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and substitute them into Equation 1.50 to get

exp rθ"vsˆ “ I`

˜

8
ÿ

n“1

p´1qn´1θ2pn´1q

p2nq!

¸

rθ"vs2
ˆ `

˜

8
ÿ

n“0

p´1qnθ2n

p2n ` 1q!

¸

rθ"vsˆ

“ I`

˜

8
ÿ

n“1

p´1qn´1θ2n

p2nq!

¸

r"vs2
ˆ `

˜

8
ÿ

n“0

p´1qnθ2n`1

p2n ` 1q!

¸

r"vsˆ

“ I´

˜

8
ÿ

n“0

p´1qnθ2n

p2nq!
´ 1

¸

r"vs2
ˆ ` sinθ r"vsˆ

“ I´ pcosθ´ 1q r"vs2
ˆ ` sinθ r"vsˆ

“ I` sinθ r"vsˆ ` p1 ´ cosθq r"vs2
ˆ

“ I` sin }"e}
„

"e

}"e}



ˆ

` p1 ´ cos }"e}q
„

"e

}"e}

2

ˆ

“ Rprθ, "vsq (1.54)

by the comparison with Equation 1.25.

1.3 Quaternion representation of rotation

1.3.1 Quaternion parameterization

We shall now introdude another parameterization of R by four numbers
but this time we will not use goniometric functions but polynomials only.
We shall see later that this parameterization has other useful properties.

This paramterization is known as unit quaternion parameterization of
rotations since rotations are represented by unit vectors from R4. In
general, it may sense to talk even about non-unit quaternions and we will
see how to use them later when applying rotations represented by unit
quaternions on points represented by non-unit quaternions. To simplify

9
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our notation, we will often write “quaternions” insted of more correct
“unit quaternions”.

Let us do a seemingly unnecessary trick. We will pass from θ to θ2 and
introduce

"q “
„

cos θ2
"v sin θ2



“

»

—

—

–

q1

q2

q3

q4

fi

ffi

ffi

fl

“

»

—

—

–

cos θ2
v1 sin θ2
v2 sin θ2
v3 sin θ2

fi

ffi

ffi

fl

(1.55)

There still holds

}"q} “ q2
1`q2

2`q2
3`q2

4 “ cos2 θ

2
`sin2 θ

2
v2

1`sin2 θ

2
v2

2`sin2 θ

2
v2

3 “ cos2 θ

2
`sin2 θ

2
“ 1

(1.56)
true. We can verify that the following identities

cosθ “ 2 cos2 θ

2
´ 1 “ 2 q2

1 ´ 1 (1.57)

sinθ “ 2 cos
θ

2
sin
θ

2
(1.58)

sinθ"v “ 2 cos
θ

2
sin
θ

2
"v “ 2 q1

“

q2 q3 q4

‰J
(1.59)

cosθ “ 1 ´ 2 sin2 θ

2
“ 1 ´ 2 pq2

2 ` q2
3 ` q2

4q “ q2
1 ´ q2

2 ´ q2
3 ´ q2

4(1.60)

1 ´ cosθ “ 2 sin2 θ

2
“ 2 pq2

2 ` q2
3 ` q2

4q (1.61)

10
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hold true. We can now substitute the above into Equation 1.23 to get

R “ I` sinθ r"vsˆ ` p1 ´ cosθq r"vs2
ˆ (1.62)

“ I` 2 cos
θ

2
sin
θ

2
r"vsˆ ` 2 sin2 θ

2
r"vs2

ˆ (1.63)

“ I` 2 cos
θ

2

„

sin
θ

2
"v



ˆ
` 2

„

sin
θ

2
"v

2

ˆ
(1.64)

“ I` 2 cos
θ

2

„

sin
θ

2
"v



ˆ
` 2

˜

„

sin
θ

2
"v



‖

´ I

¸

(1.65)

“ I` 2 q1

»

–

»

–

q2

q3

q4

fi

fl

fi

fl

ˆ

` 2

¨

˚

˝

»

–

»

–

q2

q3

q4

fi

fl

fi

fl

‖

´ I

˛

‹

‚
(1.66)

“

»

–

1 ´2 q1q4 2 q1q3

2 q1q4 1 ´2 q1q2

´2 q1q3 2 q1q2 1

fi

fl `

»

–

2 q2q2 ´ 2 2 q2q3 2 q2q4

2 q3q2 2 q3q3 ´ 2 2 q3q4

2 q4q2 2 q4q3 2 q4q4 ´ 2

fi

fl

“

»

–

q2
1 ` q2

2 ´ q2
3 ´ q2

4 2 pq2q3 ´ q1q4q 2 pq2q4 ` q1q3q
2 pq2q3 ` q1q4q q2

1 ´ q2
2 ` q2

3 ´ q2
4 2 pq3q4 ´ q1q2q

2 pq2q4 ´ q1q3q 2 pq3q4 ` q1q2q q2
1 ´ q2

2 ´ q2
3 ` q2

4

fi

fl (1.67)

which uses only second order polynomials in elements of "q.

1.3.2 Computing quaternions from R

To get the quaternions representing a rotation matrix R, we start with
Equation 1.64. Let us first confine θ to the real interval p´π,πs as we did
for the angle-axis parameterization.

Matrix R either is or it is not symmetric.

If R is symmetric, then either sinθ{2 "v “ "0 or cosθ{2 “ 0. If sinθ{2 "v “
"0, then sinθ{2 “ 0 since }"v} “ 1 and thus cosθ{2 “ ˘1. However,

11
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cosθ{2 “ ´1 for no θ P p´π, πs and hence cosθ{2 “ 1. This corresponds
to θ “ 0 and hence to R “ Iwhich is thus represented by quaternion

“

1 0 0 0
‰J

(1.68)

If cosθ{2 “ 0, then sinθ{2 “ ˘1 but sinθ{2 “ ´1 for no θ P p´π, πs and
hence sinθ{2 “ 1. This corresponds to the rotation the by θ “ π around
the axis given by unit "v “ rv1, v2, v3sJ. This rotation is thus represented
by quaternion

“

0 v1 v2 v3
‰J

(1.69)

Notice that "v and ´"v generate the same rotation matrix R and hence every
rotation by θ “ π is represented by two quaternions.

If R is not symmetric, then R´ RJ ‰ 0 and hence we are geting a useful
relationship

R´ RJ “ 4 cos
θ

2

„

sin
θ

2
"v



ˆ
(1.70)

and next continue with writing

cos2 θ

2
“ 1´sin2 θ

2
“ 1´

1

2
p1 ´ cosθq “ 1´

1

2

ˆ

1 ´
1

2
ptrace R´ 1q

˙

“
1

4
p1`trace Rq

(1.71)
using trace R, and thus

q1 “ cos
θ

2
“

s

2

a

trace R` 1 (1.72)

with s “ ˘1. We can form equation
»

–

0 r12 ´ r21 r13 ´ r31

r21 ´ r12 0 r23 ´ r32

r31 ´ r13 r32 ´ r23 0

fi

fl “

»

–

»

–

r32 ´ r23

r13 ´ r31

r21 ´ r12

fi

fl

fi

fl

ˆ

“ s
a

trace R` 1

»

–

»

–

q2

q3

q4

fi

fl

fi

fl

ˆ
(1.73)

12
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which gives the following two quaternions

`1

2
?

trace R` 1

»

—

—

–

trace R` 1
r32 ´ r23

r13 ´ r31

r21 ´ r12

fi

ffi

ffi

fl

,
´1

2
?

trace R` 1

»

—

—

–

trace R` 1
r32 ´ r23

r13 ´ r31

r21 ´ r12

fi

ffi

ffi

fl

(1.74)

which represent the same rotation as R.
We see that all rotations are represented by the above by two quaternions

"q and ´"q except for the identity, which is represented by exactly one
quaternion.

The quaternion representation of rotation presented above represents
every rotation by a finite number of quaternions whereas angle-axis repe-
sentation allowed for an infinite number of angle-axis pairs to corre-
spond to the indentity. Yet, even this still has an “aesthetic flaw” at
the identity, which has only one quaternion whereas all other rotations
have two quaternions. The “flaw” can be removed by realizing that
"q “ r´1, 0, 0, 0sJ also maps to the identity. However, if we look for θ
that corresponds to cosθ{2 “ ´1 we see that such θ{2 “ ˘kπ and hence
θ “ ˘2 kπ for k “ 1, 2, . . ., which are points isolated from p´π, πs. Now,
if we allow θ to be in interval p´2π,`2πs, then the set

"„

cosθ{2
"v sinθ{2

 ˇ

ˇ

ˇ

ˇ

θ P r´2π, `2πs, "v P R3, }"v} “ 1

*

(1.75)

of quaternions contains exactly two quaternions for every rotation matrix
R and is obtained by a continuous mapping of a closed interval of an-
gles, which is boundend, times a sphere in R3, which is also closed and
bounded.

1.3.3 Quaternion composition

Consider two rotations represented by "q1 and "q2. The respective rotation
matrices R1, R2 can be composed into rotation matrix R21 “ R2 R1, which

13
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can be represented by "q21. Let us investigate how to obtain "q21 from "q1 and
"q2. We shall use Equation 1.76 to relate R1 to "q1 and R2 to "q1, then evaluate
R21 “ R2 R1 and recover "q21 from R21. We use Equation 1.23 to write

R “ 2 sin2 θ

2
"v "vJ ` p2 cos2 θ

2
´ 1q I` 2 cos

θ

2
sin
θ

2
r"vsˆ (1.76)

and

R1 “ 2 ps1"v1q ps1"v1qJ ` p2 c2
1 ´ 1q I` 2 c1 rs1"v1sˆ (1.77)

R2 “ 2 ps2"v2q ps2"v2qJ ` p2 c2
2 ´ 1q I` 2 c2 rs2"v2sˆ (1.78)

R21 “ 2 ps21"v21q ps21"v21qJ ` p2 c2
21 ´ 1q I` 2 c21 rs21"v21sˆ

with shortcuts

c1 “ cos
θ1

2
, s1 “ sin

θ1

2
, c2 “ cos

θ2

2
, s2 “ sin

θ2

2
, c21 “ cos

θ21

2
, s21 “ sin

θ21

2

Let us next assume that both R1, R2 are not identities. Then θ1 ‰ 0 and
θ2 ‰ 0 and rotation axes "v1 ‰ "0, "v2 ‰ "0 are well defined. We can now
distinguish two cases. Either "v1 “ ˘"v2, and then "v21 “ "v1 “ ˘"v2, or
"v1 ‰ ˘"v2, and then

r"v1, "v2, "v2 ˆ "v1s (1.79)

forms a basis of R3. We also notice that "v1, "v2 always appear in R1, R2 in
the product with s1, s2.

We can thus write

sin
θ21

2
"v21 “ a1 sin

θ1

2
"v1 ` a2 sin

θ2

2
"v2 ` a3 psin

θ2

2
"v2 ˆ sin

θ1

2
"v1q (1.80)

with coefficients a1, a2, a3 P R. To find coefficients a1, a2, a3, we will con-
sider the following special situations:

1. "v1 “ ˘"v2 implies "v21 “ "v1 “ ˘"v2 and θ21 “ θ1 ˘ θ2 for all real θ1

and θ2.
14
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2. "vJ
2
"v1 “ 0 and θ1 “ θ2 “ π implies

R1 “ 2 "v1"v
J
1 ´ I (1.81)

R2 “ 2 "v2"v
J
2 ´ I (1.82)

R21 “ p2 "v2"v
J
2 ´ Iqp2 "v1"v

J
1 ´ Iq “ I´ 2 p"v2"v

J
2 ` "v1"v

J
1 q (1.83)

We see that in the former case we are getting

sin
θ21

2
"v1 “ pa1 sin

θ1

2
` a2 sin

θ2

2
q "v1 for allθ1,θ2 P R (1.84)

which for "v1 ‰ "0 leads to

sin
θ21

2
“ a1 sin

θ1

2
` a2 sin

θ2

2
(1.85)

sin
θ1 ` θ2

2
“ a1 sin

θ1

2
` a2 sin

θ2

2
(1.86)

sin
θ1

2
cos
θ2

2
` cos

θ1

2
sin
θ2

2
“ a1 sin

θ1

2
` a2 sin

θ2

2
(1.87)

for all θ1,θ2 P R. But that means that

a1 “ cos
θ2

2
and a2 “ cos

θ1

2
(1.88)

In the latter case we find that "v21 is a non-zero multiple of "v2 ˆ "v1 since

R21 p"v2 ˆ "v1q “ pI´ 2 p"v2"v
J
2 ` "v1"v

J
1 qq p"v2 ˆ "v1q (1.89)

“ "v2 ˆ "v1 ´ 2 "v2"v
J
2 p"v2 ˆ "v1q ´ 2 "v1"v

J
1 p"v2 ˆ "v1q (1.90)

“ "v2 ˆ "v1 (1.91)

But that means that

sin
θ21

2
"v21 “ a3 psin

θ2

2
"v2 ˆ "v1 sin

θ1

2
q (1.92)
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We next get θ21 using Equation ?? as

cosθ21 “
1

2
ptrace R´ 1q “

1

2
p3 ´ 2 p}"v2}2 ` }"v1}2q ´ 1q “

1

2
p3 ´ 4 ´ 1q “ ´1(1.93)

and hence θ21 “ ˘π and thus

"v21 “ a3 p"v1 ˆ "v2q (1.94)

but since "v1 is perpendicular to "v2, "v1 ˆ "v2 is a unit vector and thus a3 “ 1.
We can thus hypothesize that in general

sin
θ21

2
"v21 “ cos

θ2

2

ˆ

sin
θ1

2
"v1

˙

`cos
θ1

2

ˆ

sin
θ2

2
"v2

˙

`
ˆ

sin
θ2

2
"v2

˙

ˆ
ˆ

sin
θ1

2
"v1

˙

(1.95)
Let’s next find cos θ21

2 consistent with the above hypothesis. We see that

cos2 θ21

2
“ 1 ´ sin2 θ21

2
(1.96)

and hence we evaluate

sin2 θ21

2
“ sin2 θ21

2
"vJ

21"v21 “
ˆ

sin
θ21

2
"v21

˙Jˆ

sin
θ21

2
"v21

˙

(1.97)

“ cos2 θ2

2
sin2 θ1

2
` cos2 θ1

2
sin2 θ2

2
(1.98)

` 2 cos
θ2

2
cos
θ1

2

ˆ

sin
θ2

2
"v2

˙Jˆ

sin
θ1

2
"v1

˙

(1.99)

`
„ˆ

sin
θ2

2
"v2

˙

ˆ
ˆ

sin
θ1

2
"v1

˙J„ˆ

sin
θ2

2
"v2

˙

ˆ
ˆ

sin
θ1

2
"v1

˙

(1.100)

We used the fact that "v1, "v2 are perpendicular to their vector product.
To move further, we will use that for every two unit vectors "u, "v in R3

there holds

p"u ˆ "vqJp"u ˆ "vq “ }p"u ˆ "vq}2 “ }"u}2}"v}2 sin2
=p"u, "vq (1.101)

“ }"u}2}"v}2p1 ´ cos2
=p"u, "vqq “ }"u}2}"v}2 ´ p"uJ"vq2(1.102)
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true.
Applying this to the last summand in Equation 1.100, we get

sin2 θ21

2
“ cos2 θ2

2
sin2 θ1

2
` cos2 θ1

2
sin2 θ2

2
(1.103)

` 2 cos
θ2

2
cos
θ1

2

ˆ

sin
θ2

2
"v2

˙Jˆ

sin
θ1

2
"v1

˙

(1.104)

` sin2 θ2

2
sin2 θ1

2
´

«

ˆ

sin
θ2

2
"v2

˙Jˆ

sin
θ1

2
"v1

˙

ff2

(1.105)

“ sin2 θ1

2
` cos2 θ1

2
sin2 θ2

2
(1.106)

` 2 cos
θ2

2
cos
θ1

2

ˆ

sin
θ2

2
"v2

˙Jˆ

sin
θ1

2
"v1

˙

´

«

ˆ

sin
θ2

2
"v2

˙Jˆ

sin
θ1

2
"v1

˙

ff2

“ 1 ´ cos2 θ1

2
cos2 θ2

2
(1.107)

` 2 cos
θ2

2
cos
θ1

2

ˆ

sin
θ2

2
"v2

˙Jˆ

sin
θ1

2
"v1

˙

´

«

ˆ

sin
θ2

2
"v2

˙Jˆ

sin
θ1

2
"v1

˙

ff2

where we used the fact that

sin2 θ1

2
` cos2 θ1

2
sin2 θ2

2
“ 1 ´ cos2 θ1

2
` cos2 θ1

2
sin2 θ2

2
(1.108)

“ 1 ` cos2 θ1

2

ˆ

sin2 θ2

2
´ 1

˙

“ 1 ´ cos2 θ1

2
cos2 θ2

2

17
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We are thus obtaining

cos2 θ21

2
“ 1 ´ sin2 θ21

2
(1.109)

“ cos2 θ1

2
cos2 θ2

2
(1.110)

´ 2 cos
θ2

2
cos
θ1

2

ˆ

sin
θ2

2
"v2

˙Jˆ

sin
θ1

2
"v1

˙

`

«

ˆ

sin
θ2

2
"v2

˙Jˆ

sin
θ1

2
"v1

˙

ff2

“

˜

cos
θ1

2
cos
θ2

2
´

ˆ

sin
θ2

2
"v2

˙Jˆ

sin
θ1

2
"v1

˙

¸2

(1.111)

Our complete hypothesis will be

sin
θ21

2
"v21 “ cos

θ2

2

ˆ

sin
θ1

2
"v1

˙

` cos
θ1

2

ˆ

sin
θ2

2
"v2

˙

`
ˆ

sin
θ2

2
"v2

˙

ˆ
ˆ

sin
θ1

2
"v1

˙

cos
θ21

2
“ cos

θ1

2
cos
θ2

2
´

ˆ

sin
θ2

2
"v2

˙Jˆ

sin
θ1

2
"v1

˙

(1.112)

To verify this, we will run the following Maple [3] program

> restart:

> with(LinearAlgebra):

> E:=IdentityMatrix(3):

> X :=proc(u) <<0|-u[3]|u[2]>,<u[3]|0|-u[1]>,<-u[2]|u[1]|0>>

end proc:

> v1:=<x1,y1,z1>:

> v2:=<x2,y2,z2>:

> R1:=2*(s1*v1).Transpose(s1*v1)+(2*c1ˆ2-1)*E+2*c1*X (s1*v1):

> R2:=2*(s2*v2).Transpose(s2*v2)+(2*c2ˆ2-1)*E+2*c2*X (s2*v2):

> R21:=expand˜(R2.R1):

18
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> c21:=c2*c1-Transpose(s2*v2).(s1*v1);

c21 :“ c2 c1 ´ s1 x1 s2 x2 ´ s1 y1 s2 y2 ´ s1 z1 s2 z2

> s21v21:=c2*s1*v1+s2*c1*v2+X (s2*v2).(s1*v1);

s21v21 :“

»

—

—

–

c2 s1 x1 ` s2 c1 x2 ´ s2 z2 s1 y1 ` s2 y2 s1 z1

c2 s1 y1 ` s2 c1 y2 ` s2 z2 s1 x1 ´ s2 x2 s1 z1

c2 s1 z1 ` s2 c1 z2 ´ s2 y2 s1 x1 ` s2 x2 s1 y1

fi

ffi

ffi

fl

> RR21:=2*s21v21.Transpose(s21v21)+(2*c21ˆ2-1)*E+2*c21*X (s21v21):

> simplify(expand˜(RR21-R21),[x1ˆ2+y1ˆ2+z1ˆ2=1,x2ˆ2+y2ˆ2+z2ˆ2=1,

c1ˆ2+s1ˆ2=1,c2ˆ2+s2ˆ2=1]);

»

—

—

–

0 0 0

0 0 0

0 0 0

fi

ffi

ffi

fl

which verifies that our hypothesis was correct.
Considering two unit quaternions

"p “

»

—

—

–

p1

p2

p3

p4

fi

ffi

ffi

fl

, and "q “

»

—

—

–

q1

q2

q3

q4

fi

ffi

ffi

fl

(1.113)
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we can now give their composition as

"q21 “ "q "p “

»

—

—

–

q1 p1 ´ q2 p2 ´ q3 p3 ´ q4 p4

q1 p2 ` q2 p1 ` q3 p4 ´ q4 p3

q1 p3 ` q3 p1 ` q4 p2 ´ q2 p4

q1 p4 ` q4 p1 ` q2 p3 ´ q3 p2

fi

ffi

ffi

fl

(1.114)

“

»

—

—

–

q1 p1 ´ q2 p2 ´ q3 p3 ´ q4 p4

q2 p1 ` q1 p2 ´ q4 p3 ` q3 p4

q3 p1 ` q4 p2 ` q1 p3 ´ q2 p4

q4 p1 ´ q3 p2 ` q2 p3 ` q1 p4

fi

ffi

ffi

fl

(1.115)

“

»

—

—

–

q1 ´q2 ´q3 ´q4

q2 q1 ´q4 q3

q3 q4 q1 ´q2

q4 ´q3 q2 q1

fi

ffi

ffi

fl

»

—

—

–

p1

p2

p3

p4

fi

ffi

ffi

fl

(1.116)

1.3.4 Application of quaternions to vectors

Consider a rotation by angleθ around an axis with direection"v represented
by a unit quaternion "q “

“

cos θ2 sin θ2 "v
‰

and a vector "x P R3. To rotate
the vector, we may construct the rotation matrix Rp"q q and apply it to the
vector "x as Rp"q q "x.

Interestingly enough, it is possible to accomplish this in somewhat dif-
ferent and more efficient way by first “embedding” vector "x into a (non-
unit!) quaternion

"pp"xq “
„

0
"x



“

»

—

—

–

0
x1

x2

x3

fi

ffi

ffi

fl

(1.117)

and then composing it with quaternion "q from both sides

"q "pp"xq"q´1 “
„

cos θ2
sin θ2 "v

 „

0
"x

 „

cos θ2
´ sin θ2 "v



(1.118)
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One can verify that the following

„

0
Rp"q q "x



“ "q "pp"xq"q´1 (1.119)

holds true.

1.4 “Cayley transform” parameterization

We see that unit quaternions provide a nice parameterization. It is given
as a matrix with polynomial entries of four parameters. However, unit
quaternions still are somewhat redundant since every rotation is repre-
sented twice.

Let us now mention yet another classical rotation parameterization,
which is known as “Cayley transform”. This parameterization uses only
three parameters to represent three-dimensional rotations. In a sense, it is
as ecconomic as it can be. On the other hand, it can’t represent rotations
by 180˝.

Actually, it can be proven [4] that there is no mapping (parameteriza-
tion), which could be (i) continuous, (ii) one-to-one, (iii) onto, and (iv)
three-dimensional (i.e. mapping a “three-dimensional box” onto all three-
dimensional rotations).

Axis-angle parameterization is continuous and onto but not one-to-one
and not three-dimensional. Euler vector parameterization is continuous,
onto, three-dimensional but not one-to one. Unit quaternions are con-
tinuous, onto but not three-dimensional and not one-to one (although
they are close to that by being two-to-one). Finally, Cayley transform
parameterization is continuous, one-to-one, three-dimensional but it not
onto.

In addition, unit quaternions and Cayley transform parameterizations
are “finite” in the sense that they are polynomial rational functions of
their parameters while other above mentioned representations require
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some “infinite” process for computing goniometric functions. This may
be no probelem if approximate evaluation of functions is acceptable but, as
we will see, it is a findamental obstackle to solving interestign engineering
problems using computational algebra.

1.4.1 Cayley transform parameterization of two-dimensional
rotations

Let us first look at two-dimesional roations. Figure 1.2 shows an illus-
tartion of the relationship between parameter c and cosθ, sinθ on the
unit circle. We see that, using the similarity of triangles, sinθ

cosθ`1 “ c
1 .

Considering that pcosθq2 ` psinθq2 “ 1 we are getting

1 ´ pcosθq2 “ psinθq2 “ c2pcosθ` 1q2 “ c2ppcosθq2 ` 2 cosθ` 1q(1.120)

0 “ pc2 ` 1qpcosθq2 ` 2 c2 cosθ` c2 ´ 1 (1.121)

and thus

cosθ “
´2 c2 ˘

a

4 c4 ´ 4 pc2 ` 1qpc2 ´ 1q
2pc2 ` 1q

“
´c2 ˘

a

c4 ´ pc4 ´ 1q
c2 ` 1

“
˘1 ´ c2

1 ` c2

(1.122)
gives either cosθ “ ´1 or

cosθ “
1 ´ c2

1 ` c2
(1.123)

The former case corresponds to point r´1 0sJ. In the latter case, we have

psinθq2 “ 1 ´ pcosθq2 “ 1 ´ p
1 ´ c2

1 ` c2
q2 “

p1 ` c2q2 ´ p1 ´ c2q2

p1 ` c2q2
(1.124)

“
p1 ` 2 c2 ` c4q ´ p1 ´ 2 c2 ` c4q

p1 ` c2q2
“

4 c2

p1 ` c2q2
“

ˆ

2 c

1 ` c2

˙2

(1.125)
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and thus sinθ “ ˘ 2 c
1`c2 . Now, we see from Figure 1.2 that we want sinθ

to be positive for positive c. Therefore, we conclude that

sinθ “
2 c

1 ` c2
(1.126)

It is impotant to notice that with the parameterization given by Equa-
tion 1.123, we can never get cosθ “ ´1 for a real c since if that was true,
we would get ´1 ´ c2 “ 1 ´ c2 and hence ´1 “ 1. On the other hand, we
see that Cayley transform maps every c P R into a point on the unit circle
rcosθ sinθsJ, and hence to the corresponding rotation

Rpcq “
„

cosθ ´ sinθ
sinθ cosθ



“

«

1´c2

1`c2 ´ 2 c
1`c2

2 c
1`c2

1´c2

1`c2

ff

(1.127)

The mapping Rpcq : R Ñ R is one-to-one since when two c1, c2 map into
the same point, then

2 c1

1 ` c2
1

“
2 c2

1 ` c2
2

(1.128)

c1p1 ` c2
2q “ c2p1 ` c2

1q (1.129)

c1 ´ c2 “ c1c2pc1 ´ c2q (1.130)

implies that either c1c2 ‰ 0, and then c1 “ c2, or c1c2 “ 0, and then c1 “ 0 “
c2 because both 1`c2

1, 1`c2
2 are positive. Next, let us see that the mapping

is also onto Rztr´1 0sJu. Consider a point rcosθ sinθsJ ‰ r´1 0sJ. Its
preimage c, is obtained as

c “
sinθ

1 ` cosθ
(1.131)

which is clearly defined for cosθ ‰ ´1.
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1.4.1.1 Two-dimensional rational rotations

It is also important to notice that the Rpcq is a rational function of c as well
as c is a rational function or R (e.g. of the two elements in its first column).
Hence, every rational number c gives a rational point ra bsJ on the unit
circle as well as every rational point ra bsJ provides a rational c. This
way, we can obtain all rational two-dimensional rotations by going over
all rational c’s plus the rotation ´I2ˆ2.

1.4.2 Cayley transform parameterization of three-dimensional
rotations

We saw that we have obtained a bijective (one-to-one and onto) mapping
between all real numbers and all two-dimensional rotations other than
the rotation by 180˝ degrees. Now, since every three-dimensional rotation
can be actually seen as a two-dimensional rotation after aligning the z-axis
with the rotation axis, we may hint on having an analogous situation in
three dimensons after removing all rotations by 180˝. Let us investigate
this further and see that we can indeed establish a bijective mapping
between R3 and all three-dimesnional rotations by other than 180˝ angle.

Let us consider that all rotations by 180˝ are represented by unit quater-
nons in the form

“

0 q2 q3 q4
‰

. Hence, to remove them, it is enough to
remove from all cases when c1 “ 0. One way to do it, is to write down the
rotation matrix in tems of (non-unit) quaternions "q

Rp"qq “
1

q2
1

` q2
2 ` q2

3 ` q2
4

»

–

q2
1 ` q2

2 ´ q2
3 ´ q2

4 2 pq2q3 ´ q1q4q 2 pq2q4 ` q1q3q
2 pq2q3 ` q1q4q q2

1 ´ q2
2 ` q2

3 ´ q2
4 2 pq3q4 ´ q1q2q

2 pq2q4 ´ q1q3q 2 pq3q4 ` q1q2q q2
1 ´ q2

2 ´ q2
3 ` q2

4

fi

fl

(1.132)
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and then set q1 “ 1, q2 “ c1, q3 “ c2, q4 “ c3, to get

Rp"cq “
1

1 ` c2
1

` c2
2 ` c2

3

»

–

1 ` c2
1 ´ c2

2 ´ c2
3 2 pc1c2 ´ c3q 2 pc1c3 ` c2q

2 pc1c2 ` c3q 1 ´ c2
1 ` c2

2 ´ c2
3 2 pc2c3 ´ c1q

2 pc1c3 ´ c2q 2 pc2c3 ` c1q 1 ´ c2
1 ´ c2

2 ` c2
3

fi

fl

(1.133)

with "c “
“

c1 c2 c3
‰J P R3.

It can be verified that Rp"cqJRp"cq “ I for all"c P R3 and hence the mapping
Rp"cq : R3 Ñ R maps the space R3 into rotation matrices R. Let us next see
that the mapping is also one-to-one.

First, notice that by setting c1 “ c2 “ 0, we are getting

Rpc3q “
1

1 ` c2
3

»

–

1 ´ c2
3 ´2 c3 0

2 c3 1 ´ c2
3 0

0 0 1 ` c2
3

fi

fl “

»

—

—

—

–

1´c2
3

1`c2
3

´2 c3

1`c2
3

0

2 c3

1`c2
3

1´c2
3

1`c2
3

0

0 0 1

fi

ffi

ffi

ffi

fl

(1.134)

which is exactly the Cayley parameterization for two-dimensional rotation
aroung the z-axis. In the same way, we get that Rpc1q are rotations around
the x-axis and Rpc2q are rotations around the y-axis.

We have seen in Paragraph 1.3.2 that the mapping between the unit
quaternions "q and rotation matrices Rp"qq was “two-to-one” in the way that
there were exactly two quaternions "q, ´"q mapping into one R, i.e. Rp"qq “
Rp´"qq. Now, we are forcing the first coordinate of the unit quaternion

"q “
”

1 c1 c2 c3

ıJ

1`c2
1
`c3

2`c3
be positive. Therefore, the mapping Rp"cq becomes

one-to-one.
Now, let us see that by Rp"cq we can represent all rotations that are not

by 180˝. ...
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