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Patrolling in Mobile Robotics

To patrol is to keep watch over an area

by regularly walking or travelling around it.

• The mobile surveillance of an area in order

• to detect an adversary and
• to give some guarantees of doing so

• The agents are called the patroller (defender) and the intruder (attacker)
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Classification of Patrolling Models

Area representation

1 graph

• open perimeter
• closed perimeter
• fully connected

2 geometric

• lines
• polygons

Number of patrollers

1 single agent

2 multiple agents

Objective function

1 non-adversarial

• maximize repeated coverage
• maximize worst idleness

2 adversarial

• the environment with targets of different values
• a rational attacker tries to intrude into the targets
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Lecture Goals/Outline

To understand how

 how a simple patrollling problem can be modeled with

game-theoretic tools and

 that revealing patroller’s mixed strategy might not

be a disadvantage.

1 Motivation: Patrolling on a digraph with targets

2 Beyond zero-sum games: Various game forms and equilibria

3 Patrolling Security Games
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Motivation: Patrolling on a Digraph



Example of the Environment  Labelled digraph

1 2

3 45

6 7

• Vertices represent the locations of the area

• Target vertices have values for the defender and the attacker

• The defender walks along the arcs to locate the attacker
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General Model of the Environment

G = (V, E, T, vd, va, τ)

• (V, E) is a directed graph

• T ⊆ V is a nonempty set of targets

• vd : T → R+ is the value for the defender in case of successful protection

• va : T → R+ is the value for the attacker in case of successful intrusion

• τ : T → N+ represents the time the attacker needs to spend on t for getting va(t)
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Example

1 2

3 45

6 7

• V = {1, . . . , 7}
• T = {2, 7} with vd(2) = 40, vd(7) = 60 and va(2) = va(7) = 50

• τ(2) = 3 and τ(7) = 2
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The Patrolling Setting  Adding the agents

Defender

• moves along G spending one turn to

cover one arc

• can sense only the area

corresponding to the current vertex

• captures the attacker it they are at

the same target t

Attacker

• can wait indefinitely outside

the environment

• observes the past defender’s actions

• attacks a target t by visiting it

• has to stay τ(t) turns in target t
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The Patrolling Setting  Questions

• How to represent the turns/moves of agents?

• How to define the utility function of each agent?

• How to express the knowledge of attacker about defender’s strategy?

We need to look beyond two-person zero-sum games.
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Game Forms and Equilibria



Two-Player Zero-Sum Game  Simultaneousmoves, the utility version

1 Players are the defender and the attacker

2 Strategy sets are M and N

3 The matrix U = [uij]i∈M, j∈N of utilities for the defender

However, the players may act sequentially with the defender revealing the strategy:

1 The defender commits to maxmin strategy x̄
2 The attacker plays minmax strategy ȳ

The outcome is x̄ᵀUȳ = the value of the game
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General-Sum Game  Simultaneousmoves, the utility version

1 Players are the defender and the attacker

2 Strategy sets are M and N

3 The utility matrices Ud = [udij ]i∈M, j∈N and Ua = [uaij ]i∈M, j∈N

When agents use mixed strategies x and y, the expected utilities are

xᵀUdy and xᵀUay

Which strategies will utility-maximizing agents seek?
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Nash Equilibrium  Nash, 1951

A Nash equilibrium is a pair of mixed strategies (x̄, ȳ) such that

x̄ᵀUdȳ ≥ xᵀUdȳ and x̄ᵀUaȳ ≥ x̄ᵀUay ∀x ∈ ∆M,∀y ∈ ∆N

 Every general-sum game has at least one NE

 Computing NE is a notoriously difficult problem
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Example  3× 3 bimatrix game

Defender

Attacker

1 2 3
1 6, 2 0, 6 4, 4
2 2, 12 4, 3 2, 5
3 0, 6 10, 0 2, 2
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Example  3× 3 bimatrix game

1 2 3
1 6, 2 0, 6 4, 4
2 2, 12 4, 3 2, 5
3 0, 6 10, 0 2, 2

 The second row strategy is strictly dominated by 1
2(e1 + e3)

 So we can omit it from the defender’s pure strategies

1 2 3
1 6, 2 0, 6 4, 4
3 0, 6 10, 0 2, 2
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Example  3× 3 bimatrix game

1 2 3
1 6, 2 0, 6 4, 4
3 0, 6 10, 0 2, 2

 The third column strategy is also strictly dominated

 So we can omit it from the attacker’s pure strategies

1 2
1 6, 2 0, 6
3 0, 6 10, 0

x̄ = (35 ,
2
5)

ȳ = (58 ,
3
8)

utilities (154 ,
18
5 )
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Nash Equilibrium: Properties  For general-sum games

In contrast to zero-sum games:

 Computing NE is PPAD-complete

 Equilibrium points may have different values

 It may not be clear which equilibrium will a rational player select

 Revealing the used equilibrium strategy may reduce the player’s payoff

1 2
1 0, 0 2, 1
2 3, 2 1, 2

Equilibria: (1, 2) and (2, 1)
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Stackelberg Game  Sequential moves

1 Players are the defender and the attacker

2 Strategy sets are M and N

3 The utility matrices Ud = [udij ]i∈M, j∈N and Ua = [uaij ]i∈M, j∈N

• The defender commits to x ∈ ∆M

• The attacker plays a pure strategy ej maximizing xᵀUaej

• Typically there are more such best responses j ∈ BR(x)

The defender wants to maximize xᵀUdej, but which j should be considered?
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Optimal Strategy of Defender  aka Strong Stackelberg equilibrium

We assume that the attacker picks the best action for the defender.

An optimal strategy of defender is a mixed strategy x̄ ∈ ∆M such that

max
j∈BR(x̄)

x̄ᵀUdej = max
x∈∆M

max
j∈BR(x)

xᵀUdej
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Optimal Strategy of Defender  Example

1 2
1 2, 1 4, 0
2 1, 0 3, 1

x1
0 1

2
1

1

2

BR(x)

x1
0 1

2
1

3

max
j∈BR(x)

xᵀUdej

• The optimal strategy of defender is x̄ = (12 ,
1
2) and payoff 3.5

• The best response of attacker is j = 1 or j = 2 with equal payoffs 0.5
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How to Find the Optimal Strategy?  Conitzer, Sandholm (2006)

1 For every attacker’s strategy j ∈ N, solve this LPj :

Maximize xᵀUdej

subject to x ∈ ∆M

 xᵀUaej ≥ xᵀUaej′ ∀j′ ∈ N

2 The optimal strategy x̄ is the optimal solution of LPj with the maximal value

Game Forms and Equilibria 22



The Worst-Case Optimality  aka Weak Stackelberg equilibrium

Let’s assume now that the attacker picks the worst action for the defender.

1 2
1 2, 1 4, 0
2 1, 0 3, 1

x1
0 1

2
1

1

2

BR(x)

x1
0 1

2
1

3

min
j∈BR(x)

xᵀUdej

• The function on the right has no maximum

 So the optimal defender’s strategy in this sense fails to exist!
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Stackelberg vs. Nash  Comparison of solution concepts

1 2
1 2, 1 4, 0
2 1, 0 3, 1

x1
0 1

2
1

3

max
j∈BR(x)

xᵀUdej
Stackelberg

x̄ = (12 ,
1
2) with payoff 3.5

Nash

x̄ = (1, 0) with payoff 2

In fact, the optimal payoff of defender in the Stackelberg game is always≥
the optimal payoff in any Nash equilibrium.
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Extensive-Form Games  The most general game representation

d

a

(0, 4)

1

(2, 1)

2

1
a

(1, 2)

1
d

(3, 8)

1

(8, 0)

2

2

2

• Moves are explicitly modeled

• Actions are represented by branching

• Outcomes are at the leaves

 Strategies depend on the history

 The history of past actions may not be

observable by the other player
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Patrolling Security Games



Patrolling Security Game  The environment G = (V, E, T, vd, va, τ)

A two-player multi-stage game with imperfect information and infinite horizon:

• The agents act simultaneously in each move

• The game ends when a single target is captured or no attack is carried out

• The attacker can derive the defender’s strategy from observing past actions

We need to define actions, outcomes, and utility functions.
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Actions  At turn k of the game

Defender

1 move(i) means that the defender visits

adjacent vertex i ∈ V at turn k + 1 and
checks it for the intruder’s presence

Attacker

1 wait means that the attacker makes

no attempt at intrusion

2 enter(t) represents the intrusion into

target t ∈ T and blocks the attacker

for the next τ(t)moves
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Outcomes of the Game

no-attack
The attacker plays wait at every turn k

intruder-capture
The attacker plays enter(t) at turn k and the patroller visits t in the interval

{k, . . . , k + τ(t)− 1}

penetration-t
The attacker plays enter(t) at turn k and the patroller does not visit t in that interval
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Utility Functions  Outcome x

Defender

ud(x) =


∑
i∈T

vd(i) x = intruder-capture or no-attack∑
i∈T\{t}

vd(i) x = penetration-t

Attacker

ua(x) =


0 x = no-attack
va(t) x = penetration-t
−ε x = intruder-capture

where ε > 0 is a penalty

Patrolling Security Games 30



Strategies  Let H denote the set of all histories

of defender’s actions

Defender

σd : H → ∆V

Attacker

σa : H → ∆T∪{wait}

Computing defender’s optimal strategy is tractable in several special cases.
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