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and substitute them into Equation[1.50]to get

_1\n—1p92(n—-1) 0 on
(1)(2—15'> CER +<Z )"0 ) CER
’ :O

( 1)11 19211 ( )n62n+1
2n)! > [ +<Z 2n 1 1) )W]X

expl07], = I+ (

(_1)n92n

_ 1_< o —1) [3]% + sin 6 [7],,
n=0 :

= I—(cosO—1)] 5]2-1-Si1’19[1
= I+sin0[d], + 1—C059)[_)]2

- veana[§] - [5]
= R([0,9])

by the comparison with Equation[1.25]

P9 TZMS Ds

(1.54)

1.3 Quaternion representation of rotation

1.3.1 Quaternion parameterization

We shall now introdude another parameterization of R by four numbers
but this time we will not use goniometric functions but polynomials only.
We shall see later that this parameterization has other useful properties.
This paramterization is known as unit quaternion parameterization of
rotations since rotations are represented by unit vectors from RY In

general, it may sense to talk even about non-unit quaternions and we will =

see how to use them later when applying rotations represented by unit _
quaternions on points represented by non-unit quaternions. To s1mp11fy
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our notation, we will often write “quaternions” insted of more correct Gg\‘ L l =1
. . SO % - [t asbu |l
“unit quaternions”. Cré
Let us do a seemingly unnecessary trick. We will pass from 6 to ¢ and I\ Aﬂ'z_\
introduce v 7\ ;(r U l ” =1 a+b, afz,\!-b =
ql COS g @1 mﬂ ‘ ( {
0 0
o | cosz| Jg2| |vising
z_ [z?sing} M| |v2sing l(l'fg) e
cpt k/ g4 v3sin 5 / N '\
~—~—~——— —_
There still holds ~! A ’ — \
1 0 .,0 .20 .20 0 .,0 :
|7 = §2+493+q5+q; = cos® E#—sm2 5 v +sin? 5 v3+sin? 5 v} = cos? 5+sm2 5= 1 (&-l' L,.LB( (‘_-f"i ( ) =
the ot B ¢ R
true. We can verify that the following identities > ) e )
cos = 2cosz——1=2q%—1 (1.57) L
— 2 . \ o /5 /S [
= +
) sinf@ = 2 cosg sing (1.58) %‘ (e'+ '%l
: 0 T v
& | sin07 = 2cos=sin=7=2q1 [q2 43 4a] (1.59) \
T 2.292 2, 2 2 _ 2 2 o & “ C"’%‘\\\ = 1 “Mi‘]
s cosf = 1—2sin 5:1—2(q2+q3+q4)=q1—q2—q3—(41i60)
0 —" —
1—cosO = Zsin25=2(q§+q§+qi) (1.61) ‘ s l\
— atby (a-b* .
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hold true. We can now substitute the above into Equation to get

R = I+sin0[d], + (1—cos0) [7]% “"’1'{"— s (1.62)
0 0 5 0
= I+2 cos 5 sin = > [7], + 2 sin? E [3]% (1.63)

2
sin 9} +2 [sin o ﬁ] (1.64)

X

2 [

[s1 g} +2 {sm (1.65)

: (z ,) L g oply
3

94

| ()1

I+2cos—

= I+2cos

o
2
I+2q [[

1 -2q194  2q193 24292 — 24293 24244 2
= 24144 1 2qq2 | + 2l13£12 233 —2  243qs
L2018 20192 ! 20492 20435 20444 2

(@7 + 45— g5 — 05 22 (szs — gm)z 2 (92494 + q193)
2(q293 + 194) 47— a5+ 95— 45 (qs% - Wiz)
| 2(q294 —q193)  2(@3qa + 1q2) 45— gy — a5 + 45

(1.67) % +ryt+ 1347« - M’U

which uses only second order polynomials in elements of §. QX ?o e,YxNofwm. »—Qs c;.(l—% 2z
1.3.2 Computing quaternions from R \\,u al,( MMM&QS Cg&% 2:
To get the quaternions representing a rotation matrix R, we start with - }/w VY. FO(WJS
Equation Let us first confine 6 to the real interval (—7, 7] as we did 3
for the angle-axis parameterization. M .
Matrix R either is or it is not symmetric. 3
If R is symmetric, then either sin 6/27 = 0 or cos 6/2 = 0. If sin 6/27 = T (q( ) = 'K’(- GY

0, then sin6/2 = 0 since |7 = 1 and thus cos /2 = +1. However,

11
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cos /2 = —1 forno 6 € (—m, 7] and hence cos 6/2 = 1. This corresponds
to 0 = 0 and hence to R = I which is thus represented by quaternion

[1 00 0] (1.68)

If cos6/2 =0, thensin6/2 = +1 butsin6/2 = —1 for no 0 € (—n, ] and
hence sin 6/2 = 1. This corresponds to the rotation the by 6 = 7 around
the axis given by unit @ = [v1, v, v3]". This rotation is thus represented
by quaternion

[0 o1 v 03] (1.69)

Notice that 7 and —7 generate the same rotation matrix R and hence every
rotation by 0 = m is represented by two quaternions.

If R is not symmetric, then R —R" # 0 and hence we are geting a useful
relationship

R—R' = 4cos— [sin —27} (1.70)
X

and next continue with writing

0 0 1 1 1 1

2 —_ = —g] 2 —_ = —_— — = _— _ = — = —
cos” > 1—sin > 1 5 (1—-cosB) =1 5 <1 2(traceR 1) 1 (1+traceR)
- (1.71) —

using traceR, and thus

0
1 = cos = = % v traceR + 1 (1.72)

2

with s = +1. We can form equation

0 Fi2 —T21 113 — 131 3 — 123 2
21 — 12 0 ra3—r3 | = || 13— 13 =s+/traceR+1| | g3
r31— 113 13 — 123 0 ran—ri2 ]|, 94 ] ],
(1.73)

12
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which gives the following two quaternions

traceR + 1 traceR + 1
+1 T3 — 7 -1 T3 — 7
32 — 123 , 32 — 123 (1.74)
2 v/traceR + 1 r13 — 131 2 y/traceR + 1 13 — 131
21 — 712 21 — 712

.\—_\’ —_——\/-
which represent the same rotation as R.

We see that all rotations are represented by the above by two quaternions
7 and —q except for the identity, which is represented by exactly one
quaternion.

The quaternion representation of rotation presented above represents
every rotation by a finite number of quaternions whereas angle-axis repe-
sentation allowed for an infinite number of angle-axis pairs to corre-
spond to the indentity. Yet, even this still has an “aesthetic flaw” at
the identity, which has only one quaternion whereas all other rotations
have two quaternions. The “flaw” can be removed by realizing that
7=1-10,0, 0]" also maps to the identity. However, if we look for 0
that corresponds to cos 6/2 = —1 we see that such 6/2 = +kn and hence
0 = +2kmn fork = 1,2,..., which are points isolated from (—m, 7t]. Now,
if we allow 6 to be in interval (—2 7, +2 7], then the set

cos 6/2 5 3 B
{[77sin6/2]' Oe[-2m, +2n], 7e R, 5\—1} (1.75)
of quaternions contains exactly two quaternions for every rotation matrix
R and is obtained by a continuous mapping of a closed interval of an-
gles, which is boundend, times a sphere in R3, which is also closed and
bounded.

1.3.3 Quaternion composition

Consider two rotations represented by 41 and 7. The respective rotation
matrices Ry, Ry can be composed into rotation matrix Ry; = Ry Ry, which
13
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can be represented by gn1. Letus investigate how to obtain §»; from 4 and
q». We shall use Equation to relate R; to 41 and R, to 73, then evaluate
Ry1 = Ry Ry and recover g1 from Ry;. We use Equation to write

R:2sin2gz717T+(2coszg—1)1+2cosgsing [7], (1.76)
2 2 2 2
and
Ri = 2(s101) (s171) " + (2cF = 1) I+ 201 [s171], (1.77)
Re = 2(520) (s202) + (263 — 1) I+ 20, [5200] (1.78)
Ry = 2(3210n1) (521921) " + (2c3 — 1) I + 221 [52101]

with shortcuts

c =cos@ S =sir1ﬁ c =cos@ s =sin@ c =COS@ S =sin@
1 551 5 C2 552 5 c 5 521 >
Let us next assume that both Rl_,) R, are not identities. Then 67 # 0 and
0, # 0 and rotation axes 7; # 0, 7> # 0 are well defined. We can now
distinguish two cases. Either ) = +0,, and then Uy = ¥ = +0,, or
- -
U1 # +0», and then

[171, 172, 272 X 271] (1.79)

forms a basis of R®. We also notice that 7;, 7» always appear in Ry, Ry in
the product with sy, s,.
We can thus write

. O . 01, . 0y, . 0y . 01,
sin —2* Up1 = a1 Sin 2 U1 + ap sin 22 Uy + az (sin 2 Ur X sin -1 01) (1.80)
2 2 2 2 2
with coefficients a1,45,a3 € R. To find coefficients a1, a;,a3, we will con-
sider the following special situations:

1. U5 = +0, implies Uy = ) = +0» and Oy = 01 + 0, for all real 0,
and 6.
14
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2. 772Tz71 = 0and 0; = 0, = 7 implies

Ri = 239, — 1 (1.81)

Ry = 200, — 1 (1.82)
_ 2> ST - ST o - ST = ST

Ryy = (2020, —I)(2010; —I) =1 —2(v020, + 717, ) (1.83)

We see that in the former case we are getting

sin % U1 = (a1 sin % + ap sin %) 01 forall0;,0, R (1.84)

which for @ # 0 leads to

. O .61 )
sin > = a1 sin > + ap sin > (1.85)

.61+ 6, .61 )
sin —— = msin- + ap sin > (1.86)

.6 Oy 01 . 6 .61 )
sin > cos > + cos > sin > = ap sin > + ap sin > (1.87)

for all 61, 6, € R. But that means that
0 0
a; = cos 72 and ay = cos 71 (1.88)

In the latter case we find that ¥; is a non-zero multiple of 7, x U; since

Rt (o x @) = (I—2(0ad, +017,)) (0o x O) (1.89)
= 5)2 X 5)1 — 277227;— (172 X 171) — 7715)1 (172 X 171) (190)
= 5)2 X 171 (191)

But that means that

sin % Up1 = a3 (sin %172 X U sin %) (1.92)

15
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We next get 6,1 using Equation ?? as

1 1 , . 1
cos Oy = (traceR —1) = (3 -2 (|%l? + |1)?) = 1) = 53—4-1) = -9

and hence 6,7 = +m and thus
Up1 = a3 (U1 x 02) (1.94)

but since v} is perpendicular to 7>, 7 x U is a unit vector and thus az = 1.
We can thus hypothesize that in general

sin%%l:cos@ sinﬁzﬁ +cosﬁ sin@ﬁz + sin@% X siniﬁl
2 2 2 2 2 2 2

Let’s next find cos % consistent with the above hypothesis. We see that

cos? % =1 —sin® % (1.96)

and hence we evaluate
sin® % = sin? % 27;2721 = (sin % 1721>T<sin % 7721> (1.97)
= cos’ % sin? % + cos? % sin? % (1.98)
+ 2 cos % cos % <sin % z72>T<sin % z7l> (1.99)

+

(%) o (sn250)] (s 2) o (sn

We used the fact that 03, ¢ are perpendicular to their vector product.
To move further, we will use that for every two unit vectors iZ, 7in R3
there holds

(@ x9) (@ xd) = | x3)|* = |id]*|d]* sin® £(i, 5) (1.101)

= JdPI91* (1 — cos® £(it,9)) = |il]*|7]* - (i£'@102)
16
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true.
Applying this to the last summand in Equation[1.100} we get

0 0 0 0 0
in2 221 _ 272 271 271 2702
sin > cos > sin > + cos > sin > (1.103)
02 61 (. 6.\ 01 o
+ 2 cos > cos > <51 7 ) <sm > vl> (1.104)
0 0 0\ /. 0 ’
+ sin? 72 sin? 71 - [(sin ?2 z7z> <sin ?1 171>] (1.105)
61 0 0
= sin? > + cos? 71 sin? ?2 (1.106)
2
+ ZCOS@COSi s'n@ \ sm@v sinéﬁT siniﬁ
2 2 2 2 ! 2 2 2 !
0 0
= 1o A o2 22
= 1—cos 5 cos” = (1.107)

2
+ 2c¢ 92 % inﬁﬁ \ mﬁﬁ inﬁﬁ \ inﬁﬁ
05 == cos == { sin =0 | | sin =7 sin =~ | | sin =7

where we used the fact that

0 0 ) 0 0 0

in2 2L 271 222 _ 1 _cost 2L 271 a2 22
sin > + cos > sin > 1 —cos > + cos > sin > (1.108)
2 02

v} 7} 0
o 2 Y1l 2 Y2 _1_ 2 V1
= 1+ cos > (sm > ) 1 — cos > cos >

17
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We are thus obtaining

KW

cos? O — 1-—sin® = O : K (1.109)
2 2 Qy
= cos? 621 cos? % (1.110) —) _(/0;——2-_-
2 = @, -
02 01 (. 02 \(. 61, 0L\ (. 61, 73 N 2
— 2cos—= cos— (sin—70, |(sin—0; | + | |sin—0, | sin— 0 L !
2 2 2 2 2 2 W
) 6, T 2 -~ > -2
= (cos > cos 5 (sm > vz> (sm — vl)> (1.111) OY,\,‘ - (1/( @ 7’4

Our complete hypothesis will be

sin%zﬁl = COS@ smﬁz?l —kcosé sm@vz + sin@ffz X sinﬁﬁl
2 2 2 2 2 2 2

cos% = cosicos@— sin@ﬁT siniﬁ
2 2 2 2 2 2 1

To verify this, we will run the following Maple [3] program

> restart:

> with(LinearAlgebra):

> E:=IdentityMatrix(3):

> X_:=proc(u) <<O0|-ul[3]|ul[2]>,<u[3]]0]|-ul[l]>,<-ul[2]|ul[l]]|0O>>
end proc:

> vl:i=<x1l,yl,zl>:

> V2:=<X2,y2,z2>:

> R1:=2*(s1*vl).Transpose(sl*v1)+(2*cl"2-1)*E+2*cl1*X_(sl*vl):

—

> R2:=2*(s2*v2).Transpose(s2*v2)+(2*%c2"2-1)*E+2*c2*X_(s2*v2):

—

> R21:=expand” (R2.R1):
18
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> c21l:=c2*cl-Transpose(s2*v2).(sl*vl);

21 :=c2cl —s1x1s2x2 —s1yls2y2 —s1zls2z2

> s21v21:=c2*sl1*v1+s2*cl*v2+X_(s2*v2).(sl1*vl);

c2s1x1 +s2clx2 —s2z2s1yl +s2y2sl1zl
s21v21 := | 251yl +s2cly2 +s2z2s1x1 —s2x2s1z1
c2s1z1 +s2cl1z2 —s2y2s1x1 +s2x2s1yl

> RR21:=2%*s21v21.Transpose(s21v21)+(2*%c21"2-1)*E+2*c21*X_(s21v21):

— W
> simplify(expand” ( 21—Rﬁ),[x1“2+y1“2+zl“2=1,x2“2+y2“2+22“2:1,

cl72+s172=1,c2"2+s2"2=1]);
000 /
00O

000

which verifies that our hypothesis was correct.
Considering two unit quaternions

p1 q

— p2 - qz
- . and 4= 1.113
F=|a | and §= |7 (1113)

P4 qa

19
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we can now give their composition as

[ 9191 = 2—(13193—&]4}94_ th,]
> oo q1p2 +q92p1 +93pP4 — qap3 1114
fo1 = P q1P3+q3p1 + Gap2 — q2pa (1.114)
& | J1P4+qap1+q2p3 — g3 p2 |
PR 3 B [ q1p1 — qop2 — g3pP3 — Gapa |
_ | 2P+ q1P2 —qap3s +q3p4 (1.115)
g3p1+qap2 + q1p3 — g2 pa ’
| q4P1 —q3pP2 + q2P3 + 41 P4 |
[ —72_—3 p1]
_ ||| & s P2 (1.116)
31y 94 M p3
-
| 44 | =43 P4 |
- - [;
1.3.4 Application of quaternions to vectors
Consider arotation by angle 6 around an axMreection v represented

by a unit quaternion § = [cos§ sin § 7] and a vector ¥ € R®. To rotate

the vector, we may construct the rotation matrix R(7) and apply it to the
vector ¥as R(7) %.

Interestingly enough, it is possible to accomplish this in somewhat dif-
ferent and more efficient way by first “embedding” vector X into a (non-
unit!) quaternion

0
0 X
plx) = [f} = xi 1.117)

and then composing it with quaternion § from both sides

qp(%)

-~

B cosg 0 cosg % )
B sin%z? X —s1ngz7 J
20

:

('44,\\ ((‘-\-‘0\ >

=)

0 -~w
L 114[), “(IJ' o I}L
EZe\Y:s‘ ¢ e so(3)
PO

o 1
@ | = |2
¥> 7

q4] Uty

m



T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-11-1 (pajdla@cvut.cz)

One can verify that the following

[ @ ]—WW” (1.119)

holds true.

1.4 “Cayley transform” parameterization

We see that unit quaternions provide a nice parameterization. It is given
as a matrix with polynomial entries of four parameters. However, unit
quaternions still are somewhat redundant since every rotation is repre-
sented twice.

Let us now mention yet another classical rotation parameterization,
which is known as “Cayley transform”. This parameterization uses only
three parameters to represent three-dimensional rotations. In a sense, it is
as ecconomic as it can be. On the other hand, it can’t represent rotations
by 180°. & A

Actually, it can be proven [4] that there i apping (parameteriza-
tion), which could be (1) continuous, (1) one-to-one] (iii) onto,|and (iv)

1.e. Mapping a  thiee-dimensional bOX  ONto all three-
dimensional rotations).

Axis-angle parameterization is continuous and onto but not one-to-one
and not three-dimensional. Euler vector parameterization is continuous,
onto, three-dimensional but not one-to one. Unit quaternions are con-
tinuous, onto but not three-dimensional and not one-to one (although
they are close to that by being two-to-one). Finally, Cayley transform
parameterization is continuous, one-to-one, three-dimensional but it not
onto.

In addition, unit quaternions and Cayley transform parameterizations
are “finite” in the sense that they are polynomial rational functions of
their parameters while other above mentioned representations require

21
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some “infinite” process for computing goniometric functions. This may
be no probelem if approximate evaluation of functions is acceptable but, as
we will see, it is a findamental obstackle to solving interestign engineering
problems using computational algebra.

1.4.1 Cayley transform parameterization of two-dimensional
rotations

Let us first look at two-dimesional roations. Figure [1.2] shows an illus-
tartion of the relationship between parameter ¢ and cos 6, sin 0 on the
unit circle. We see that, using the similarity of triangles, —S%. = ¢
Considering that (cos 6)? + (sin 6)* = 1 we are getting

cos 0+1 1

1—(cos0)> = (sin0)* = c?*(cosO + 1)> = *((cos 0)* + 2 cos 6(3.130)
0 = (2+1)(cos0)* +2c*cosO +c* —1 (1.121)

and thus

202+ A AA -4 (2 +1)(2-1) A+ A (A1) o+l

6 == = =
N 2(c2+1) c2+1 1+ c?
(1.122)"
gives either cos = —1 or
1-¢?
cos = 1—1——(32 (1123)

The former case corresponds to point [—1 0]T. In the latter case, we have

_ 2 1 2)2 (1 — 2)2
(sinf)?> = 1—(cosB)*=1-— (1 c2)2 = (d+c) g 5 <) (1.124)
R 1+c¢ (1+c?)
A+23+c)—(1-23+c*) 4 2¢.\’
N (1+c2)2 T+ \1+& 2)

22
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and thus sin6 = + 12;62. Now, we see from Figure that we want sin 6
to be positive for positive c. Therefore, we conclude that

1)

(1.126)

It is impotant to notice that with the parameterization given by Equa- \
tion[1.123} we can never get cos 0 = —1 for a real c since if that was true, 19Y
we would get —1 — 2 =1 —c? and hence —1 = 1. On the other hand, we
see that Cayley transform maps every c € R into a point on the unit circle
[cos 6 sin 6], and hence to the corresponding rotation

/

cos —sinf e 2
R(C) = |: ] — [lJrC2 1+C2] (1127)

sin ¢

6,2 0
— 0 cosO® |Tx

sin 6 cos 0 2¢c 1-c
1+c2

1+c2

The mapping R(c): R — R is one-to-one since when two ¢, c; map into
the same point, then

2a_ _ 20 (1.128)
1+ c% 1+ c% )
caa(l+c) = c(l+c) (1.129)

cg—c = ci02(c1 — ) (1.130)
\ cv
implies that either cic; # 0, and thenc; = ¢, 0rcicp = 0,and thenc; =0 =

¢z because both 1+ ¢7, 1+ ¢3 are positive. Next, let us see that the mapping

. - T . . . T . T
is a'ISO onto IR\{[ 1 0]"'}. Consider a point [cos O sinf]' # [-10]". Its C = g T 2, A
preimage c, is obtained as cCtec=1
_ ﬂ (1.131) > =
~ 1+cos@ '

which is clearly defined for cos 0 # —1.

23
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1.4.1.1 Two-dimensional rational rotations

It is also important to notice that the R(c) is a rational function of c as well
as c is a rational function or R (e.g. of the two elements in its first column).
Hence, every rational number ¢ gives a rational point [ b]" on the unit
circle as well as every rational point [a b]" provides a rational c. This
way, we can obtain all rational two-dimensional rotations by going over
all rational c’s plus the rotation —I5».

1.4.2 Cayley transform parameterization of three-dimensional
rotations

We saw that we have obtained a bijective (one-to-one and onto) mapping
between all real numbers and all two-dimensional rotations other than
the rotation by 180° degrees. Now, since every three-dimensional rotation
can be actually seen as a two-dimensional rotation after aligning the z-axis
with the rotation axis, we may hint on having an analogous situation in
three dimensons after removing all rotations by 180°. Let us investigate
this further and see that we can indeed establish a bijective mapping
between R? and all three-dimesnional rotations by other than 180° angle.

Let us consider that all rotations by 180° are represented by unit quater-
nons in the form [0 42 g3 44 ]. Hence, to remove them, it is enough to
remove from all cases when c; = 0. One way to do it, is to write down the
rotation matrix in tems of (non-unit) quaternions §

, G+ G- a 05 20020~ q14s)_ 2(9294 + 715)
————— | 2B t+qq) @ - +a—4q; 29391 — q192)
TEDT BT 2(gogs — q1g3)  2(q39a + G2) 43— 05 — 32 + 2
t
=t 8
N

\W'\\\L

R(7) =

24
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and thensetq1 =1, g2 = c1, 43 = 2, qa = c3, to get /_\5 74 =1

1 1+ C% — c% — cé 2 (c1cp — c§) 2 (c1e3 + ¢2)
R(C) = ———— | 2(@a+a) 1- A+cd—c3  2(ce3—cy) c o~
1ttt | o (c1c3 — c2) 2(cc3+01) 11— —cg+c3 T %'
¢, =
— " S t =
withd=[c1 o 3] eR. ) o = *"dr 3"(‘0‘0‘&
It can be verified that R(¢) 'R(¢) = I forall ¢ e IR? and hence the mapping 3 = v w
R(¢): R? — R maps the space R® into rotation matrices R. Let us next see
that the mapping is also one-to-one. \
First, notice that by setting c; = c; = 0, we are getting ~ 6,9_-‘ a o
b= 2
17c§ —2¢3 0
1 1—- cg —2¢c3 0 13 1+c§
R(C3> = > 2C3 1- C% 0| = 2c3 1-q 0 (1134:)
1+ C3 0 0 1+ C% 1+C§ 1+C§
0 0 1

which is exactly the Cayley parameterization for two-dimensional rotation

aroung the z-axis. In the same way, we get that R(c;) are rotations around

the x-axis and R(c) are rotations around the y-axis. 9

We have seen in Paragraph that the mapping between the unit S M
: ped : : “ ” o C’ e V-

quaternions § and rotation matrices R(§) was “two-to-one” in the way that

there were exactly two quaternions §, —7 mapping into one R, i.e. R(7) = \\ - ,L

R(—4). Now, we are forcing the first coordinate of the unit quaternion

-
1 ¢1 o ¢ ~ .
7= [ 1+1€%+C;C3 3 ] be positive. Therefore, the mapping R(¢) becomes 2 '?» (’ﬁ) ra/\m(rwe‘e_,

one-to-one. fh 90(3\ M"’/J

Now, let us see that by R(¢) we can represent all rotations that are not % (Q-s

by 180°. ... Lot volabeons | -
Ao Oamst SO((S') = W\"MQ'K °
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