Roboter Navigation

Temporal Task-Motion Planning
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Driving Research Questions

How can we improve motion planning for complex systems?

m How can we develop motion planners that are generally applicable?

m How can we achieve planning efficiency even with nonlinear dynamics?
m How far back can we push the “curse of dimensionality”?

m Is there Pareto optimality between efficiency and solution quality?

m What formal guarantees can we provide?
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Framework

m Sampling-based motion planning

= generality: dynamics as black-box function S,e < MOTION(S, u, dt)
= continuous state/control spaces: probabilistic sampling to make it feasible

= high-dimensionality: search to find solution

coupled with discrete abstractions

— provide simplified planning layer

= guide search in the continuous state/control spaces
and motion controllers

= open up the black-box MOTION function

— facilitate search expansion

m Formal guarantees

= probabilistic completeness
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For a Start:
The Physical
TSP
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raveling Salesman

ours (TSP)

Given a map, compute a minimum-cost
round trip visiting certain cities

Shortest paths graph reduction:
precompute all-pairs-shortest-paths with

Dijkstra’s algorithm (be smart: employ
radix heaps)

Traditional: Model problem as an IP and
call solver (CPLEX, IPSolve,. . .)

Neighborhood search (XxOPT: SA; GA; AA;
PSO; LNS,. . .)

... New in the arena: Monte-Carlo Search
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+ Expansion

Repeated X times

- Simulation
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- Backpropagation



Additional Constraints

Time Windows, Capacities, Premium Services, Pickup and Deliveries
TSP+TW: Restricted time intervals / service times

C+TSP: Limited vehicle load

TSP+PD: Pickup and deliveries (PDP)

O _e ,P e
o‘f’ o \
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@ pickup stop
() delivery stop

TSP*: Premium service — same-day delivery preferred
VRP: Vehicle routing — several vehicles

_______a_i_____ 0 Z'é) Route &
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nspection
Problem

Inspection Problem
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Inspection
Tour
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Grassfiring




Grassfiring
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Generating Inspection Waypoints (1)

Input: 7Z: bitmap image; a: desired inspection quality,

0<a<1

Output: a set of inspection points
1: h < height(Z); w < width(Z); B < zeros(h, w)

(> grassfire transformation

2: for (i,/) €4{0,....h—1} x {0, ..., w— 1} do
3:  if color(Z(/,))) € {black, gray} then
a: B(i,j) < 1+min{B(i—1,)),B(i,) — 1)}
5. for (i,/)) e {h—1,..., O x {w—-1,..., 0} do
6
7

iIf color(Z(/,))) ¢ {black. gray} then
B(i,j) < 1+min{B(i+1,)),B(i.,j+1)}
8: skeleton +— extract pixels making up the most intense
lines in the brightness map B
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Generating Inspection Waypoints (2)

Input: 7: bitmap image; «: desired inspection quality,
0<a<i
Output: a set of inspection points
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S B AR .

{> select inspection points
skeleton <— FILTER(skeleton)
inspectionPts < skeleton
currScore <— VISSCORE(Z, inspectionPts)
for p € skeleton do
newScore <— VISSCORE(Z, inspectionPts \ {p})
If newScore > o V currScore = newScore then
inspectionPts <— inspectionPts \ {p}
currScore <— newScore
return inspectionPts
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Multi-Goal Motion Planning with Dynamics

Stefan Edelkamp
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file:///C:/cygwin64/home/k1653854/tspSlides/usef/AI14_SnakeVehicle.avi
file:///C:/cygwin64/home/k1653854/tspSlides/CIG14_movie.avi

Dynamics

* Express relation between input
controls and resulting motions

s®S3
* Necessary to plan motions thatcan sz uo ug S Un
.\A us 3
be executed S2 s‘;i/’_?l s'é—/';:% e s conL
[ ] [ ] [ ] 84
* Impose significant challenges k

S

» Constrain the feasible motions
» Often are nonlinear and high-

d|men5|onal Computational complexity of motion planning
» Give rise to nonholonomic systems with dynamics

» State and control spaces are e Point with Newtonian dynamics NP-Hard
continuous [DXCR 1993]

» Solution trajectories are often long ¢ Polygon Dubin’s car Decidable [CPK 2008]

* General nonlinear dynamics Undecidable
[Branicky 1995]
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Dynamics

* Express relation between
input controls and resulting ”
motions

hew

Collision?

!

* Modeled via physics-based
engines

s = f(s, u)

ROS/Gazebo, ODE, Bullet, PhysX S=(X.y.0p,V, 0, 04,.... ) u=(aw)

general rigid-body dynamics X =vcos(fy) ¥ =vsin(ly) H,=vian(v) v=a = w

friction and gravit :
Sravity /“*u./g,. =3 (H‘f;} cos(fj_1 — Hf)) (sin(#i—1) — sin(#))

/
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Introduce Discrete Layer to Guide the Search

Workspace decomposition provides

,E)

R

(

* R denotes the regions of the decomposition

° E

 discrete layer as adjacency graph G

{(ri,rj) | ri, rj in R are physically adjacent}
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* defined as length of shortest path in G from r to goal

il 7
W. A 4’4‘ A"Vv \ A“' }‘ ‘ VAV
X I [ | |
e avs
gy
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5«\

» computed by running BFS/A* on G backwards from goal

randomized sampling and
P1D controllers to expand

motion tree

plans collision-free,

cost heuristics over discrete

layer guide search in A”

fashion

dynamically-feasible, and

low-cost solution trajectory
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Sampling Based Motion Planning

* Expand a tree T of collision-free
and

* dynamically-feasible motions

»select a state s from which to
expand the tree

»sample control input u

»generate new trajectory by

»applyingutos
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Sampling Based Motion Planning

* Expand a tree T of collision-free
and

* dynamically-feasible motions
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»sample control input u

»generate new trajectory by
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Sampling Based Motion Planning
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Sampling Based Motion Planning
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Sampling Based Motion Planning

Stefan Edelkamp

obstacle

* Expand a tree T of collision-free
and

* dynamically-feasible motions

»select a state s from which to
expand the tree

»sample control input u

»generate new trajectory by

»applyingutos
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Complex Robot Models -
Often Sets of Differential Equations

Figure 2: Vehicle models of a car, snake. and blimp used in
the experiments.

Stefan Edelkamp

22



Sampling Based Motion Planning and
Selection of Equivalence Class

NRSELECTIONS( A .v)

. ¥
WEIGHT(AX.v) = —.
(4.) DURATION(AX . ) # 2471 5



Guided Expansion of Motion Tree

* Sampling-based motion planning

» generality: dynamics as black-box function s =MOTION(s,u,dt)
» continuous state/control spaces: probabilistic sampling to make it feasible
» high-dimensionality: search to find solution

* coupled with discrete abstractions

» provide simplified planning layer

» guide search in the continuous state/control spaces

* and motion controllers

» open up the black-box MOTION function

» facilitate search expansion

 Formal guarantees

» probabilistic completeness

24



Stefan Edelkamp

Driven by
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K
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Architecture
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file:///C:/cygwin64/home/k1653854/tspSlides/plannerInAction.wmv

Abstraction

m Used to induce partition of motion tree into equivalence classes

Vi=V;, <= TRAJ(T,V;) provides same abstract information as TRAJ(T, V;)
region(V;) = region(V;)

= equivalence class corresponding to abstract state (r)
in ={Vv:Vv &T Aregion(V) = r}
— partition of motion tree 7 into equivalence classes

[ = {F{,} . |F{,}| = D}

Stefan Edelkamp
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Graph Search for the Colored TSP

Let G = (V. E, color, cost) denote an undirected, colored, and weighted
graph. Let pstare € V denote the start vertex. A sequence of vertices

(p1.....py) constitutes a valid colored tour if
m{p1...., pr} =V,
B D01 = Pstart;

mvie{l, ..., r—1}:(pi.pi+1) € E, and
mVvijke{l, ..., r} :black ¢ {color(p;), color(p;), color(pk)} and
I <[ <Kk A color(pj) # color(pj) = color(p;) # color(pk).
An optimal colored tour is a colored tour with minimum cost, where the cost

of the tour is defined as the sum of the weights associated with the edges of
the tour.

Physical CTSP: integrate system dynamics such as angular change into
cost function.
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Nested Rollout Policy Adaptation T ]

Rosin 2011 IJCAI — Best Paper, Morpion Solitaire with new Re
MCS tree based on Complete Rollout and Recursive Search

* Not really MCTS, No Search Tree.

* In Each Level a Policy is Maintained, Updated and Refreshed ...

e Updating Policy based on better Solutions Coming in from below

* Policy in Turn Influences the Rollouts

 Parameters: Level of Recursion, and Iteration Width

e Effective for TSPTW and many other Approaches

* Refinements: Beam / Diversity / Generalization
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Learning Curve
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Map 19: average tour score
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Nested Rollout Policy Adaptation

Input: Iteration width (exploitation), nestedness (exploration)
Policy: (city-to-city) mapping NxN -> IR to be learnt
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25000000 :E
3
[
1 1
1 1
1 1
[ ] 1
i [ ]
i n
[ ] 1 []
P ; :
P : 4
[ 1 ] L] (]
d ] ' " "
" o ~ . "
"l L " " ot o
v, .‘. i’ 1] Ly
I 1 . 1] "
. PR .t
.- r:# "- - .-

o

15000000

Stefan Edelkamp STEFAN EDELKAMP 3]



Nested Rollout Policy Adaptation

Input: Iteration width (exploitation), nestedness (exploration)
Policy: (city-to-city) mapping NxN -> IR to be learnt

) ) 600
Time in
Miliseconds 400

32
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Nested Rollout Policy Adaptation

Input: Iteration width (exploitation), nestedness (exploration)
Policy: (city-to-city) mapping NxN -> IR to be learnt

Rollout Policy Level 2 ()

co%

Rollout Policy Level 1( ) /cc:py() () ()

copy() / \Copy()

Rollout Policy Level O

adapt()
. Perform rollout

Stefan Edelkamp
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Playout

Algorithm 1 The playout algorithm

1: playout (state, policy)

2 sequence < []

3: while true do

4. if state 1s terminal then

J: return (score (state), sequence)
6: end if

7: z <+ 0.0

8: for m in possible moves for state do

0: 2 +— z +exp (policy [code(m)])

10: end for

11: choose a move with probability <=£ {pozicy[?de(mwem
12: state < play (state, move)
13: SEQUENCE <— SeqUENCE + Tove

14: end while
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Adapt

Algorithm 2 The Adapt algorithm

I: Adapt (policy, sequence)

2 polp < policy

3 state < root

4 for move in sequence do

3 polp [code(mouve)| < polp [code(move)]| +
6: z <+ 0.0

7: for m in possible moves for state do

8: Z <— z + exp (policy [code(m)])

0: end for

10: for m in possible moves for state do

11: polp [code(m)] < polp [code(m)] - « * ”p(mmyjmde(mm
12: end for

13: state < play (state, move)

14:  end for

15:  policy < polp
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Search

Algorithm 3 The NRPA algorithm.

I: NRPA (level. policy)

2 if level == 0 then

3: return playout (root, policy)
4. else

S: bestScore +— —o0

6: for N iterations do

7: (result,new) <— NRPA(level — 1. policy)
8: if result > bestScore then

9: bestScore < result
10: seq ¢— new
11: end if
12: policy <— Adapt (policy, seq)
13: end for
14: return (bestScore, seq)
13: end if
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Theory...

The prot;ability pir of choosing the move m;x 1n a playout 1s the softmax function:

cWik
I ) ), = —
} ik )__jfu‘if
;€
The cross-entropy loss for learning to play move my, is C; = —log(pip)- In order
to apply the gradient we calculate the partial derivative of the loss: 9 . We

OPib pz
then calculate the partial derivative of the softmax with respect to the welghts

Opin )
- = Pib(Op;
S, Pin( bj

— Dij)
Where d,; = 1if b = j and O otherwise. Thus the gradient is:

O‘C:{z‘ (5]).3'_5 1 - -
V"LU?:-' = — = = ——D; Opi — | )ii) = Pii — ();.-'
A dw; Pa‘b} b(Ovj — Pij) = Pis bj

If we use a as a learning rate we update the weights with:

Wyi; = Wi — Q’(pz’j o 65})

Stefan Edelkamp

37



Praxis...

* https://nms.kcl.ac.uk/stefan.edelkamp/lectures/pil/programs/VRP.java

<% BlueJ: Konsole - Einfiihrung CV — [m} : Mill.Pair
Optionen
Level: 2,13, score: 2502165.1351650227, runs: 883320 —
Level: 2,18, score: 2502164.690862689, runs: 883470 AeibeT 2302119.8:97814734
Level: 2,0, score: 2502195.3907905878, runs: 883830 int[] assignment v A
Level: 2,29, score: 2502189.536582865, runs: 884700 &
Level: 2,0, score: 2502186.811441709, runs: 884730
Level: 2,13, score: 2502177.7208089014, runs: 885120
Level: 2,0, score: 2502187.4106493737, runs: 885630
Level: 2,1, score: 2502186.3647505976, runs: 885660
Level: 2,0, score: 2502178.3200165667, runs: 886530
Level: 2,7, score: 2502177.7208089014, runs: 886740 assignment : int[]
Level: 2,0, score: 2502177.7208089014, runs: 887430
Level: 2,3, score: 2502165.1351650227, runs: 887520
Level: 2,12, score: 2502160.826497041, runs: 887790 int length
Level: 2,0, score: 2502178.3200165667, runs: 888330 o
Level: 2,3, score: 2502165.1351650227, runs: 888420
Level: 2.0. score: 2502165.1351650227. runs: 889230 y
[
Mill B]
[4
[5]
A
mill1:
Mill
mill1 : Mill
e B S ol ' B - - 17:13
AL suchbegriff hier eingeben d .- . N7 L © ~8®m 7z 28.04.2020 g
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Some Results
] Branch and Bound Search vs. Precurser LTLSyslop
Multi-Goal BER——

e
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More Results Multi-Goal

normalized cost

Stefan Edelkamp

—t ek ek ek =k
~ LW

Branch and Bound Search with various heuristics and Monte-Carlo Tree
Search
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Inspection Benchmarks

Stefan Edelkamp

map 01 map 02 map 08

map 19 map 24 map 35

map 40 map 45 map 61
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Results
nspection
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CTSP tour cost [x 1000]

CTSPsolver runtime [s]

controller steps [x1000]

4

g-— DFBRB+AP|- - | [« ded b I .........
gH{== DFBnB e
5_:| MC --E- .
4= Random . !
3ot T e
il |
0 3 4 5
problem instance
150 2----- Lo b - r Tt Fooo T
Em DFBnB+AF ' :
20nc= DFEnB | T i
= MC : '
O0r=a Random |-T}|--"-- -~ e
GO bem et [
30F -4 R | EERR SRR EEEEE! i EEEEEEE
ol
1 2 3 4 5 6 T 8 9
problem instance
ar— I I T T T T T T
7H== DFBnB+A S EEEEEEE T CE PR LR PP P,
6HE= DFBnB e P g
5-: MC o -
AHE Random [ S s S g
3podiercteetes 3| .
oo
i ndal L el wl
0 6 7

)

problem instance

42



ntermediate Summary Multi-Goal Task-
Motion Planning

m Approach makes it possible to consider

— high-dimensional robotic systems with nonlinear dynamics and
nonholonomic constraints

— visit all goal regions fast in suitable cost-minimizing order

— unstructured, complex environments

and efficiently computes

— collision-free, dynamically-feasible, low-cost trajectories that
enable the robot to satisfy the task specification ¢

m Offers probabilistic completeness

Stefan Edelkamp
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Temporal Planning: Time Does Matter

In general, activities have varying durations:
» Loading a package onto a truck is much quicker
than driving the truck;

» Drinking a cup of tea takes longer than making
It;

» Procrastinating tasks takes longer than doing
them



Example: Zeno Domain
Initial State Goal State




(define (domain zeno-travel)
(:requirements :durative-actions :typing :fluents)
(:types aircraft person city)
(:predicates (at ?x - (either person aircraft) 7c - city)
(in 7p - person 7a - aircraft))
(:functions (fuel 7a - aircraft) (distance 7cl - city 7c2 - city)
(slow-speed ?a - aircraft) (fast-speed 7a - aircraft)
(slow-burn 7a - aircraft) (fast-burn 7a - aircraft)
zz (capacity 7a - aircraft) (refuel-rate 7a - aircraft)
e nO (total-fuel-used) (boarding-time) (debarking-time))
(:durative-action board
P D D L :parameters (7p - person 7a - aircraft ?7c - city)
:duration (= ?duration boarding-time)
:condition (and (at start (at ?p %7c))

doma I n . (over all (at ?a 7?c)))

. :effect (and (at start (not (at 7p %c)))
I:Ile (at end (in ?p 7a))))
-
(:durative-action zoom
:parameters (7a - aircraft 7cl 7c2 - city)
:duration (= ?duration (/ (distance ?cl1 7c2) (fast-speed 7a)))
:condition (and (at start (at ?a ?cl))
(at start (>= (fuel ?a) (* (distance 7cl ?c2) (fast-burn 7a)))))
:effect (and (at start (not (at 7a 7cl)))
(at end (at 7a 7c2))
(at end (increase total-fuel-used
(* (distance 7cl 7c2) (fast-burn 7a))))
(at end (decrease (fuel 7a)
(* (distance 7cl ?c2) (fast-burn 7a))))))

[



(define (problem zeno-travel-1)
(:domain zeno-travel)
(:objects plane - aircraft
ernie scott dan - person
city-a city-b city-c city-d - city)
(:init (= total-fuel-used 0) (= debarking-time 20) (= boarding-time 30)

zzealﬁ]() = (distance city-a city-b) 600) (= (distance city-b city-a) 600)
= (distance city-b city-c) 800) (= (distance city-c city-b) 800)
D )Dl_ = (distance city-a city-c) 1000) (= (distance city-c city-a) 1000)
= (distance city-c city-d) 1000) (= (distance city-d city-c) 1000)
D roblem = (fast-speed plane) (/ 600 60)) (= (slow-speed plane) (/ 400 60))
= (fuel plane) 750) (= (capacity plane) 750)
— I_E = (fast-burn plane) (/ 1 2)) (= (slow-burn plane) (/ 1 3))
= (refuel-rate plane) (/ 750 60))

(at plane city-a) (at scott city-a) (at dan city-c) (at ernie city-c))
(:goal (and (at dan city-a) (at ernie city-d) (at scott city-d)))
(:metric minimize total-time)



Sequential and TemPORAL PLAN

100:
130:
160:
200:
300:
320:
350:
390:
490:
530:
630:
650:

(zoom plane city-a city-c) [100]
(board dan plane city-c) [30]
(board ernie plane city-c) [30]
(refuel plane city-c) [40]
(zoom plane city-c city-a) [100]
(debark dan plane city-a) [20]
(board scott plane city-a) [30]

(refuel plane city-a) [40]
(zoom plane city-a city-c) [100]
(refuel plane city-c) [40]

(zoom plane city-c city-d) [100]
(debark ernie plane city-d) [20]
(debark scott plane city-d) [20]

100:

100:
140:
240:

280:
380:
420:
520:

(zoom plane city-a city-c) [100]

(board dan plane city-c) [30]
(board ernie plane city-c) [30]
(refuel plane city-c) [40]

(zoom plane city-c city-a) [100]
(debark dan plane city-a) [20]
(board scott plane city-a) [30]

(refuel plane city-a) [40]
(zoom plane city-a city-c) [100]
(refuel plane city-c) [40]

(zoom plane city-c city-d) [100]
(debark ernie plane city-d) [20]
(debark scott plane city-d) [20]



SNAG: Sequential Plan TIME VS.
Parallel Plan TIME

(zoom city-a city-c plane), (board dan plane city-c),
(refuel plane city-c), (zoom city-c city-a plane),
(board scott plane city-a), (debark dan plane city-a), (refuel plane city-a),

and

(board scott plane city-a), (zoom city-a city-c plane),
(board dan plane city-c), (refuel plane city-c),
(zoom city-c city-a plane). (debark dan plane city-a), (refuel plane city-a)



Different Plan OBJEC

30:
180:

210:
360:

413.33:
563.33:
713.33:

Fuel

(board scott plane city-a) [30]
(fly plane city-a city-c) [150]
(board ernie plane city-c) [30]
(board dan plane city-c) [30]
(fly plane city-c city-a) [150]
(debark dan plane city-a) [20]
(refuel plane city-a) [63.33]
(fly plane city-a city-c) [150]
(fly plane city-c city-d) [150]
(debark ernie plane city-d) [20]
(debark scott plane city-d) [20]

IVES

100:

140:
240:

280:
430:
580:

Time

(zoom plane city-a city-c) [100]

(board dan plane city-c) [30]
(board ernie plane city-c) [30]
(refuel plane city-c) [40]

(zoom plane city-c city-a) [100]

(debark dan plane city-a) [20]
(board scott plane city-a) [30]
(refuel plane city-a) [40]
(fly plane city-a city-c) [150]
(fly plane city-c city-d) [150]

(debark ernie plane city-d) [20]
(debark scott plane city-d) [20]



Durative Actions?

pre




Durative Actions?




Durative Actions in PDDL 2.1

over all

& >

pre pre pre

A

at start at end



PDDL Example (i)

. re—action LOAD-TRUCK
. :parameters

 (?0bj - obj 2truck - truck ?loc -

i S . S |

* :preﬂcond'itlion (= ?duration 2)

. :cond

. (and 11 (at ?truck

. (at start (at ?obj ?loc)))
. ceff- -+

. (ar rt (not (at ?2obj

. (at end (1n ?0bj ?truck))))

Beware of self-overlapping actions!



PDDL Example (ii)

* (:durative—-action open-barrier

. :parameters

* (?loc - location ?p - person)

. :duration (= ?duration 1)

. :condition

° (and (at start (at ?7loc 7?p)))
. effect

. (and (at start (door-open ?1ocC))
° (at end (not (door-open

?loc))))



PDDL Example (ii)

e (:durative—-actio

. :parameters

* (?loc - locatio

° :duration (= ?

. :condition

. (and (at st

. :effect

. (and (at start (door-open ?1ocC))
° (at end (not (door-open

?loc))))



Durative Actions
(Fox and Long, ICAPS 2003)

pre pre S pre

eff UAS eff U-AS



Planning with Snap Actions (i)

As f Bs

AL B A B..
As Bs, f -As, G o - BS @

* Challenge 1: WhaWt if B interferes with the goal?

@PDDL 2.1 semantics: no actions can be executing in a
goal state.

Solution: add -As, -Bs, -Cs.... to the goal (or make this
implicit in a temporal planner.)



Planning with Snap Actions (ii)

pre inv_A Agsuy pre

AL Ao A
eff UAS eff U-AS

Challenge 2: what about over all conditions?

If A Is executing, inv_A must hold.

Solution:

In every state where As Is true: inv_A must also
be true

Or: (1mply (As) 1nv A)
Violating an invariant then leads to a dead-end.



Planning with Snap Actions (iii)

AL B - B A

. Challenge 3: where did the durations go?
-More generally, what are the temporal
constraints?

-Logically sound # temporally sound.



Optlon 1 DeCISlon EpOCh |:)lanningTermfromCushingetal,IJCAI2007

> Search with time-stamped states and a priority queue of
pending end snap-actions.

» See Temporal Fast Downward (Eyerich,
Mattmuller and Roger, ICAPS 2009); Sapa (Do
and Kambhampati, JAIR 2003), and others.

- In a state S, at time t and with queue Q, either:
» Apply a start snap-action A (,f"t time t)

> Insert A —| INnto Q at time (t + dur(A))

> S't=St+¢

» Remove and apply the first end snap-action from Q.
. S'tset to the scheduled time of this, plus ¢



Running through our example...

Ar

Bl

t=0

t=0.01

Can only choose A |
- eliminated the
temporally inconsistent
option (B4 before A )

t=3 t=5.01




Decision Epoch Planning: The snag

Must fix start- and end-timestamps at the point when
the action is started.

-Used for the priority gueue

Can we always do this?

. /Queued: t=10
CH CH /Queued: t=1.01
D D
q -
t=70 =0.01 g dur(C) = 10

N dur(D) =1



OPTION 2: Simple Temporal Networks

"Planning with Problems Requiring Temporal Coordination." A. I. Coles, M. Fox, D. Long, and A. J. Smith. AAAI 08.
https://local.cis.strath.ac.uk/research/publications/papers/strath_cis_publication_2248.pdf

"Managing concurrency in temporal planning using planner-scheduler interaction."”

A. I. Coles, M. Fox, K. Halsey, D. Long, and A. J. Smith. Artificial Intelligence. 173 (1). 2009.



https://local.cis.strath.ac.uk/research/publications/papers/strath_cis_publication_2248.pdf

a Simple Temporal Problem?

> All our constraints are of the form:
> €<t(i+1l) —t(l) (c.f. sequence constraints)

> dur...(A) < t(A —)I — 1(A )I_s dur, . (A)
> Or, more generally, Ib <t(j) — t(1) <ub

» Isa Simple Temporal Problem

» “Temporal Constraint Networks”,
Dechter, Meiri and Pearl, AlJ, 1991

> Good news — is polynomial _
> Fad news — in planning, we need to solve it a
ot....



Example

 John travels to work either by car (30-40 min) or by bus (>= 60 min)

* Fred travels to work either by car (20-30 min) or in a carpool (40-50
min)

* Today John left between 7:10 and 7:30am.

* Fred arrived at work between 8:00 and 8:10am.

e John arrived at work 10-20min after Fred left home.



Visualize TCSP as
Directed Constraint Graph

[30,40]
[10,20] [60,inf]

[10,20]

[
»

[20,30]
[40,50]

[60,70]



Simple Temporal Network

e |.=(2a.< X.- X.<b..
Tl] (alj_ Xl XJ - bl_]) [30’40]
[10,20] 66




Simple Temporal Network:
A set of time points X, at which events occur.

Unary constraints
(3, < X.< by ) ortar<X<b)or——
Binary constraints

(ap < Xi-X;< by ) or {far<6—X<brjer——




STN

[10,20] . [30,40]

(10,20

[40,50]

[60,70]

Shostak (1981) A simple temporal problem is consistent if and only if the distance
graph has no cycles.

— The consistency and the minimal network of an STP can be determined in
cubic time using all-pairs shortest path search.



To Query STN Map to
Distance Graph G,
Edge encodes an upper bound on distance to target from source.
T;=(a;< X;- X; < bij Xi- X; < bij
X, - Xj < - a;;

20 40

.<
-10

[10,20]

30,40}
@ 3

[10,20 i‘>

[
»

[40,50]

[60,70] 70



Shortest Paths of G,

0O 1 2 3 4

0O 0 20 50 30 70
1 -10 0 40 20 60
2 40 -30 0 -10 30
3 -20 -10 20 O 50
4 -60 -50 -20 -40 O

d-graph



N Minimum Network

0
1
2
3
4

O 1 2 3 4
0 20 50 30 70
-10 0 40 20 60
-40 -30 0 -10 30
-20 -10 20 0 50
-60 -50 -20 -40 O

d-graph

0 1 2 3

[0]  [10,20] [40,50] [20,30]
[-20,-10]  [0]  [30,40] [10,20]
[-50,-40] [-40,-30] [0]  [-20,-10]
[-30,-20] [-20,-10] [10,20]  [O]
[-70,-60] [-60,-50] [-30,-20] [-50,-40]

[
|
[
[

4
60,70
50,60
20,30
40,50

[0]

]
]
]
]

STN minimum network



Test Consistency:
No Negative Cycles

d-graph



Latest Solution

Node 0 is the reference.

O}O 20 50 30 70}

1 -10 0 40 20 60
2 40 -30 0 -10 30
3 -20 -10 20 O 50
4 -60 -50 -20 -40 O

d-graph



Earliest Solution

Node 0 is the reference.

0

1 2 3 4

_ W= O

0

20 50 30 70
0 40 20 60
30 0 -10 30
-10 20 0 50
-50 -20 40 O

d-graph




Feasible Values

0 120 50 30 70 * X;in 10, 20

0
1[-10/ 0 40 20 60 * X, in [40, 50]
2(-401-30 0 -10 30 * X5 in [20, 30]
3(-20/-10 20 0 50 e X, in [60, 70]
4(-60(-50 -20 -40 0

d-graph



Back to Planning: Latest possible times?
(Maximum Separation)
(A comes no

t(A)-t(Z) <=4 more than 4 time
t(B) —t(Z) <=8 units after Z')
t(C) - t(2) <= 10




Latest possible times?
t(A) —t(2) <=4
t(B) —t(Z2) <=8
t(C) -t(Z2) <= 10

('B comes no
t(B)—t(A) <=2 more than 2 time
t((C) —1(B) <=1 units after A")




Earliest possible times?
(Minimum Separation)

. For latest possible time: find the shortest path
. For earliest possible times...?



Earliest possible times?

2 <=1(A)-t(2)
4 <=1(B) - t(2)

3 <=t(B) - t(A)
1<=t(C) — t(B)



Hacking algorithms

> Longest path from Z to C?
> = Shortest negative path from Cto Z
2 <=1(A)—-t(2)

Multiply both sides by -1.:
2> -1(A) +1(2)

p >=( Is the same as q <= p:
-1(A) +t(2) < -2

Rearrange LHS:
t(Z2) —t(A) <-2



Earliest possible times?

2 <=1(A) —-t(2)
4 <=1(B) —t(2)

3 <=1t(B) - t(A)
1<=t(C) — t(B)



Simple Temporal Networks (i)

> Can map STPs to an equivalent digraph:
» One vertex per time-point (and one for 'time
zero');

> Forlb <t(j) —t(i) <ub:

- An edge (I — j) with weight ub.

> An edge (] — 1), with weight -Ib

» (c.f.lb<t@g)—-t)) — t()-—t@) <-Ib)



Example STN

Ar




Simple Temporal Networks (ii)

. Solve the shortest path problem (e.g. using Bellman-Ford)
from/to zero _ _ _
~dist(0,))=x — maximum timestamp of | = x

-dist(j,0)=y — minimum timestamp of | = -y

. If we find a negative cycle then the temporal constraints are
inconsistent:

AL | A

“Incremental Constraint-Posting Algorithms in Interleaved Planning and Scheduling." A. J. Coles, A. I. Coles, M. Fox, and D. Long.
Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling,
ICAPSO09 https://local.cis.strath.ac.uk/research/publications/papers/strath_cis_publication_2409.pdf



https://local.cis.strath.ac.uk/research/publications/papers/strath_cis_publication_2409.pdf

(Coles, Fox, Long and Smith, AAAI 2008);

(See also Halsey, Fox and Long, ECAI 2004)

AB
ABA ABB
'ABAB ABBA AL 2]
! | R .
_ “AA B
P
B Hs 4



STN Simplifies For Partially Ordered Plans

. Transitively implied edges omitted for clarity:
-e.g. all the drive/board ends before work end;

~All the drive/board starts after work start.



Public Transport Example

* Drivers have working hours;

* Bus routes have fixed durations and start and end locations.
* Goals are that each bus route is done.

* The routes have timetables that they must follow.



Temporal Planning: Public Transport

duration >= 2, duration <=4

Available D1
Work D1 AtD1 A
Working D1 :
-Available D1 durat , -Working D1
uration = .
duration =3
ﬁ% [B)%,é ‘ Routel D1 Bl ﬁ% [B)%BB Route3 D1 B2
woia P \ﬁi 515 | Working D1 ‘ﬁ% A
- -At D1 A
-At B1 A Done Routel -At B1 A Done Route3

Actions have:

. Conditions and Effects at the start and at the end;

Invariant/overall conditions;

(= ?duration 4)
(and (>= ?duration 2) (<= ?duration 4))

"Planning with Problems Requiring Temporal Coordination."” A. . Coles, M. Fox, D. Long, and A. J. Smith. AAAI 2008.
"Managing concurrency in temporal planning using planner-scheduler interaction."” A. |. Coles, M. Fox, K. Halsey, D. Long, and A. J. Smith. Artificial
Intelligence. 173 (1) (2009).



Planning with Snap Actions

duration >= 2, duration <=4

Available D1
Work D1 AtD1 A
W, W,
Working D1 :
-Available D1 - -Working D1
duration = 2 duration = 3
At D1 A Routel D1 Bl At D1 B Route3 D1 B2
AtB1 A | RI ; R1, At B2 B| R3 R3
wpia Pt e . Working D1 oL
- -At D1 A
-At B1 A Done Routel -At B1 A Done Route2

Three Challenges:
. Make sure ends can’t be applied unless starts have.
. Overall Conditions.

. Duration constraints.

"Planning with Problems Requiring Temporal Coordination." A. |. Coles, M. Fox, D. Long, and A. J. Smith. AAAI 2008.

"Managing concurrency in temporal planning using planner-scheduler interaction."” A. |. Coles, M. Fox, K. Halsey, D. Long, and A. J. Smith. Artificial

Intelligence. 173 (1) (2009).



Planning with Snap Actions and STNs

4
—>
W
_E 2 3 -E
—~>
R1_ R1, R3 > R3
— 2 — € F e -3 ™
Constraints:
W, -W_>=2
Rl,_>= W_+E€
R1, -Rl_= 2
R3_>=Rl_+¢
R3, -R3,_ = 3

W_>= R3, +€

"Planning with Problems Requiring Temporal Coordination." A. |. Coles, M. Fox, D. Long, and A. J. Smith. AAAI 2008.

"Managing concurrency in temporal planning using planner-scheduler interaction."” A. 1. Coles, M. Fox, K. Halsey, D. Long, and A. J. Smith. Artificial
Intelligence. 173 (1) 2009.



Temporal Task-Motion Planning

* Time is money

e Real-world has and needs time constraints

* Combining task with motion planning “holy grail” in robotics
* Multiple goals is planning for longer-term plans in form of tours
* Inspection problems can be solved via waypoint finding

* Robots have complex, non-linear dynamics

Stefan Edelkamp

93



Temporal Task-Motion Planning

gt e N RGN :
A -t - ’ 4 . - -

»Crucial for Robotics, Logistics, Surgery, VR, ...
»No (convincing) solution so far

» High-Level Task, Low-Level Motion Planning
»Solutions in Discrete World only Approximate

=» Replanning needed.

Stefan Edelkamp



Randomized Roadmaps

Stefan Edelkamp 95



PDDL Task Planning and TILS

coffee_errors. pddl
(define COFFEE

TIL = Timed Initial Literal

(requirements
:typing)

(:types room - location
L LY

robot human _ agent (at tlmepOInt (faCt))

furniture door - (at ?1 - location) 1 1
kettle ?coffee cup water - movable (at tlmepOInt (nOt faCt))

location agent movable - object)

(:predicates (at - location ??0 - object) ol . R
(have 7m - mevable 7a - agent) Specified in initial state
(hot - movable) = true
(on - furniture - movable))

e [ Leads to time windows for actions
j - movable $k - kettle - agent)
ZprEEDnditiDLS (have )
(hot }j

Line 20, Colurmn 22 96



Interface with PDDL Temporal Planner (OPTIC)

Input Output

(at auv vO) vl v3 vE vd v2

(connected vO0 v1) 0.0 1.26 3.22 12.55 21.11
(connected v0 v2)
(connected v1 v2)

(= (traveltime v0 v1) 0.8)
(= (traveltime v0 vZ) 1.5)
(= (traveltime vl vZ) 0.7)
(located taskl wvl)
(1Gcated task? v2)

(at 1.1 (tw_open taskl))

(at 2.1 (not (tw_open taskl)))
(at 2.3 (tw_open taskZ))

(at 3.3 (not (tw_open task2)))

Stefan Edelkamp



Interface with Specialised Solvers

(BnB, MCS, Random)

» SSSP-Reduced Roadmap Graph via Dijkstra Calls (Computed Prior to

the Search)

e Cities = Waypoints, Current Position of Robot = Depot

* Open Tour

e Pairwise SSSP Distance Table

e Time Windows

obj.

200

6400

BEOO

BEOD

BB tree (/homestemps/test.bak Os )

98



Example

- Ohbstacles Goal Reglions Time Windows
Simulator[ o _10,,...,0m} || ®={Ra,-...Ra} || {5, emd),  qpotan gondy)
—) ' il '
Road Temporal | temporal plan
- Planner
| ] |—f
Mnhﬂ? s Equivalence Classes
Expand -
. Select Equivalence Class
—| Faphnlencs Sla=

99



Pickup and Deliveries

Stefan Edelkamp 100


https://bit.ly/2Ef7HMQ

Framework

Input: multi-goal motion planning problem with time windows, pickups, deliveries,
capacities

Output: collision-free and dynamically-feasible trajectory ¢ that seeks to maximize
GOALS(()

RM — CONSTRUCTROADMAP(O, G)

= «— SHORTESTPATHS(RM, G)

T — INITIALIZEMOTIONTREE( Sinit )

X — INITIALIZEEQUIVALENCECLASSES( Sinit )

while TIME() < tmax and not solved and not converged do
Xikey < SELECTEQUIVALENCECLASS(X)
Xkey.0 < DISCRETESOLVER(RM., =, key)
EXPANDMOTIONTREE(7 , Xyey.0)
UPDATEEQUIVALENCECLASSES(AX')

10: return trajectory ( in 7 that maximizes GOALS(()

I

Stefan Edelkamp 101



Integration with Specialized Solvers

| 2
b
=

:-

g . Integration with PDDL Planner (OPTIC)

iJ_HllthJllUj'I'lUmﬂJ.lﬂ "

— ey

|
|

Uil e SR b

| o’ II| ]- . 1"
con gty o B D L T T T Pl T AR Y 1
| —IF':II'III_"I"'"_:':J':JHI_{:_I:J:E_::E I, :" o 'q'l{';_r,f:lr .'r_";-_lrzl'- .
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Interface with PDDL

Input

(:durative—action execute_task_pickup

:parameters (?v - vehicle ?wp - waypoint ?t - task)
:duration ( = ?duration (taskduraticn ?2t))
:condition (and

a
(at start (at ?v ?wp)) (at start (located 7t ?wp)
(at start (todo ?t))

(at start (< (+ (customer ?wp) (cap ?7v)) (max_cap ?v)))
(at start (is- plckup ?wp)) (at start (tw_open 7t)))
reffect (and

(at start (not (todo ?t))) (at end (visited ?wp))
(at end (increase (cap ?v) (customer ?wp)))

(at end (decrease (profit ?v) (customer ?wp)))

(at end (completed 7tC)))

:durative-action execute_task_delivery

:parameters (?v - vehicle ?wpl ?wpZ2 - waypolnt 7t - task)
:duration ( = ?duration (taskduration ?t))ov
:condition (and
(at start (at ?v ?wpl)) (at start (located ?t ?wpl))
(at start (todo ?t)) (at start (is-delivery ?wpl))
(at start (and (visited ?wp2) (link ?wp2 ?wpl)))
(at start (tw_open ?t)))
:effect (and
(at start (not (todo ?t))) (at end (visited ?wpl))

(at end (increase (cap ?v) (customer ?wpl)))
(at end (decrease (profit ?v) (customer ?wpl)))
(

atS‘ceejf%m Ed[ecflgr%%lEtEd t))))

Output

vl v3 vh

vd

0.0 1.26

coffee_errors. pddl

ne COFFEE

(requirements

:typing)

(:action bo

il

3.

(

:preconditions (

Line 20, Column 22

{ |'" oT

PDDL

103



Scenes (With Randomized Road Maps)

Snake Model Car Model

Stefan Edelkamp 104



Results

(a) MC (B) OPtic (C) Random

2r [ffL.@@tl | | /1s2car .. ¥ ] g¥(s3, snake],
216§ -~ 14 ] -- - & _ > 5. ; :
o 8 [t vt NV H L H el ey ] e A aa
E ;_ 11 u!.' N B - D D B B /. A B L o :) e Y N R S __________
SRV I CTYN V0 R Vi I S /= S Vit /] T
S O A I Y ol [~ s P R [ . _
e .,‘” Oc o e r'!

25610 14 18 22 26 306 10 14 18 22 26 3 1014 18 22 26 306 10 14 18 22 26 306 10 14 18 22 26 306 10 14 18 22 26 30
number of goals

Stefan Edelkamp 105



Adjusting Time Windows [(1—€)t;, (1+€)t;]

=1.
O
©
18 =
16 o
el )
£ IS
£1 o .
- T .
&)
@
()]
o 7
-
€ Ot

0512 340512 3 4

Stefan Edelkamp ~ 106



Adjusting Vehicle Capacity

""" [s3, car, n=22]

o M

runtime [s]
o

on

I

(]

40 50 60 70 80 90 100
capacity [%o]

Stefan Edelkamp

—%
— —

e duration

missed distance
O

©

[s3, car, n=22]

—
T
1

O—=PM W

40 50 60 70 80 90100
capacity [%]
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RunTime Distribution

Bottom to Top:
RoadMap Constr., APSP, Collision & Simulate, Discr. Solver, Other

o

[s1,snake] [s2,car] [s3,snake]

18 20 22 24 26 28 30 18 20 22 24 26 28 30 18 20 22 24 26 28 30
number of goals

N B O 00 O
o O O

o

runtime distr. [%]

o

Stefan Edelkamp 108



Conclusion

Full-Fledged Solution:

» high-dimensional robotic systems with nonlinear dynamics and
» nonholonomic constraints

» visit all goal regions fast in suitable cost-minimizing order

» unstructured, complex environments

* and efficiently computes

» collision-free, dynamically-feasible, low-cost trajectories that

» enable the robot to satisfy the CPSPTW+PD task specification

109
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