Artificial intelligence in robotics 2019

Simultanneous localisation and

mapping

Tom Krajník

FEL ČVUT

Nov 2019

Navigation

- The art of getting from one place to another, safely and efficiently.
- The process of monitoring and controlling the movement of a craft or vehicle from one place to another.
- The activity of accurately ascertaining one's position and planning and following a route.

			"Where am I?",	"Where am I going?",	"How do I get there?"	
Tom Krajník	Artificial intelligence in robotics	1 / 7	Tom Krajník	Artificial intelligence in ro	obotics	2/7
Tom Krajník	Autonomous Navigation	AIC@CTU	Tom Krajník	Autonomous Navigation	AIC@CTU	

Navigation

- The art of getting from one place to another, safely and efficiently.
- The process of monitoring and controlling the movement of a craft or vehicle from one place to another.
- The activity of accurately ascertaining one's position and planning and following a route.

Localisation. Tom Krajník

Mapping, Artificial intelligence in robotics

Motion planning

2 / 7 Tom Krajník

Lecture intro

Autonomous navigation in mobile robotics:

- 1. Map-less navigation
 - · observations translate to motion commands
 - unknown, structured (roads, corridors, lanes) environments
 - observations \rightarrow commands
- 2. Map-based navigation
 - observations and map data translate to motion commands
 - known (mapped), (un)structured environments
 - (observations, map) \rightarrow commands
- 3. Map-building-based navigation
 - observations and map data translate to both commands and map
 - (un)known, (un)structured environments
 - (observations) \rightarrow (commands, map) ٠

Artificial intelligence in robotics

What to remember

What to remember

Overview					
• (obse	ervations, map, position) \leftrightarrow (map, position)	F	Probabilistic formulation of full SLAM		
 essential component of navigation systems but it does not solve navigation by itself. 			$p(x_{0:T}, m o_{1:T}, u_{1:T}).$	(1)	
	vs. SLAM	F	Probabilistic formulation of 'online' SLAM		
 the drift issue loop closure is the difference!			$p(x_T, m o_{1:T}, u_{1:T}).$	(2)	
			 x_{0:T} - trajectory m - map o_{1:T} - sequence of observations u_{1:T} - sequence of commands 		
Tom Krajník	Artificial intelligence in robotics	4 / 7 Tom Krajn	k Artificial intelligence in robotics	5/7	
Tom Krajník	Autonomous Navigation	AIC@CTU Tom Krajn	k Autonomous Navigation	AIC@CTU	
	What to remember		Further study		

Tom Krajník

Map types

- topological,
- dense metric,
- sparse metric,
- hybrid.

Uncertainty models

- (extended) Kalman filter,
- mixture models,
- particle filter.

Further study

- Stachniss: Introduction to Robot Mapping https://www.youtube.com/watch?v=wVsfCnyt5jA
- Cadena et al.: Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE T-RO 2018.
- Grissetti, Stachniss et al: Tutorial on Graph-Based SLAM. **ITS Magazine**