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Driving Research Questions
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Framework
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For a Start:
The Physical 
TSP
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Traveling Salesman 
Tours (TSP)

• Given a map, compute a minimum-cost 
round trip visiting certain cities

• Shortest paths graph reduction: 
precompute all-pairs-shortest-paths with

• Dijkstra’s algorithm (be smart: employ 
radix heaps)

• Traditional: Model problem as an IP and 
call solver (CPLEX, IPSolve,. . . )

• Neighborhood search (xOPT: SA; GA; AA; 
PSO; LNS,. . . )

• . . . New in the arena: Monte-Carlo Search 
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Additional Constraints
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Inspection 
Problem
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Inspection 
Tour
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Grassfiring
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Grassfiring
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Generating Inspection Waypoints (1)
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Generating Inspection Waypoints (2)
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Multi-Goal Motion Planning with Dynamics
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Dynamics

• Express relation between input 
controls and resulting motions

• Necessary to plan motions that can 
be executed

• Impose significant challenges

➢ Constrain the feasible motions

➢ Often are nonlinear and high-
dimensional

➢ Give rise to nonholonomic systems

➢ State and control spaces are 
continuous

➢ Solution trajectories are often long

Computational complexity of motion planning 
with dynamics 

• Point with Newtonian dynamics NP-Hard 
[DXCR 1993]

• Polygon Dubin’s car Decidable [CPK 2008]

• General nonlinear dynamics Undecidable 
[Branicky 1995]
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Dynamics

• Express relation between 
input controls and resulting 
motions

• Modeled via physics-based 
engines

ROS/Gazebo, ODE, Bullet, PhysX
general rigid-body dynamics
friction and gravity
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Introduce Discrete Layer to Guide the Search
Workspace decomposition provides

• discrete layer as adjacency graph G = (R,E)

• R denotes the regions of the decomposition

• E = {(ri,rj) | ri, rj in R are physically adjacent}

hcost(r) estimates the difficulty of reaching goal region from r

• defined as length of shortest path in G from r to goal 
[hcost(r1), hcost(r2),…, hcost(rn)]

• computed by running BFS/A* on G backwards from goal
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Sampling Based Motion Planning

• Expand a tree T of collision-free 
and

• dynamically-feasible motions

➢select a state s from which to

expand the tree

➢sample control input u

➢generate new trajectory by

➢applying u to s
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Complex Robot Models -
Often Sets of Differential Equations
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Sampling Based Motion Planning and 
Selection of Equivalence Class
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Guided Expansion of Motion Tree

• Sampling-based motion planning

➢ generality: dynamics as black-box function s’ =MOTION(s,u,dt)

➢ continuous state/control spaces: probabilistic sampling to make it feasible

➢ high-dimensionality: search to find solution

• coupled with discrete abstractions

➢ provide simplified planning layer

➢ guide search in the continuous state/control spaces

• and motion controllers

➢ open up the black-box MOTION function

➢ facilitate search expansion

• Formal guarantees

➢ probabilistic completeness
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Architecture
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Abstraction
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Graph Search for the Colored TSP
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Nested Rollout Policy Adaptation

Rosin 2011 IJCAI – Best Paper, Morpion Solitaire with new Record

MCS tree based on Complete Rollout and Recursive Search

• Not really MCTS, No Search Tree.

• In Each Level a Policy is Maintained, Updated and Refreshed 

• Updating Policy based on better Solutions Coming in from below 

• Policy in Turn Influences the Rollouts

• Parameters: Level of Recursion, and Iteration Width

• Effective for TSPTW and many other Approaches

• Refinements: Beam / Diversity / Generalization
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Learning Curve
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Nested Rollout Policy Adaptation

STEFAN EDELKAMP 31

Input: Iteration width (exploitation), nestedness (exploration)
Policy: (city-to-city) mapping NxN -> IR to be learnt
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Playout
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Adapt
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Search
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Theory…
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Praxis…

• https://nms.kcl.ac.uk/stefan.edelkamp/lectures/pi1/programs/VRP.java
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Some Results
Multi-Goal
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More Results Multi-Goal
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Inspection Benchmarks
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Results
Inspection
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Intermediate Summary Multi-Goal Task-
Motion Planning
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Temporal Planning: Time Does Matter

In general, activities have varying durations:
➢ Loading a package onto a truck is much quicker 

than driving the truck;

➢ Drinking a cup of tea takes longer than making 
it;

➢ Procrastinating tasks takes longer than doing 
them

➢ …



Example: Zeno Domain
Initial State Goal State



Zeno
PDDL
domain
File



Zeno
PDDL
Problem
FILE



Sequential and TemPORAL PLAN



SNAG: Sequential Plan TIME VS. 
Parallel Plan TIME



Different Plan OBJECTIVES

Fuel                               Time



Durative Actions?
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Durative Actions in PDDL 2.1

A

pre

effeff

prepre

at start at end

over all



PDDL Example (i)

• (:durative-action LOAD-TRUCK

• :parameters

• (?obj – obj ?truck – truck ?loc -

location)

• :duration (= ?duration 2)

• :condition

• (and   (over all (at ?truck ?loc))

• (at start (at ?obj ?loc)))

• :effect

• (and (at start (not (at ?obj ?loc)))

• (at end (in ?obj ?truck))))

:precondition

Beware of self-overlapping actions!



PDDL Example (ii)

• (:durative-action open-barrier

• :parameters

• (?loc – location ?p - person)

• :duration (= ?duration 1)

• :condition

• (and   (at start (at ?loc ?p)))

• :effect

• (and (at start (door-open ?loc))

• (at end (not (door-open 

?loc))))



PDDL Example (ii)
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• :parameters

• (?loc – location ?p - person)

• :duration (= ?duration 1)

• :condition

• (and   (at start (at ?loc ?p)))

• :effect

• (and (at start (door-open ?loc))

• (at end (not (door-open 

?loc))))



Durative Actions

pre

effeff

prepre

A  A  A  A

U As

As U

U ¬As

(Fox and Long, ICAPS 2003)



Planning with Snap Actions (i)

• Challenge 1: What if B   interferes with the goal?

@PDDL 2.1 semantics: no actions can be executing in a 
goal state.

Solution: add ¬As, ¬Bs, ¬Cs.... to the goal (or make this 
implicit in a temporal planner.)

A  A  B  

¬As, G

A  A  B  

Bs, f

As,f

As ¬Bs, ¬G

B  

Bs



Planning with Snap Actions (ii)

Challenge 2: what about over all conditions?

If A is executing, inv_A must hold.

Solution:
In every state where As is true: inv_A must also 
be true

Or: (imply (As) inv_A)

Violating an invariant then leads to a dead-end.

pre

effeff

preinv_A

A  A  A  

U As

As U

U ¬As



Planning with Snap Actions (iii)

● Challenge 3: where did the durations go?
–More generally, what are the temporal 
constraints?

–Logically sound ≠ temporally sound.

A  A  B  A  B  



Option 1: Decision Epoch Planning
➢ Search with time-stamped states and a priority queue of 

pending end snap-actions.
➢ See Temporal Fast Downward (Eyerich, 

Mattmüller and Röger, ICAPS 2009); Sapa (Do 
and Kambhampati, JAIR 2003), and others.

➢ In a state S, at time t and with queue Q, either:
➢ Apply a start snap-action A   (at time t)

➢ Insert A    into Q at time (t + dur(A))

➢ S'.t =  S.t + ε

➢ Remove and apply the first end snap-action from Q.

➢ S'.t set to the scheduled time of this, plus ε

Term from Cushing et al, IJCAI 2007



Running through our example...

A  A  

A  

B  

B  

t=0 t=0.01

t=3 t=5.01

Can only choose A
- eliminated the

temporally inconsistent
option (B   before A   )

Q



Decision Epoch Planning: The snag

Must fix start- and end-timestamps at the point when 
the action is started.
–Used for the priority queue

Can we always do this?

A  C  

D  

C  

D  

q

q

¬q

dur(C) = 10

dur(D) = 1

t = 0 t = 0.01

Queued: t = 10

Queued: t = 1.01



OPTION 2: Simple Temporal Networks

"Planning with Problems Requiring Temporal Coordination." A. I. Coles, M. Fox, D. Long, and A. J. Smith. AAAI 08.
https://local.cis.strath.ac.uk/research/publications/papers/strath_cis_publication_2248.pdf
"Managing concurrency in temporal planning using planner-scheduler interaction."
A. I. Coles, M. Fox, K. Halsey, D. Long, and A. J. Smith. Artificial Intelligence. 173 (1). 2009.

https://local.cis.strath.ac.uk/research/publications/papers/strath_cis_publication_2248.pdf


a Simple Temporal Problem?

➢ All our constraints are of the form:
➢ ε ≤ t(i+1) – t(i)      (c.f. sequence constraints)

➢ durmin(A) ≤ t(A  ) – t(A  ) ≤ durmax(A)

➢ Or, more generally, lb ≤ t(j) – t(i) ≤ ub

➢ Is a Simple Temporal Problem

➢ “Temporal Constraint Networks”,                        
Dechter, Meiri and Pearl, AIJ, 1991

➢ Good news – is polynomial
➢ Bad news – in planning, we need to solve it a 

lot....



Example

• John travels to work either by car (30-40 min) or by bus (>= 60 min)

• Fred travels to work either by car (20-30 min) or in a carpool (40-50 
min)

• Today John left between 7:10 and 7:30am.

• Fred arrived at work between 8:00 and 8:10am.

• John arrived at work 10-20min after Fred left home.



Visualize TCSP as
Directed Constraint Graph

1 3
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Simple Temporal Network

• Tij = (aij Xi - Xj  bij)
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Simple Temporal Network:

A set of time points Xi at which events occur.

Unary constraints
(a0 < Xi < b0 ) or (a1 < Xi < b1 ) or . . .

Binary constraints 
(a0 < Xj - Xi < b0 ) or (a1 < Xj - Xi < b1 ) or . . .



Shostak (1981) A simple temporal problem is consistent if and only if the distance
graph has no cycles.
→ The consistency and the minimal network of an STP can be determined in 
cubic time using all-pairs shortest path search.

1 3

42

0
[10,20] [30,40]

[10,20]

[40,50]

[60,70]

STN



To Query STN Map to
Distance Graph Gd

70

1 3

42

0
20

50

-10

40

-30

20 -10

-40

-60

1 3

42

0
[10,20] [30,40]

[10,20]

[40,50]

[60,70]

Tij = (aij Xj - Xi  bij)
Xj - Xi  bij

Xi - Xj  - aij

Edge encodes an upper bound on distance to target from source.



0 1 2 3 4

0 0 20 50 30 70

1 -10 0 40 20 60

2 -40 -30 0 -10 30

3 -20 -10 20 0 50

4 -60 -50 -20 -40 0

d-graph

Shortest Paths of Gd
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STN Minimum Network

0 1 2 3 4

0 [0] [10,20] [40,50] [20,30] [60,70]

1 [-20,-10] [0] [30,40] [10,20] [50,60]

2 [-50,-40] [-40,-30] [0] [-20,-10] [20,30]

3 [-30,-20] [-20,-10] [10,20] [0] [40,50]

4 [-70,-60] [-60,-50] [-30,-20] [-50,-40] [0]

0 1 2 3 4

0 0 20 50 30 70

1 -10 0 40 20 60

2 -40 -30 0 -10 30

3 -20 -10 20 0 50

4 -60 -50 -20 -40 0

d-graph STN minimum network



Test Consistency: 
No Negative Cycles
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Latest Solution

0 1 2 3 4
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Node 0 is the reference.



Earliest Solution

0 1 2 3 4
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Node 0 is the reference.



Feasible Values

0 1 2 3 4

0 0 20 50 30 70

1 -10 0 40 20 60

2 -40 -30 0 -10 30

3 -20 -10 20 0 50

4 -60 -50 -20 -40 0

d-graph

• X1 in [10, 20]

• X2 in [40, 50]

• X3 in [20, 30]

• X4 in [60, 70]



Z A B C

Back to Planning: Latest possible times?
(Maximum Separation)

t(A) – t(Z) <= 4
t(B) – t(Z) <= 8

t(C) – t(Z) <= 10

('A comes no 
more than 4 time 

units after Z')



Z A B C

Latest possible times?
t(A) – t(Z) <= 4
t(B) – t(Z) <= 8

t(C) – t(Z) <= 10

t(B) – t(A) <= 2
t(C) – t(B) <= 1

('B comes no 
more than 2 time 

units after A')



Earliest possible times?
(Minimum Separation)

● For latest possible time: find the shortest path

● For earliest possible times...?



Z A B C

Earliest possible times?
2 <= t(A) – t(Z)
4 <= t(B) – t(Z)

3 <= t(B) – t(A)
1<= t(C) – t(B)



Hacking algorithms

➢ Longest path from Z to C?

➢ = Shortest negative path from C to Z
2 <= t(A) – t(Z)

Multiply both sides by -1:
-2 > - t(A) + t(Z)

p >= q is the same as q <= p:
- t(A) + t(Z) < -2

Rearrange LHS:
t(Z) – t(A) < -2



Z A B C

Earliest possible times?
2 <= t(A) – t(Z)
4 <= t(B) – t(Z)

3 <= t(B) – t(A)
1<= t(C) – t(B)

-2 >= – t(A) + t(Z)
-4 >= – t(B) + t(Z)

-3 >= – t(B) + t(A)
-1 >= – t(C) + t(B)

t(Z) – t(A) <= -2
t(Z) – t(B) <= -4

t(A) – t(B) <= -3
t(B) – t(C) <= -1



Simple Temporal Networks (i)
➢ Can map STPs to an equivalent digraph:
➢ One vertex per time-point (and one for 'time 

zero');

➢ For lb ≤ t(j) – t(i) ≤ ub:

➢ An edge (i → j) with weight ub.

➢ An edge (j → i), with weight -lb

➢ (c.f. lb ≤ t(j) – t(i)     →     t(j) – t(i) ≤ -lb)



Example STN

A  A  

B  

A  

B  

-ε -ε -ε

3

-3

5

-5

0.00: (A) [3]

0.01: (B) [5]



Simple Temporal Networks (ii)
● Solve the shortest path problem (e.g. using Bellman-Ford) 

from/to zero
–dist(0,j)=x → maximum timestamp of j = x

–dist(j,0)=y → minimum timestamp of j = -y

● If we find a negative cycle then the temporal constraints are 
inconsistent:

A  A  

B  

A  

B  

-ε
-ε

3

-3

5

-5

"Incremental Constraint-Posting Algorithms in Interleaved Planning and Scheduling." A. J. Coles, A. I. Coles,  M. Fox, and D. Long. 
Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling, 
ICAPS09 https://local.cis.strath.ac.uk/research/publications/papers/strath_cis_publication_2409.pdf

https://local.cis.strath.ac.uk/research/publications/papers/strath_cis_publication_2409.pdf


I

A ...

I

B

ABB

AB

ABA

ABAB ABBA A  A  

B  

A  

B  
-ε -ε

3

-3

5

-5A  A  

B  

A  

B  
-ε

-ε -ε

3

-3

5

-5

(Coles, Fox, Long and Smith, AAAI 2008);

(See also Halsey, Fox and Long, ECAI 2004)



STN Simplifies For Partially Ordered Plans

● Transitively implied edges omitted for clarity:
–e.g. all the drive/board ends before work end;

–All the drive/board starts after work start.



Public Transport Example

• Drivers have working hours;

• Bus routes have fixed durations and start and end locations.

• Goals are that each bus route is done.

• The routes have timetables that they must follow.



Temporal Planning: Public Transport

"Planning with Problems Requiring Temporal Coordination." A. I. Coles, M. Fox, D. Long, and A. J. Smith.  AAAI 2008.
"Managing concurrency in temporal planning using planner-scheduler interaction." A. I. Coles, M. Fox, K. Halsey, D. Long, and A. J. Smith. Artificial 
Intelligence. 173 (1) (2009).

Work D1

Route1 D1 B1

Working D1 Working D1

Route3 D1 B2

Actions have:

At D1B

¬At B1 A¬At B1 A

At D1 A
At B1 A

At B1 B

Working D1

At D1 B
At B2 B

At D1 A
At B2 A

At D1 A

Done Route1
Done Route3

¬At D1 A ¬At D1 A

¬Working D1

Available D1

¬Available D1

● Conditions and Effects at the start and at the end;

● Invariant/overall conditions;

duration >= 2 , duration <= 4

duration = 2 duration = 3

● Durations constraints:
(= ?duration 4)
(and (>= ?duration 2) (<= ?duration 4))



Planning with Snap Actions

"Planning with Problems Requiring Temporal Coordination." A. I. Coles, M. Fox, D. Long, and A. J. Smith.  AAAI 2008.
"Managing concurrency in temporal planning using planner-scheduler interaction." A. I. Coles, M. Fox, K. Halsey, D. Long, and A. J. Smith. Artificial 
Intelligence. 173 (1) (2009).

Work D1

Working D1

At D1 A
At B1 A At D1B

At B1 B

Working D1

Route1 D1 B1

Working D1

At D1 B
At B2 B

At D1 A
At B2 A

Route3 D1 B2

duration = 2 duration = 3

At D1 A

Three Challenges:

● Make sure ends can’t be applied unless starts have.

● Overall Conditions.

● Duration constraints.

Done Route1
Done Route2

¬At D1 A
¬At B1 A

¬At D1 A
¬At B1 A

¬Working D1

R1⊢ R3⊢ R3⊣
R1⊣

Available D1

¬Available D1

W⊣W⊢

duration >= 2 , duration <= 4



Planning with Snap Actions and STNs

"Planning with Problems Requiring Temporal Coordination." A. I. Coles, M. Fox, D. Long, and A. J. Smith.  AAAI 2008.
"Managing concurrency in temporal planning using planner-scheduler interaction." A. I. Coles, M. Fox, K. Halsey, D. Long, and A. J. Smith. Artificial 
Intelligence. 173 (1) 2009.

2

Constraints:

W⊣ - W⊢ >= 2
W⊣ - W⊢ <= 4
R1 ⊢ >=  W⊢ + ε
R1⊣ - R1⊢ = 2
R3 ⊢ >=  R1⊢ + ε
R3⊣ - R3⊢ = 3
W⊣ >=  R3 ⊣ + ε

R1⊢ R3⊢ R3⊣
R1⊣

W⊣W⊢

4

-2

-2

3

-3-ε

-ε -ε



Temporal Task-Motion Planning

• Time is money

• Real-world has and needs time constraints

• Combining task with motion planning “holy grail” in robotics

• Multiple goals is planning for longer-term plans in form of tours

• Inspection problems can be solved via waypoint finding

• Robots have complex, non-linear dynamics

Stefan Edelkamp 93



Temporal Task-Motion Planning

➢Crucial for Robotics, Logistics, Surgery, VR, … 

➢No (convincing) solution so far

➢High-Level Task, Low-Level Motion Planning

➢Solutions in Discrete World only Approximate 

➔ Replanning needed.
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Randomized Roadmaps
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PDDL Task Planning and TILS

TIL = Timed Initial Literal

(at timepoint (fact))
(at timepoint (not fact))

Specified in initial state

Leads to time windows for actions 

Stefan Edelkamp 96



Interface with PDDL Temporal Planner (OPTIC)

Input                                                                        Output   
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Interface with Specialised Solvers 
(BnB, MCS, Random)
• SSSP-Reduced Roadmap Graph via Dijkstra Calls (Computed Prior to 

the Search)

• Cities = Waypoints, Current Position of Robot = Depot

• Open Tour 

• Pairwise SSSP Distance Table

• Time Windows 
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Example
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Pickup and Deliveries
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https://bit.ly/2Ef7HMQ


Framework
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Integration with Specialized Solvers 

Integration with PDDL Planner (OPTIC) 
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Interface with PDDL 
Input Output   
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Scenes (With Randomized Road Maps)

Snake Model                                    Car Model
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Results 

(a) MC            (B) OPtic        (C) Random
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Adjusting Time Windows
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Adjusting Vehicle Capacity
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RunTime Distribution

Bottom to Top:
RoadMap Constr., APSP, Collision & Simulate, Discr. Solver, Other
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Conclusion

Full-Fledged Solution:

➢ high-dimensional robotic systems with nonlinear dynamics and

➢ nonholonomic constraints

➢ visit all goal regions fast in suitable cost-minimizing order

➢ unstructured, complex environments

• and efficiently computes
➢ collision-free, dynamically-feasible, low-cost trajectories that

➢ enable the robot to satisfy the CPSPTW+PD task specification  
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