

Game Theory in Robotics: Patrolling

Tomáš Kroupa

Artificial Intelligence Center Department of Computer Science Faculty of Electrical Engineering Czech Technical University in Prague

Patrolling in Mobile Robotics

To patrol is to keep watch over an area by regularly walking or travelling around it.

- The mobile surveillance of an area in order
 - to detect an adversary and
 - to give some guarantees of doing so
- The agents are called the patroller (defender) and the intruder (attacker)

Classification of Patrolling Models

Area representation

1 graph

- open perimeter
- closed perimeter
- fully connected

2 geometric

- lines
- polygons

Number of patrollers

- 1 single agent
- 2 multiple agents

Objective function

- 1 non-adversarial
 - maximize repeated coverage
 - maximize worst idleness
- 2 adversarial
 - the environment with targets of different values
 - a rational attacker tries to intrude into the targets

Lecture Goals/Outline

To understand how

- how a simple patrollling problem can be modeled with game-theoretic tools and
- that revealing patroller's mixed strategy might not be a disadvantage.

- 1 Motivation: Patrolling on a digraph with targets
- 2 Beyond zero-sum games: Various game forms and equilibria
- 3 Patrolling Security Games

Motivation: Patrolling on a Digraph

Example of the Environment

🖒 Labelled digraph

- Vertices represent the locations of the area
- Target vertices have values for the defender and the attacker
- The defender walks along the arcs to locate the attacker

Motivation: Patrolling on a Digraph

General Model of the Environment

 $\mathcal{G} = (\mathbf{V}, \mathbf{E}, \mathbf{T}, \mathbf{v}_{\mathbf{d}}, \mathbf{v}_{\mathbf{a}}, \tau)$

- (V, E) is a directed graph
- $T \subseteq V$ is a nonempty set of targets
- $v_d : T \to \mathbb{R}^+$ is the value for the defender in case of successful protection
- $v_a \colon T \to \mathbb{R}^+$ is the value for the attacker in case of successful intrusion
- $au : au o \mathbb{N}^+$ represents the time the attacker needs to spend on t for getting $v_a(t)$

•
$$V = \{1, \dots, 7\}$$

•
$$T = \{2, 7\}$$
 with $v_d(2) = 40$, $v_d(7) = 60$ and $v_a(2) = v_a(7) = 50$

• $\tau(2)=3$ and $\tau(7)=2$

Motivation: Patrolling on a Digraph

The Patrolling Setting

Defender

- moves along *G* spending one turn to cover one arc
- can sense only the area corresponding to the current vertex
- captures the attacker it they are at the same target *t*

$m \ref{D}$ Adding the agents

Attacker

- can wait indefinitely outside the environment
- observes the past defender's actions
- attacks a target t by visiting it
- has to stay au(t) turns in target t

The Patrolling Setting

🗘 Questions

- How to represent the turns/moves of agents?
- How to define the utility function of each agent?
- How to express the knowledge of attacker about defender's strategy?

We need to look beyond two-person zero-sum games.

Two-Player Zero-Sum Game

$m \ref{C}$ Simultaneous moves, the utility version

- 1 Players are the defender and the attacker
- 2 Strategy sets are *M* and *N*
- **3** The matrix $\mathbf{U} = [u_{ij}]_{i \in M, j \in N}$ of utilities for the defender

However, the players may act sequentially with the defender revealing the strategy:

- () The defender commits to maxmin strategy $\bar{\mathbf{x}}$
- ② The attacker plays minmax strategy $ar{\mathbf{y}}$

The outcome is $\ \bar{\mathbf{x}}^\intercal \mathbf{U} \bar{\mathbf{y}} =$ the value of the game

- 1 Players are the defender and the attacker
- 2 Strategy sets are *M* and *N*
- 3 The utility matrices $\mathbf{U}^d = [u_{ij}^d]_{i \in M, j \in N}$ and $\mathbf{U}^a = [u_{ij}^a]_{i \in M, j \in N}$

When agents use mixed strategies \mathbf{x} and \mathbf{y} , the expected utilities are

 $\mathbf{x}^{\mathsf{T}} \mathbf{U}^{d} \mathbf{y}$ and $\mathbf{x}^{\mathsf{T}} \mathbf{U}^{d} \mathbf{y}$

Which strategies will utility-maximizing agents seek?

Nash Equilibrium

🖒 Nash, 1951

A Nash equilibrium is a pair of mixed strategies $(\bar{\mathbf{x}},\bar{\mathbf{y}})$ such that

 $ar{\mathbf{x}}^{\mathsf{T}} \mathbf{U}^{d} ar{\mathbf{y}} \geq \mathbf{x}^{\mathsf{T}} \mathbf{U}^{d} ar{\mathbf{y}}$ and $ar{\mathbf{x}}^{\mathsf{T}} \mathbf{U}^{a} ar{\mathbf{y}} \geq ar{\mathbf{x}}^{\mathsf{T}} \mathbf{U}^{a} \mathbf{y}$ $\forall \mathbf{x} \in \Delta_{M}, \forall \mathbf{y} \in \Delta_{N}$

🖒 Every general-sum game has at least one NE

🖓 Computing NE is a notoriously difficult problem

$\textcircled{3} \times 3 \text{ bimatrix game}$

	1	2	3
1	6, 2	0, 6	4, 4
2	2, 12	4, 3	2, 5
3	0, 6	10, 0	2, 2

 $ightharpoonup^{\circ}$ The second row strategy is *strictly dominated* by $\frac{1}{2}(\mathbf{e}_1 + \mathbf{e}_3)$ $ightharpoonup^{\circ}$ So we can omit it from the defender's pure strategies

1

0

3×3 bimatrix game

The third column strategy is also *strictly dominated* So we can omit it from the attacker's pure strategies

Nash Equilibrium: Properties

In contrast to zero-sum games:

- 🖒 Equilibrium points may have different values
- 🖒 It may not be clear which equilibrium will a rational player select

🖒 Revealing the used equilibrium strategy may reduce the player's payoff

Equilibria: (1,2) and (2,1)

Stackelberg Game

🖒 Sequential moves

- 1 Players are the defender and the attacker
- **2** Strategy sets are M and N

3 The utility matrices $\mathbf{U}^d = [u_{ij}^d]_{i \in M, j \in N}$ and $\mathbf{U}^a = [u_{ij}^a]_{i \in M, j \in N}$

- The defender commits to $\mathbf{x} \in \Delta_{M}$
- The attacker plays a pure strategy \mathbf{e}_{j} maximizing $\mathbf{x}^{\intercal}\mathbf{U}^{a}\mathbf{e}_{j}$
- Typically there are more such best responses $j \in \mathrm{BR}(\mathbf{x})$

The defender wants to maximize $\mathbf{x}^{\mathsf{T}} \mathbf{U}^{d} \mathbf{e}_{j}$, but which j should be considered?

🖒 aka Strong Stackelberg equilibrium

We assume that the attacker picks the best action for the defender.

An optimal strategy of defender is a mixed strategy $\bar{\mathbf{x}} \in \Delta_M$ such that

$$\max_{j \in \mathrm{BR}(\bar{\mathbf{x}})} \bar{\mathbf{x}}^{\mathsf{T}} \mathbf{U}^{d} \mathbf{e}_{j} = \max_{\mathbf{x} \in \Delta_{M}} \max_{j \in \mathrm{BR}(\mathbf{x})} \mathbf{x}^{\mathsf{T}} \mathbf{U}^{d} \mathbf{e}_{j}$$

Optimal Strategy of Defender

C Example

- The optimal strategy of defender is $\bar{\mathbf{x}} = (\frac{1}{2}, \frac{1}{2})$ and payoff 3.5
- The best response of attacker is j = 1 or j = 2 with equal payoffs 0.5

1 For every attacker's strategy $j \in N$, solve this LP_{*j*}:

$$\begin{array}{lll} \text{Maximize} & \mathbf{x}^{\mathsf{T}} \mathbf{U}^{d} \mathbf{e}_{j} \\ \text{subject to} & \mathbf{x} \in \Delta_{M} \\ & \mathbf{x}^{\mathsf{T}} \mathbf{U}^{a} \mathbf{e}_{j} \geq \mathbf{x}^{\mathsf{T}} \mathbf{U}^{a} \mathbf{e}_{j'} \quad \forall j' \in N \end{array}$$

2 The optimal strategy $\bar{\mathbf{x}}$ is the optimal solution of LP_j with the maximal value

The Worst-Case Optimality

🖒 aka Weak Stackelberg equilibrium

Let's assume now that the attacker picks the worst action for the defender.

• The function on the right has no maximum

🖒 So the optimal defender's strategy in this sense fails to exist!

Stackelberg vs. Nash

🖒 Comparison of solution concepts

In fact, the optimal payoff of defender in the Stackelberg game is always \geq the optimal payoff in any Nash equilibrium.

Extensive-Form Games

$m \ref{C}$ The most general game representation

- Moves are explicitly modeled
- Actions are represented by branching
- Outcomes are at the leaves
- 🖒 Strategies depend on the history
- The history of past actions may not be observable by the other player

Patrolling Security Games

A two-player multi-stage game with imperfect information and infinite horizon:

- The agents act *simultaneously* in each move
- The game ends when a single target is captured or no attack is carried out
- The attacker can derive the defender's strategy from observing past actions

We need to define actions, outcomes, and utility functions.

Actions

c At turn k of the game

Defender

 move(i) means that the defender visits adjacent vertex i ∈ V at turn k + 1 and checks it for the intruder's presence

Attacker

- wait means that the attacker makes no attempt at intrusion
- 2 enter(t) represents the intrusion into target $t \in T$ and blocks the attacker for the next $\tau(t)$ moves

Outcomes of the Game

no-attack
The attacker plays wait at every turn k

intruder-capture

The attacker plays enter(t) at turn k and the patroller visits t in the interval

 $\{k,\ldots,k+\tau(t)-1\}$

penetration-t

The attacker plays enter(t) at turn k and the patroller does not visit t in that interval

Utility Functions

C Outcome x

Defender

$$u_d(x) = \begin{cases} \sum_{i \in T} v_d(i) & x = \text{intruder-capture or no-attack} \\ \sum_{i \in T \setminus \{t\}} v_d(i) & x = \text{penetration-}t \end{cases}$$

Attacker

$$u_a(x) = egin{cases} 0 & x = \texttt{no-attack} \\ v_a(t) & x = \texttt{penetration-}t \\ -\epsilon & x = \texttt{intruder-capture} \end{cases}$$

where $\epsilon>0$ is a penalty

Patrolling Security Games

Strategies

Defender

 $\sigma_d \colon H \to \Delta_V$

Attacker

 $\sigma_{\mathbf{a}} \colon \mathcal{H} \to \Delta_{\mathcal{T} \cup \{\texttt{wait}\}}$

Computing defender's optimal strategy is tractable in several special cases.

References

- Basilico, Nicola, Nicola Gatti, and Francesco Amigoni. Patrolling Security Games: Definition and Algorithms for Solving Large Instances with Single Patroller and Single Intruder. Artificial Intelligence 184-185: 78–123, 2012.
- Robin, Cyril, and Simon Lacroix. Multi-Robot Target Detection and Tracking: Taxonomy and Survey. *Autonomous Robots* 40 (4): 729–60, 2016.