphere in R3, which is also closed and bounded.

1.3.3 Quaternion composition

Consider two rotations represented by ~q1 and ~q2. The respective rotation ma-
trices R1, R2 can be composed into rotation matrix R21 “ R2 R1, which can be
represented by ~q21. Let us investigate how to obtain ~q21 from ~q1 and ~q2. We shall
use Equation 1.76 to relate R1 to ~q1 and R2 to ~q1, then evaluate R21 “ R2 R1 and
recover ~q21 from R21. We use Equation 1.23 to write

R “ 2 sin2 θ

2
~v ~vJ ` p2 cos2 θ

2
´ 1q I` 2 cos

θ

2
sin
θ

2
r~vsˆ (1.76)

and

R1 “ 2 ps1~v1q ps1~v1qJ ` p2 c2
1 ´ 1q I` 2 c1 rs1~v1sˆ (1.77)

R2 “ 2 ps2~v2q ps2~v2qJ ` p2 c2
2 ´ 1q I` 2 c2 rs2~v2sˆ (1.78)

R21 “ 2 ps21~v21q ps21~v21qJ ` p2 c2
21 ´ 1q I` 2 c21 rs21~v21sˆ

with shortcuts

c1 “ cos
θ1

2
, s1 “ sin

θ1

2
, c2 “ cos

θ2

2
, s2 “ sin

θ2

2
, c21 “ cos

θ21

2
, s21 “ sin

θ21

2

Let us next assume that both R1, R2 are not identities. Then θ1 ‰ 0 and θ2 ‰ 0
and rotation axes ~v1 ‰ ~0, ~v2 ‰ ~0 are well defined. We can now distinguish two
cases. Either ~v1 “ ˘~v2, and then ~v21 “ ~v1 “ ˘~v2, or ~v1 ‰ ˘~v2, and then

r~v1, ~v2, ~v2 ˆ ~v1s (1.79)

11

T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-12-7 (pajdla@cvut.cz)

forms a basis of R3. We also notice that ~v1, ~v2 always appear in R1, R2 in the
product with s1, s2.

We can thus write

sin
θ21

2
~v21 “ a1 sin

θ1

2
~v1 ` a2 sin

θ2

2
~v2 ` a3 psin

θ2

2
~v2 ˆ sin

θ1

2
~v1q (1.80)

with coefficients a1, a2, a3 P R. To find coefficients a1, a2, a3, we will consider the
following special situations:

1. ~v1 “ ˘~v2 implies ~v21 “ ~v1 “ ˘~v2 and θ21 “ θ1 ˘ θ2 for all real θ1 and θ2.

2. ~vJ
2
~v1 “ 0 and θ1 “ θ2 “ π implies

R1 “ 2 ~v1~v
J
1 ´ I (1.81)

R2 “ 2 ~v2~v
J
2 ´ I (1.82)

R21 “ p2 ~v2~v
J
2 ´ Iqp2 ~v1~v

J
1 ´ Iq “ I´ 2 p~v2~v

J
2 ` ~v1~v

J
1 q (1.83)

We see that in the former case we are getting

sin
θ21

2
~v1 “ pa1 sin

θ1

2
` a2 sin

θ2

2
q ~v1 for allθ1, θ2 P R (1.84)

which for ~v1 ‰ ~0 leads to

sin
θ21

2
“ a1 sin

θ1

2
` a2 sin

θ2

2
(1.85)

sin
θ1 ` θ2

2
“ a1 sin

θ1

2
` a2 sin

θ2

2
(1.86)

sin
θ1

2
cos
θ2

2
` cos

θ1

2
sin
θ2

2
“ a1 sin

θ1

2
` a2 sin

θ2

2
(1.87)

for all θ1, θ2 P R. But that means that

a1 “ cos
θ2

2
and a2 “ cos

θ1

2
(1.88)

In the latter case we find that ~v21 is a non-zero multiple of ~v2 ˆ ~v1 since

R21 p~v2 ˆ ~v1q “ pI´ 2 p~v2~v
J
2 ` ~v1~v

J
1 qq p~v2 ˆ ~v1q (1.89)

“ ~v2 ˆ ~v1 ´ 2 ~v2~v
J
2 p~v2 ˆ ~v1q ´ 2 ~v1~v

J
1 p~v2 ˆ ~v1q (1.90)

“ ~v2 ˆ ~v1 (1.91)

12

T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-12-7 (pajdla@cvut.cz)

But that means that

sin
θ21

2
~v21 “ a3 psin

θ2

2
~v2 ˆ ~v1 sin

θ1

2
q (1.92)

We next get θ21 using Equation ?? as

cosθ21 “ 1

2
ptrace R´ 1q “ 1

2
p3 ´ 2 p}~v2}2 ` }~v1}2q ´ 1q “ 1

2
p3 ´ 4 ´ 1q “ ´1(1.93)

and hence θ21 “ ˘π and thus

~v21 “ a3 p~v1 ˆ ~v2q (1.94)

but since ~v1 is perpendicular to ~v2, ~v1 ˆ ~v2 is a unit vector and thus a3 “ 1. We
can thus hypothesize that in general

sin
θ21

2
~v21 “ cos

θ2

2

ˆ

sin
θ1

2
~v1

˙

`cos
θ1

2

ˆ

sin
θ2

2
~v2

˙

`
ˆ

sin
θ2

2
~v2

˙

ˆ
ˆ

sin
θ1

2
~v1

˙

(1.95)
Let’s next find cos θ21

2 consistent with the above hypothesis. We see that

cos2 θ21

2
“ 1 ´ sin2 θ21

2
(1.96)

and hence we evaluate

sin2 θ21

2
“ sin2 θ21

2
~vJ

21
~v21 “

ˆ

sin
θ21

2
~v21

˙Jˆ

sin
θ21

2
~v21

˙

(1.97)

“ cos2 θ2

2
sin2 θ1

2
` cos2 θ1

2
sin2 θ2

2
(1.98)

` 2 cos
θ2

2
cos
θ1

2

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

(1.99)

`
„ˆ

sin
θ2

2
~v2

˙

ˆ
ˆ

sin
θ1

2
~v1

˙J„ˆ

sin
θ2

2
~v2

˙

ˆ
ˆ

sin
θ1

2
~v1

˙

(1.100)

We used the fact that ~v1, ~v2 are perpendicular to their vector product.
To move further, we will use that for every two unit vectors ~u, ~v in R3 there

holds

p~u ˆ ~vqJp~u ˆ ~vq “ }p~u ˆ ~vq}2 “ }~u}2}~v}2 sin2
=p~u, ~vq (1.101)

“ }~u}2}~v}2p1 ´ cos2
=p~u, ~vqq “ }~u}2}~v}2 ´ p~uJ~vq2(1.102)

13

T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-12-7 (pajdla@cvut.cz)

true.
Applying this to the last summand in Equation 1.100, we get

sin2 θ21

2
“ cos2 θ2

2
sin2 θ1

2
` cos2 θ1

2
sin2 θ2

2
(1.103)

` 2 cos
θ2

2
cos
θ1

2

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

(1.104)

` sin2 θ2

2
sin2 θ1

2
´

«

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

ff2

(1.105)

“ sin2 θ1

2
` cos2 θ1

2
sin2 θ2

2
(1.106)

` 2 cos
θ2

2
cos
θ1

2

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

´
«

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

ff2

“ 1 ´ cos2 θ1

2
cos2 θ2

2
(1.107)

` 2 cos
θ2

2
cos
θ1

2

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

´
«

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

ff2

where we used the fact that

sin2 θ1

2
` cos2 θ1

2
sin2 θ2

2
“ 1 ´ cos2 θ1

2
` cos2 θ1

2
sin2 θ2

2
(1.108)

“ 1 ` cos2 θ1

2

ˆ

sin2 θ2

2
´ 1

˙

“ 1 ´ cos2 θ1

2
cos2 θ2

2

We are thus obtaining

cos2 θ21

2
“ 1 ´ sin2 θ21

2
(1.109)

“ cos2 θ1

2
cos2 θ2

2
(1.110)

´ 2 cos
θ2

2
cos
θ1

2

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

`
«

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

ff2

“
˜

cos
θ1

2
cos
θ2

2
´

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

¸2

(1.111)

14

T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-12-7 (pajdla@cvut.cz)

Our complete hypothesis will be

sin
θ21

2
~v21 “ cos

θ2

2

ˆ

sin
θ1

2
~v1

˙

` cos
θ1

2

ˆ

sin
θ2

2
~v2

˙

`
ˆ

sin
θ2

2
~v2

˙

ˆ
ˆ

sin
θ1

2
~v1

˙

cos
θ21

2
“ cos

θ1

2
cos
θ2

2
´

ˆ

sin
θ2

2
~v2

˙Jˆ

sin
θ1

2
~v1

˙

(1.112)

To verify this, we will run the following Maple [3] program

> restart:

> with(LinearAlgebra):

> E:=IdentityMatrix(3):

> X :=proc(u) <<0|-u[3]|u[2]>,<u[3]|0|-u[1]>,<-u[2]|u[1]|0>> end proc:

> v1:=<x1,y1,z1>:

> v2:=<x2,y2,z2>:

> R1:=2*(s1*v1).Transpose(s1*v1)+(2*c1ˆ2-1)*E+2*c1*X (s1*v1):

> R2:=2*(s2*v2).Transpose(s2*v2)+(2*c2ˆ2-1)*E+2*c2*X (s2*v2):

> R21:=expand˜(R2.R1):

> c21:=c2*c1-Transpose(s2*v2).(s1*v1);

c21 :“ c2 c1 ´ s1 x1 s2 x2 ´ s1 y1 s2 y2 ´ s1 z1 s2 z2

> s21v21:=c2*s1*v1+s2*c1*v2+X (s2*v2).(s1*v1);

s21v21 :“

»

—

—

–

c2 s1 x1 ` s2 c1 x2 ´ s2 z2 s1 y1 ` s2 y2 s1 z1

c2 s1 y1 ` s2 c1 y2 ` s2 z2 s1 x1 ´ s2 x2 s1 z1

c2 s1 z1 ` s2 c1 z2 ´ s2 y2 s1 x1 ` s2 x2 s1 y1

fi

ffi

ffi

fl

> RR21:=2*s21v21.Transpose(s21v21)+(2*c21ˆ2-1)*E+2*c21*X (s21v21):

> simplify(expand˜(RR21-R21),[x1ˆ2+y1ˆ2+z1ˆ2=1,x2ˆ2+y2ˆ2+z2ˆ2=1,

c1ˆ2+s1ˆ2=1,c2ˆ2+s2ˆ2=1]);

»

—

—

–

0 0 0

0 0 0

0 0 0

fi

ffi

ffi

fl

15

T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-12-7 (pajdla@cvut.cz)

which verifies that our hypothesis was correct.
Considering two unit quaternions

~p “

»

—

—

–

p1

p2

p3

p4

fi

ffi

ffi

fl

, and ~q “

»

—

—

–

q1

q2

q3

q4

fi

ffi

ffi

fl

(1.113)

we can now give their composition as

~q21 “ ~q ~p “

»

—

—

–

q1 p1 ´ q2 p2 ´ q3 p3 ´ q4 p4

q1 p2 ` q2 p1 ` q3 p4 ´ q4 p3

q1 p3 ` q3 p1 ` q4 p2 ´ q2 p4

q1 p4 ` q4 p1 ` q2 p3 ´ q3 p2

fi

ffi

ffi

fl

(1.114)

“

»

—

—

–

q1 p1 ´ q2 p2 ´ q3 p3 ´ q4 p4

q2 p1 ` q1 p2 ´ q4 p3 ` q3 p4

q3 p1 ` q4 p2 ` q1 p3 ´ q2 p4

q4 p1 ´ q3 p2 ` q2 p3 ` q1 p4

fi

ffi

ffi

fl

(1.115)

“

»

—

—

–

q1 ´q2 ´q3 ´q4

q2 q1 ´q4 q3

q3 q4 q1 ´q2

q4 ´q3 q2 q1

fi

ffi

ffi

fl

»

—

—

–

p1

p2

p3

p4

fi

ffi

ffi

fl

(1.116)

1.3.4 Application of quaternions to vectors

Consider a rotation by angle θ around an axis with direection ~v represented by
a unit quaternion ~q “

“

cos θ2 sin θ2 ~v
‰

and a vector ~x P R3. To rotate the vector,
we may construct the rotation matrix Rp~q q and apply it to the vector ~x as Rp~q q ~x.

Interestingly enough, it is possible to accomplish this in somewhat different
and more efficient way by first “embedding” vector ~x into a (non-unit!) quater-
nion

~pp~xq “
„

0
~x

“

»

—

—

–

0
x1

x2

x3

fi

ffi

ffi

fl

(1.117)

and then composing it with quaternion ~q from both sides

~q ~pp~xq~q´1 “
„

cos θ2
sin θ2 ~v

 „

0
~x

 „

cos θ2
´ sin θ2 ~v

(1.118)

16

T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-12-7 (pajdla@cvut.cz)

One can verify that the following

„

0
Rp~q q ~x

“ ~q ~pp~xq~q´1 (1.119)

holds true.

1.4 “Cayley transform” parameterization

We see that unit quaternions provide a nice parameterization. It is given as a
matrix with polynomial entries of four parameters. However, unit quaternions
still are somewhat redundant since every rotation is represented twice.

Let us now mention yet another classical rotation parameterization, which is
known as “Cayley transform”. This parameterization uses only three parame-
ters to represent three-dimensional rotations. In a sense, it is as ecconomic as it
can be. On the other hand, it can’t represent rotations by 180˝.

Actually, it can be proven [4] that there is no mapping (parameterization),
which could be (i) continuous, (ii) one-to-one, (iii) onto, and (iv) three-dimensional
(i.e. mapping a “three-dimensional box” onto all three-dimensional rotations).

Axis-angle parameterization is continuous and onto but not one-to-one and
not three-dimensional. Euler vector parameterization is continuous, onto, three-
dimensional but not one-to one. Unit quaternions are continuous, onto but not
three-dimensional and not one-to one (although they are close to that by being
two-to-one). Finally, Cayley transform parameterization is continuous, one-to-
one, three-dimensional but it not onto.

In addition, unit quaternions and Cayley transform parameterizations are “fi-
nite” in the sense that they are polynomial rational functions of their parameters
while other above mentioned representations require some “infinite” process
for computing goniometric functions. This may be no probelem if approximate
evaluation of functions is acceptable but, as we will see, it is a findamental
obstackle to solving interestign engineering problems using computational al-
gebra.

1.4.1 Cayley transform parameterization of two-dimensional
rotations

Let us first look at two-dimesional roations. Figure 1.2 shows an illustartion
of the relationship between parameter c and cosθ, sinθ on the unit circle.

17

T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-12-7 (pajdla@cvut.cz)

We see that, using the similarity of triangles, sinθ
cosθ`1 “ c

1 . Considering that

pcosθq2 ` psinθq2 “ 1 we are getting

1 ´ pcosθq2 “ psinθq2 “ c2pcosθ` 1q2 “ c2ppcosθq2 ` 2 cosθ` 1q(1.120)

0 “ pc2 ` 1qpcosθq2 ` 2 c2 cosθ` c2 ´ 1 (1.121)

and thus

cosθ “ ´2 c2 ˘
a

4 c4 ´ 4 pc2 ` 1qpc2 ´ 1q
2pc2 ` 1q “ ´c2 ˘

a

c4 ´ pc4 ´ 1q
c2 ` 1

“ ˘1 ´ c2

1 ` c2

(1.122)
gives either cosθ “ ´1 or

cosθ “ 1 ´ c2

1 ` c2
(1.123)

The former case corresponds to point r´1 0sJ. In the latter case, we have

psinθq2 “ 1 ´ pcosθq2 “ 1 ´ p1 ´ c2

1 ` c2
q2 “ p1 ` c2q2 ´ p1 ´ c2q2

p1 ` c2q2
(1.124)

“ p1 ` 2 c2 ` c4q ´ p1 ´ 2 c2 ` c4q
p1 ` c2q2

“ 4 c2

p1 ` c2q2
“

ˆ

2 c

1 ` c2

˙2

(1.125)

and thus sinθ “ ˘ 2 c
1`c2 . Now, we see from Figure 1.2 that we want sinθ to be

positive for positive c. Therefore, we conclude that

sinθ “ 2 c

1 ` c2
(1.126)

It is impotant to notice that with the parameterization given by Equation 1.123,
we can never get cosθ “ ´1 for a real c since if that was true, we would get
´1 ´ c2 “ 1 ´ c2 and hence ´1 “ 1. On the other hand, we see that Cayley
transform maps every c P R into a point on the unit circle rcosθ sinθsJ, and
hence to the corresponding rotation

Rpcq “
„

cosθ ´ sinθ
sinθ cosθ

“
«

1´c2

1`c2 ´ 2 c
1`c2

2 c
1`c2

1´c2

1`c2

ff

(1.127)

The mapping Rpcq : RÑ R is one-to-one since when two c1, c2 map into the same
point, then

2 c1

1 ` c2
1

“ 2 c2

1 ` c2
2

(1.128)

c1p1 ` c2
2q “ c2p1 ` c2

1q (1.129)

c1 ´ c2 “ c1c2pc1 ´ c2q (1.130)

18

T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-12-7 (pajdla@cvut.cz)

implies that either c1c2 ‰ 0, and then c1 “ c2, or c1c2 “ 0, and then c1 “ 0 “ c2

because both 1 ` c2
1
, 1 ` c2

2
are positive. Next, let us see that the mapping is also

onto Rztr´1 0sJu. Consider a point rcosθ sinθsJ ‰ r´1 0sJ. Its preimage c, is
obtained as

c “ sinθ

1 ` cosθ
(1.131)

which is clearly defined for cosθ ‰ ´1.

1.4.1.1 Two-dimensional rational rotations

It is also important to notice that the Rpcq is a rational function of c as well as c is a
rational function or R (e.g. of the two elements in its first column). Hence, every
rational number c gives a rational point ra bsJ on the unit circle as well as every
rational point ra bsJ provides a rational c. This way, we can obtain all rational
two-dimensional rotations by going over all rational c’s plus the rotation ´I2ˆ2.

1.4.2 Cayley transform parameterization of three-dimensional
rotations

We saw that we have obtained a bijective (one-to-one and onto) mapping be-
tween all real numbers and all two-dimensional rotations other than the rotation
by 180˝ degrees. Now, since every three-dimensional rotation can be actually
seen as a two-dimensional rotation after aligning the z-axis with the rotation
axis, we may hint on having an analogous situation in three dimensons after
removing all rotations by 180˝. Let us investigate this further and see that we
can indeed establish a bijective mapping between R3 and all three-dimesnional
rotations by other than 180˝ angle.

Let us consider that all rotations by 180˝ are represented by unit quaternons
in the form

“

0 q2 q3 q4

‰

. Hence, to remove them, it is enough to remove
from all cases when c1 “ 0. One way to do it, is to write down the rotation
matrix in tems of (non-unit) quaternions ~q

Rp~qq “ 1

q2
1

` q2
2

` q2
3

` q2
4

»

–

q2
1

` q2
2

´ q2
3

´ q2
4

2 pq2q3 ´ q1q4q 2 pq2q4 ` q1q3q
2 pq2q3 ` q1q4q q2

1
´ q2

2
` q2

3
´ q2

4
2 pq3q4 ´ q1q2q

2 pq2q4 ´ q1q3q 2 pq3q4 ` q1q2q q2
1

´ q2
2

´ q2
3

` q2
4

fi

fl

(1.132)

19

T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-12-7 (pajdla@cvut.cz)

and then set q1 “ 1, q2 “ c1, q3 “ c2, q4 “ c3, to get

Rp~cq “ 1

1 ` c2
1

` c2
2

` c2
3

»

–

1 ` c2
1

´ c2
2

´ c2
3

2 pc1c2 ´ c3q 2 pc1c3 ` c2q
2 pc1c2 ` c3q 1 ´ c2

1
` c2

2
´ c2

3
2 pc2c3 ´ c1q

2 pc1c3 ´ c2q 2 pc2c3 ` c1q 1 ´ c2
1

´ c2
2

` c2
3

fi

fl

(1.133)

with ~c “
“

c1 c2 c3

‰J P R3.
It can be verified that Rp~cqJRp~cq “ I for all ~c P R3 and hence the mapping
Rp~cq : R3 Ñ R maps the space R3 into rotation matrices R. Let us next see that
the mapping is also one-to-one.

First, notice that by setting c1 “ c2 “ 0, we are getting

Rpc3q “ 1

1 ` c2
3

»

–

1 ´ c2
3

´2 c3 0
2 c3 1 ´ c2

3
0

0 0 1 ` c2
3

fi

fl “

»

—

—

—

–

1´c2
3

1`c2
3

´2 c3

1`c2
3

0

2 c3

1`c2
3

1´c2
3

1`c2
3

0

0 0 1

fi

ffi

ffi

ffi

fl

(1.134)

which is exactly the Cayley parameterization for two-dimensional rotation
aroung the z-axis. In the same way, we get that Rpc1q are rotations around
the x-axis and Rpc2q are rotations around the y-axis.

We have seen in Paragraph 1.3.2 that the mapping between the unit quater-
nions ~q and rotation matrices Rp~qq was “two-to-one” in the way that there were
exactly two quaternions ~q, ´~q mapping into one R, i.e. Rp~qq “ Rp´~qq. Now, we

are forcing the first coordinate of the unit quaternion ~q “
”

1 c1 c2 c3

ıJ

1`c2
1
`c3

2
`c3

be

positive. Therefore, the mapping Rp~cq becomes one-to-one.
Now, let us see that by Rp~cq we can represent all rotations that are not by 180˝.

...

20

T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-12-7 (pajdla@cvut.cz)

~v
~x

~y

~xˆ “ ~v ˆ ~x

~x‖ “ p~vJ
σ ~xσq ~v

~xK “ ~x ´ p~vJ
σ ~xσq ~v

sinθ~xˆ

cosθ~xK

Figure 1.1: Vector ~y is obtained by rotating vector ~x by angle θ around the
rotation axis given by unit vector ~v. Vector ~y can be written as a linear
combination of an orthogonal basis r~x ´ p~vJ

σ ~xσq ~v, ~v ˆ ~x, p~vJ
σ ~xσq ~vs.

21

T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-12-7 (pajdla@cvut.cz)

x

y

c

1

1´1

´1

θθ{2

0

sinθ

cosθ

Figure 1.2: Cayley transform parameterization of two-dimensional rotations.

22

Bibliography

[1] David Cox, John Little, and Donald O’Shea. Ideals, Varieties, and Algorithms: An
Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer,
3rd edition, 2015.

[2] Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, 1976.

[3] Ltd. Cybernet Systems Co. Maple. http://www.maplesoft.com/products/maple/.

[4] John Stuelpnagel. On the parametrization of the three-dimensional rotation group.
SIAM Review, 6(4):422–430, October 1964.

END

23

	Rotation representation and parameterization
	Angle-axis representation of rotation
	Angle-axis parameterization
	Computing the axis and the angle of rotation from R

	Euler vector representation and the exponential map
	Quaternion representation of rotation
	Quaternion parameterization
	Computing quaternions from R
	Quaternion composition
	Application of quaternions to vectors

	``Cayley transform'' parameterization
	Cayley transform parameterization of two-dimensional rotations
	Cayley transform parameterization of three-dimensional rotations

