
Roboter Navigation
Temporal Task-Motion Planning

Stefan Edelkamp

Driving Research Questions

Stefan Edelkamp 2

Framework

Stefan Edelkamp 3

For a Start:
The Physical
TSP

Stefan Edelkamp 4

Traveling Salesman
Tours (TSP)

• Given a map, compute a minimum-cost
round trip visiting certain cities

• Shortest paths graph reduction:
precompute all-pairs-shortest-paths with

• Dijkstra’s algorithm (be smart: employ
radix heaps)

• Traditional: Model problem as an IP and
call solver (CPLEX, IPSolve,. . .)

• Neighborhood search (xOPT: SA; GA; AA;
PSO; LNS,. . .)

• . . . New in the arena: Monte-Carlo Search

Stefan Edelkamp 5

Additional Constraints

Stefan Edelkamp 6

Inspection
Problem

Stefan Edelkamp 7

Inspection
Tour

Stefan Edelkamp 8

Grassfiring

Stefan Edelkamp 9

Grassfiring

Stefan Edelkamp 10

Generating Inspection Waypoints (1)

Stefan Edelkamp 11

Generating Inspection Waypoints (2)

Stefan Edelkamp 12

Multi-Goal Motion Planning with Dynamics

Stefan Edelkamp 13

file:///C:/cygwin64/home/k1653854/tspSlides/usef/AI14_SnakeVehicle.avi
file:///C:/cygwin64/home/k1653854/tspSlides/CIG14_movie.avi

Dynamics

• Express relation between input
controls and resulting motions

• Necessary to plan motions that can
be executed

• Impose significant challenges

➢ Constrain the feasible motions

➢ Often are nonlinear and high-
dimensional

➢ Give rise to nonholonomic systems

➢ State and control spaces are
continuous

➢ Solution trajectories are often long

Computational complexity of motion planning
with dynamics

• Point with Newtonian dynamics NP-Hard
[DXCR 1993]

• Polygon Dubin’s car Decidable [CPK 2008]

• General nonlinear dynamics Undecidable
[Branicky 1995]

Stefan Edelkamp 14

Dynamics

• Express relation between
input controls and resulting
motions

• Modeled via physics-based
engines

ROS/Gazebo, ODE, Bullet, PhysX
general rigid-body dynamics
friction and gravity

Stefan Edelkamp 15

Introduce Discrete Layer to Guide the Search
Workspace decomposition provides

• discrete layer as adjacency graph G = (R,E)

• R denotes the regions of the decomposition

• E = {(ri,rj) | ri, rj in R are physically adjacent}

hcost(r) estimates the difficulty of reaching goal region from r

• defined as length of shortest path in G from r to goal
[hcost(r1), hcost(r2),…, hcost(rn)]

• computed by running BFS/A* on G backwards from goal

Stefan Edelkamp 16

Sampling Based Motion Planning

• Expand a tree T of collision-free
and

• dynamically-feasible motions

➢select a state s from which to

expand the tree

➢sample control input u

➢generate new trajectory by

➢applying u to s

Stefan Edelkamp 17

Sampling Based Motion Planning

• Expand a tree T of collision-free
and

• dynamically-feasible motions

➢select a state s from which to

expand the tree

➢sample control input u

➢generate new trajectory by

➢applying u to s

Stefan Edelkamp 18

Sampling Based Motion Planning

• Expand a tree T of collision-free
and

• dynamically-feasible motions

➢select a state s from which to

expand the tree

➢sample control input u

➢generate new trajectory by

➢applying u to s

Stefan Edelkamp 19

Sampling Based Motion Planning

• Expand a tree T of collision-free
and

• dynamically-feasible motions

➢select a state s from which to

expand the tree

➢sample control input u

➢generate new trajectory by

➢applying u to s

Stefan Edelkamp 20

Sampling Based Motion Planning

• Expand a tree T of collision-free
and

• dynamically-feasible motions

➢select a state s from which to

expand the tree

➢sample control input u

➢generate new trajectory by

➢applying u to s

Stefan Edelkamp 21

Complex Robot Models -
Often Sets of Differential Equations

Stefan Edelkamp 22

Sampling Based Motion Planning and
Selection of Equivalence Class

Stefan Edelkamp 23

Guided Expansion of Motion Tree

• Sampling-based motion planning

➢ generality: dynamics as black-box function s’ =MOTION(s,u,dt)

➢ continuous state/control spaces: probabilistic sampling to make it feasible

➢ high-dimensionality: search to find solution

• coupled with discrete abstractions

➢ provide simplified planning layer

➢ guide search in the continuous state/control spaces

• and motion controllers

➢ open up the black-box MOTION function

➢ facilitate search expansion

• Formal guarantees

➢ probabilistic completeness

Stefan Edelkamp 24

Stefan Edelkamp 25

Architecture

Stefan Edelkamp 26

file:///C:/cygwin64/home/k1653854/tspSlides/plannerInAction.wmv

Abstraction

Stefan Edelkamp 27

Graph Search for the Colored TSP

Stefan Edelkamp 28

Nested Rollout Policy Adaptation

Rosin 2011 IJCAI – Best Paper, Morpion Solitaire with new Record

MCS tree based on Complete Rollout and Recursive Search

• Not really MCTS, No Search Tree.

• In Each Level a Policy is Maintained, Updated and Refreshed

• Updating Policy based on better Solutions Coming in from below

• Policy in Turn Influences the Rollouts

• Parameters: Level of Recursion, and Iteration Width

• Effective for TSPTW and many other Approaches

• Refinements: Beam / Diversity / Generalization

Stefan Edelkamp 29

Learning Curve

Stefan Edelkamp 30

Nested Rollout Policy Adaptation

STEFAN EDELKAMP 31

Input: Iteration width (exploitation), nestedness (exploration)
Policy: (city-to-city) mapping NxN -> IR to be learnt

Stefan Edelkamp 31Stefan Edelkamp 31

Nested Rollout Policy Adaptation

Input: Iteration width (exploitation), nestedness (exploration)
Policy: (city-to-city) mapping NxN -> IR to be learnt

Stefan Edelkamp 32

Nested Rollout Policy Adaptation

Input: Iteration width (exploitation), nestedness (exploration)
Policy: (city-to-city) mapping NxN -> IR to be learnt

Stefan Edelkamp 33

Playout

Stefan Edelkamp 34

Adapt

Stefan Edelkamp 35

Search

Stefan Edelkamp 36

Theory…

Stefan Edelkamp 37

Praxis…

• https://nms.kcl.ac.uk/stefan.edelkamp/lectures/pi1/programs/VRP.java

Stefan Edelkamp 38

Some Results
Multi-Goal

Stefan Edelkamp 39

More Results Multi-Goal

Stefan Edelkamp 40

Inspection Benchmarks

Stefan Edelkamp 41

Results
Inspection

Stefan Edelkamp 42

Intermediate Summary Multi-Goal Task-
Motion Planning

Stefan Edelkamp 43

Temporal Planning: Time Does Matter

In general, activities have varying durations:
➢ Loading a package onto a truck is much quicker

than driving the truck;

➢ Drinking a cup of tea takes longer than making
it;

➢ Procrastinating tasks takes longer than doing
them

➢ …

Example: Zeno Domain
Initial State Goal State

Zeno
PDDL
domain
File

Zeno
PDDL
Problem
FILE

Sequential and TemPORAL PLAN

SNAG: Sequential Plan TIME VS.
Parallel Plan TIME

Different Plan OBJECTIVES

Fuel Time

Durative Actions?

A

pre

eff

A

Durative Actions?

A

pre

eff

A

FF

Durative Actions in PDDL 2.1

A

pre

effeff

prepre

at start at end

over all

PDDL Example (i)

• (:durative-action LOAD-TRUCK

• :parameters

• (?obj – obj ?truck – truck ?loc -

location)

• :duration (= ?duration 2)

• :condition

• (and (over all (at ?truck ?loc))

• (at start (at ?obj ?loc)))

• :effect

• (and (at start (not (at ?obj ?loc)))

• (at end (in ?obj ?truck))))

:precondition

Beware of self-overlapping actions!

PDDL Example (ii)

• (:durative-action open-barrier

• :parameters

• (?loc – location ?p - person)

• :duration (= ?duration 1)

• :condition

• (and (at start (at ?loc ?p)))

• :effect

• (and (at start (door-open ?loc))

• (at end (not (door-open

?loc))))

PDDL Example (ii)

• (:durative-action open-barrier

• :parameters

• (?loc – location ?p - person)

• :duration (= ?duration 1)

• :condition

• (and (at start (at ?loc ?p)))

• :effect

• (and (at start (door-open ?loc))

• (at end (not (door-open

?loc))))

Durative Actions

pre

effeff

prepre

A A A A

U As

As U

U ¬As

(Fox and Long, ICAPS 2003)

Planning with Snap Actions (i)

• Challenge 1: What if B interferes with the goal?

@PDDL 2.1 semantics: no actions can be executing in a
goal state.

Solution: add ¬As, ¬Bs, ¬Cs.... to the goal (or make this
implicit in a temporal planner.)

A A B

¬As, G

A A B

Bs, f

As,f

As ¬Bs, ¬G

B

Bs

Planning with Snap Actions (ii)

Challenge 2: what about over all conditions?

If A is executing, inv_A must hold.

Solution:
In every state where As is true: inv_A must also
be true

Or: (imply (As) inv_A)

Violating an invariant then leads to a dead-end.

pre

effeff

preinv_A

A A A

U As

As U

U ¬As

Planning with Snap Actions (iii)

● Challenge 3: where did the durations go?
–More generally, what are the temporal
constraints?

–Logically sound ≠ temporally sound.

A A B A B

Option 1: Decision Epoch Planning
➢ Search with time-stamped states and a priority queue of

pending end snap-actions.
➢ See Temporal Fast Downward (Eyerich,

Mattmüller and Röger, ICAPS 2009); Sapa (Do
and Kambhampati, JAIR 2003), and others.

➢ In a state S, at time t and with queue Q, either:
➢ Apply a start snap-action A (at time t)

➢ Insert A into Q at time (t + dur(A))

➢ S'.t = S.t + ε

➢ Remove and apply the first end snap-action from Q.

➢ S'.t set to the scheduled time of this, plus ε

Term from Cushing et al, IJCAI 2007

Running through our example...

A A

A

B

B

t=0 t=0.01

t=3 t=5.01

Can only choose A
- eliminated the

temporally inconsistent
option (B before A)

Q

Decision Epoch Planning: The snag

Must fix start- and end-timestamps at the point when
the action is started.
–Used for the priority queue

Can we always do this?

A C

D

C

D

q

q

¬q

dur(C) = 10

dur(D) = 1

t = 0 t = 0.01

Queued: t = 10

Queued: t = 1.01

OPTION 2: Simple Temporal Networks

"Planning with Problems Requiring Temporal Coordination." A. I. Coles, M. Fox, D. Long, and A. J. Smith. AAAI 08.
https://local.cis.strath.ac.uk/research/publications/papers/strath_cis_publication_2248.pdf
"Managing concurrency in temporal planning using planner-scheduler interaction."
A. I. Coles, M. Fox, K. Halsey, D. Long, and A. J. Smith. Artificial Intelligence. 173 (1). 2009.

https://local.cis.strath.ac.uk/research/publications/papers/strath_cis_publication_2248.pdf

a Simple Temporal Problem?

➢ All our constraints are of the form:
➢ ε ≤ t(i+1) – t(i) (c.f. sequence constraints)

➢ durmin(A) ≤ t(A) – t(A) ≤ durmax(A)

➢ Or, more generally, lb ≤ t(j) – t(i) ≤ ub

➢ Is a Simple Temporal Problem

➢ “Temporal Constraint Networks”,
Dechter, Meiri and Pearl, AIJ, 1991

➢ Good news – is polynomial
➢ Bad news – in planning, we need to solve it a

lot....

Example

• John travels to work either by car (30-40 min) or by bus (>= 60 min)

• Fred travels to work either by car (20-30 min) or in a carpool (40-50
min)

• Today John left between 7:10 and 7:30am.

• Fred arrived at work between 8:00 and 8:10am.

• John arrived at work 10-20min after Fred left home.

Visualize TCSP as
Directed Constraint Graph

1 3

42

0
[10,20]

[30,40]
[60,inf]

[10,20]

[20,30]
[40,50]

[60,70]

Simple Temporal Network

• Tij = (aij Xi - Xj  bij)

1 3

42

0
[10,20]

[30,40]
[60,inf]

[10,20]

[20,30]
[40,50]

[60,70]

Simple Temporal Network:

A set of time points Xi at which events occur.

Unary constraints
(a0 < Xi < b0) or (a1 < Xi < b1) or . . .

Binary constraints
(a0 < Xj - Xi < b0) or (a1 < Xj - Xi < b1) or . . .

Shostak (1981) A simple temporal problem is consistent if and only if the distance
graph has no cycles.
→ The consistency and the minimal network of an STP can be determined in
cubic time using all-pairs shortest path search.

1 3

42

0
[10,20] [30,40]

[10,20]

[40,50]

[60,70]

STN

To Query STN Map to
Distance Graph Gd

70

1 3

42

0
20

50

-10

40

-30

20 -10

-40

-60

1 3

42

0
[10,20] [30,40]

[10,20]

[40,50]

[60,70]

Tij = (aij Xj - Xi  bij)
Xj - Xi  bij

Xi - Xj  - aij

Edge encodes an upper bound on distance to target from source.

0 1 2 3 4

0 0 20 50 30 70

1 -10 0 40 20 60

2 -40 -30 0 -10 30

3 -20 -10 20 0 50

4 -60 -50 -20 -40 0

d-graph

Shortest Paths of Gd

70

1 2

43

0
20

50

-10

40

-30

20 -10

-40

-60

STN Minimum Network

0 1 2 3 4

0 [0] [10,20] [40,50] [20,30] [60,70]

1 [-20,-10] [0] [30,40] [10,20] [50,60]

2 [-50,-40] [-40,-30] [0] [-20,-10] [20,30]

3 [-30,-20] [-20,-10] [10,20] [0] [40,50]

4 [-70,-60] [-60,-50] [-30,-20] [-50,-40] [0]

0 1 2 3 4

0 0 20 50 30 70

1 -10 0 40 20 60

2 -40 -30 0 -10 30

3 -20 -10 20 0 50

4 -60 -50 -20 -40 0

d-graph STN minimum network

Test Consistency:
No Negative Cycles

0 1 2 3 4

0 0 20 50 30 70

1 -10 0 40 20 60

2 -40 -30 0 -10 30

3 -20 -10 20 0 50

4 -60 -50 -20 -40 0

d-graph

70

1 2

43

0
20

50

-10

40

-30

20 -10

-40

-60

Latest Solution

0 1 2 3 4

0 0 20 50 30 70

1 -10 0 40 20 60

2 -40 -30 0 -10 30

3 -20 -10 20 0 50

4 -60 -50 -20 -40 0
70

1 2

43

0
20

50

-10

40

-30

20 -10

-40

-60

d-graph

Node 0 is the reference.

Earliest Solution

0 1 2 3 4

0 0 20 50 30 70

1 -10 0 40 20 60

2 -40 -30 0 -10 30

3 -20 -10 20 0 50

4 -60 -50 -20 -40 0
70

1 2

43

0
20

50

-10

40

-30

20 -10

-40

-60

d-graph

Node 0 is the reference.

Feasible Values

0 1 2 3 4

0 0 20 50 30 70

1 -10 0 40 20 60

2 -40 -30 0 -10 30

3 -20 -10 20 0 50

4 -60 -50 -20 -40 0

d-graph

• X1 in [10, 20]

• X2 in [40, 50]

• X3 in [20, 30]

• X4 in [60, 70]

Z A B C

Back to Planning: Latest possible times?
(Maximum Separation)

t(A) – t(Z) <= 4
t(B) – t(Z) <= 8

t(C) – t(Z) <= 10

('A comes no
more than 4 time

units after Z')

Z A B C

Latest possible times?
t(A) – t(Z) <= 4
t(B) – t(Z) <= 8

t(C) – t(Z) <= 10

t(B) – t(A) <= 2
t(C) – t(B) <= 1

('B comes no
more than 2 time

units after A')

Earliest possible times?
(Minimum Separation)

● For latest possible time: find the shortest path

● For earliest possible times...?

Z A B C

Earliest possible times?
2 <= t(A) – t(Z)
4 <= t(B) – t(Z)

3 <= t(B) – t(A)
1<= t(C) – t(B)

Hacking algorithms

➢ Longest path from Z to C?

➢ = Shortest negative path from C to Z
2 <= t(A) – t(Z)

Multiply both sides by -1:
-2 > - t(A) + t(Z)

p >= q is the same as q <= p:
- t(A) + t(Z) < -2

Rearrange LHS:
t(Z) – t(A) < -2

Z A B C

Earliest possible times?
2 <= t(A) – t(Z)
4 <= t(B) – t(Z)

3 <= t(B) – t(A)
1<= t(C) – t(B)

-2 >= – t(A) + t(Z)
-4 >= – t(B) + t(Z)

-3 >= – t(B) + t(A)
-1 >= – t(C) + t(B)

t(Z) – t(A) <= -2
t(Z) – t(B) <= -4

t(A) – t(B) <= -3
t(B) – t(C) <= -1

Simple Temporal Networks (i)
➢ Can map STPs to an equivalent digraph:
➢ One vertex per time-point (and one for 'time

zero');

➢ For lb ≤ t(j) – t(i) ≤ ub:

➢ An edge (i → j) with weight ub.

➢ An edge (j → i), with weight -lb

➢ (c.f. lb ≤ t(j) – t(i) → t(j) – t(i) ≤ -lb)

Example STN

A A

B

A

B

-ε -ε -ε

3

-3

5

-5

0.00: (A) [3]

0.01: (B) [5]

Simple Temporal Networks (ii)
● Solve the shortest path problem (e.g. using Bellman-Ford)

from/to zero
–dist(0,j)=x → maximum timestamp of j = x

–dist(j,0)=y → minimum timestamp of j = -y

● If we find a negative cycle then the temporal constraints are
inconsistent:

A A

B

A

B

-ε
-ε

3

-3

5

-5

"Incremental Constraint-Posting Algorithms in Interleaved Planning and Scheduling." A. J. Coles, A. I. Coles, M. Fox, and D. Long.
Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling,
ICAPS09 https://local.cis.strath.ac.uk/research/publications/papers/strath_cis_publication_2409.pdf

https://local.cis.strath.ac.uk/research/publications/papers/strath_cis_publication_2409.pdf

I

A ...

I

B

ABB

AB

ABA

ABAB ABBA A A

B

A

B
-ε -ε

3

-3

5

-5A A

B

A

B
-ε

-ε -ε

3

-3

5

-5

(Coles, Fox, Long and Smith, AAAI 2008);

(See also Halsey, Fox and Long, ECAI 2004)

STN Simplifies For Partially Ordered Plans

● Transitively implied edges omitted for clarity:
–e.g. all the drive/board ends before work end;

–All the drive/board starts after work start.

Public Transport Example

• Drivers have working hours;

• Bus routes have fixed durations and start and end locations.

• Goals are that each bus route is done.

• The routes have timetables that they must follow.

Temporal Planning: Public Transport

"Planning with Problems Requiring Temporal Coordination." A. I. Coles, M. Fox, D. Long, and A. J. Smith. AAAI 2008.
"Managing concurrency in temporal planning using planner-scheduler interaction." A. I. Coles, M. Fox, K. Halsey, D. Long, and A. J. Smith. Artificial
Intelligence. 173 (1) (2009).

Work D1

Route1 D1 B1

Working D1 Working D1

Route3 D1 B2

Actions have:

At D1B

¬At B1 A¬At B1 A

At D1 A
At B1 A

At B1 B

Working D1

At D1 B
At B2 B

At D1 A
At B2 A

At D1 A

Done Route1
Done Route3

¬At D1 A ¬At D1 A

¬Working D1

Available D1

¬Available D1

● Conditions and Effects at the start and at the end;

● Invariant/overall conditions;

duration >= 2 , duration <= 4

duration = 2 duration = 3

● Durations constraints:
(= ?duration 4)
(and (>= ?duration 2) (<= ?duration 4))

Planning with Snap Actions

"Planning with Problems Requiring Temporal Coordination." A. I. Coles, M. Fox, D. Long, and A. J. Smith. AAAI 2008.
"Managing concurrency in temporal planning using planner-scheduler interaction." A. I. Coles, M. Fox, K. Halsey, D. Long, and A. J. Smith. Artificial
Intelligence. 173 (1) (2009).

Work D1

Working D1

At D1 A
At B1 A At D1B

At B1 B

Working D1

Route1 D1 B1

Working D1

At D1 B
At B2 B

At D1 A
At B2 A

Route3 D1 B2

duration = 2 duration = 3

At D1 A

Three Challenges:

● Make sure ends can’t be applied unless starts have.

● Overall Conditions.

● Duration constraints.

Done Route1
Done Route2

¬At D1 A
¬At B1 A

¬At D1 A
¬At B1 A

¬Working D1

R1⊢ R3⊢ R3⊣
R1⊣

Available D1

¬Available D1

W⊣W⊢

duration >= 2 , duration <= 4

Planning with Snap Actions and STNs

"Planning with Problems Requiring Temporal Coordination." A. I. Coles, M. Fox, D. Long, and A. J. Smith. AAAI 2008.
"Managing concurrency in temporal planning using planner-scheduler interaction." A. I. Coles, M. Fox, K. Halsey, D. Long, and A. J. Smith. Artificial
Intelligence. 173 (1) 2009.

2

Constraints:

W⊣ - W⊢ >= 2
W⊣ - W⊢ <= 4
R1 ⊢ >= W⊢ + ε
R1⊣ - R1⊢ = 2
R3 ⊢ >= R1⊢ + ε
R3⊣ - R3⊢ = 3
W⊣ >= R3 ⊣ + ε

R1⊢ R3⊢ R3⊣
R1⊣

W⊣W⊢

4

-2

-2

3

-3-ε

-ε -ε

Temporal Task-Motion Planning

• Time is money

• Real-world has and needs time constraints

• Combining task with motion planning “holy grail” in robotics

• Multiple goals is planning for longer-term plans in form of tours

• Inspection problems can be solved via waypoint finding

• Robots have complex, non-linear dynamics

Stefan Edelkamp 93

Temporal Task-Motion Planning

➢Crucial for Robotics, Logistics, Surgery, VR, …

➢No (convincing) solution so far

➢High-Level Task, Low-Level Motion Planning

➢Solutions in Discrete World only Approximate

➔ Replanning needed.

Stefan Edelkamp 94

Randomized Roadmaps

Stefan Edelkamp 95

PDDL Task Planning and TILS

TIL = Timed Initial Literal

(at timepoint (fact))
(at timepoint (not fact))

Specified in initial state

Leads to time windows for actions

Stefan Edelkamp 96

Interface with PDDL Temporal Planner (OPTIC)

Input Output

Stefan Edelkamp 97

Interface with Specialised Solvers
(BnB, MCS, Random)
• SSSP-Reduced Roadmap Graph via Dijkstra Calls (Computed Prior to

the Search)

• Cities = Waypoints, Current Position of Robot = Depot

• Open Tour

• Pairwise SSSP Distance Table

• Time Windows

Stefan Edelkamp 98

Example

Stefan Edelkamp 99

Pickup and Deliveries

Stefan Edelkamp 100

https://bit.ly/2Ef7HMQ

Framework

Stefan Edelkamp 101

Integration with Specialized Solvers

Integration with PDDL Planner (OPTIC)

Stefan Edelkamp 102

Interface with PDDL
Input Output

Stefan Edelkamp 103

Scenes (With Randomized Road Maps)

Snake Model Car Model

Stefan Edelkamp 104

Results

(a) MC (B) OPtic (C) Random

Stefan Edelkamp 105

Adjusting Time Windows

Stefan Edelkamp 106

Adjusting Vehicle Capacity

Stefan Edelkamp 107

RunTime Distribution

Bottom to Top:
RoadMap Constr., APSP, Collision & Simulate, Discr. Solver, Other

Stefan Edelkamp 108

Conclusion

Full-Fledged Solution:

➢ high-dimensional robotic systems with nonlinear dynamics and

➢ nonholonomic constraints

➢ visit all goal regions fast in suitable cost-minimizing order

➢ unstructured, complex environments

• and efficiently computes
➢ collision-free, dynamically-feasible, low-cost trajectories that

➢ enable the robot to satisfy the CPSPTW+PD task specification

Stefan Edelkamp 109

References

• [1] Stefan Edelkamp , Baris Secim, and Erion Plaku . Surface Inspection via Hitting Sets and Multi-Goal Motion Planning. Towards Autonomous Robotic Systems
(TAROS), 134-149, Guildford, UK, 2017.

• [2] Stefan Edelkamp , Mihai Pomarlan, Erion Plaku . Multi-Region Inspection by Combining Clustered Traveling Salesman Tours with Sampling-Based Motion
Planning . IEEE RAL. 2(2): 428-435, 2017.

• [3] Stefan Edelkamp , Max Gath, Tristan Cazenave, and Fabien Teytaud: Algorithm and knowledge engineering for the TSPTW problem. CISched 2013: 44-51.

• [4] Erion Plaku , Sarah Rashidian, and Stefan Edelkamp . Multi-Group Motion Planning in Virtual Environments. Computer Animation and Virtual Worlds, 2016.

• [5] Sara Rashidian, Erion Plaku , and Stefan Edelkamp . Motion Planning with Rigid-Body Dynamics for Generalized Traveling Salesman Tours . Proc. of ACM
Conference on Motion in Games, 2014.

• [6] Stefan Edelkamp and Christoph Greulich. Solving Physical Traveling Salesman Problems with policy adaptation . Proc. of IEEE Conference on Computer in
Games (CIG) 2014.

• [7] Stefan Edelkamp and Erion Plaku . Multi-goal motion planning with physics-based game engines . Proc. of IEEE Conference on Computer in Game (CIG),
2014.

• [8] Stefan. Edelkamp , Stefan Schroedl. Heuristic Search, Theory and Practice. Morgan Kaufmann , 2011.

• [9] Stefan Edelkamp , Christoph Greulich, and Denis Golubev . Solving the Physical Vehicle Routing Problem for Improved Multi-Robot Freespace Navigation.
Proc. of KI, 2016.

• [10] Enrico Scala, Patrik Haslum, Daniele Magazzeni , Sylvie Thiébaux. Landmarks for Numeric Planning Problems. Proc. of IJCAI 2017: 4384-4390.

• [11] Michael Cashmore, Maria Fox, Derek Long, Daniele Magazzeni , et al . ROSPlan: Planning in the Robot Operating System. Proc. of ICAPS 2015.

• [12] Malik Ghallab, Nick Hawes, Daniele Magazzeni , Brian C. Williams, Andrea Orlandini. Planning and Robotics (Dagstuhl Seminar 17031). Dagstuhl Reports
7(1): 32-73, 2017.

• [13] Senka Krivic, Michael Cashmore, Daniele Magazzeni, Bram Ridder, Sándor Szedmák, Justus H. Piater: Decreasing Uncertainty in Planning with State
Prediction. IJCAI 2017: 2032-2038.

• [14] Marcello Balduccini, Daniele Magazzeni, Marco Maratea, Emily Leblanc:CASP solutions for planning in hybrid domains . TPLP 17(4): 591-633 (2017).

