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Overview of the Lecture

� Part 1 – Curvature-Constrained Data Collection Planning

Dubins Vehicle and Dubins Planning

Dubins Touring Problem (DTP)

Dubins Traveling Salesman Problem

Dubins Traveling Salesman Problem with Neighborhoods

Dubins Orienteering Problem

Dubins Orienteering Problem with Neighborhoods

Planning in 3D – Examples and Motivations
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

Part I

Part 1 – Curvature-Constrained Data Collection
Planning
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Motivation – Surveillance Missions with Aerial Vehicles
� Provide curvature-constrained path to collect the most valuable measurements with shortest

possible path/time or under limited travel budget.

� Formulated as routing problems with Dubins vehicle
� Dubins Traveling Salesman Problem with Neighborhoods
� Dubins Orienteering Problem with Neighborhoods
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Dubins Vehicle
� Non-holonomic vehicle such as car-like or aircraft can be modeled as the Dubins vehicle:

� Constant forward velocity;
� Limited minimal turning radius ρ;
� Vehicle state is represented by a triplet q = (x , y , θ), where
� Position is (x , y) ∈ R2, vehicle heading is θ ∈ S2, and thus q ∈ SE (2).

The vehicle motion can be described by the
equation
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Optimal Maneuvers for Dubins Vehicle

� For two states q1 ∈ SE (2) and q2 ∈ SE (2) in the environment without obstacles
W = R2, the optimal path connecting q1 with q2 can be characterized as one of two
main types

� CCC type: LRL, RLR;
� CSC type: LSL, LSR, RSL, RSR;

where S – straight line arc, C – circular arc oriented to left (L) or right (R).
L. E. Dubins (1957) – American Journal of Mathematics

� The optimal paths are called Dubins maneuvers.
� Constant velocity: v(t) = v and turning radius ρ.
� Six types of trajectories connecting any configuration in SE (2). (Without obstacles)
� The control u is according to C and S type one of three possible values u ∈ {−1, 0, 1}.
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Parametrization of Dubins Maneuvers
� Parametrization of each trajectory phase:

{LαRβLγ , RαLβRγ , LαSdLγ , LαSdRγ , RαSdLγ , RαSdRγ}

for α ∈ [0, 2π), β ∈ (π, 2π), d ≥0. Notice the prescribed orientation at q0 and qf .
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Multi-goal Dubins Path
� Minimal turning radius ρ and constant forward velocity v .
� State of the Dubins vehicle is q = (x , y , θ), q ∈ SE (2),

(x , y) ∈ R2 and θ ∈ S1.
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Smooth Dubins path connecting a sequence of locations is also suitable for multi-
rotor aerial vehicle.

� Optimal path connecting q1 ∈ SE (2) and q2 ∈ SE (2) consists only of straight line arcs and
arcs with the maximal curvature, i.e., two types of maneuvers CCC and CSC and the solution
can be found analytically. (Dubins, 1957)

� In multi-goal Dubins path planning, we need to solve the underlying TSP.
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Difficulty of Dubins Vehicle in the Solution of the TSP
� For the minimal turning radius ρ, the optimal path connecting

q1 ∈ SE (2) and q2 ∈ SE (2) can be found analytically.
L. E. Dubins (1957) – American Journal of Mathematics

� Two types of optimal Dubins maneuvers: CSC and CCC.
� The length of the optimal maneuver L has a closed-form solution.

Can be computed in less than 0.5µs
� It is piecewise-continuous function;
� (continuous for ‖(p1, p2)‖ > 4ρ).
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d
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Dubins Traveling Salesman Problem (DTSP)
� Determine (closed) shortest Dubins path visiting each pi ∈ R2

of the given set of n locations P = {p1, . . . ,pn}.
1. Permutation Σ = (σ1, . . . , σn) of visits (sequencing).

Combinatorial optimization
2. Headings Θ = {θσ1 , θσ2 , . . . , θσn}, θi ∈ [0, 2π), for pσi ∈ P.

Continuous optimization
� DTSP is an optimization problem over all possible sequences

Σ and headings Θ at the states (qσ1
,qσ2

, . . . ,qσn
) such that

qσi
= (pσi

, θσi ), pσi
∈ P

minimize Σ,Θ

n−1∑

i=1

L(qσi
,qσi+1

) + L(qσn
,qσ1

)

subject to q i = (pi , θi ) i = 1, . . . , n,

where

L(qσi
,qσj

) is the length of Dubins path between qσi

and qσj
.

The continuous domain of the heading angles is simular to the regions in the TSPN-like problem formulations.
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Challenges of the Dubins Traveling Salesman Problem

� The key difficulty of the DTSP is that the path length
mutually depends on

� Order of the visits to the locations;
� Headings at the target locations.

We need the sequence to determine headings, but headings may
influence the sequence.

� The Dubins TSP is sequence dependent problem.
� Two fundamental approaches can be found in literature.

1. Decoupled approach based on a given sequence of the locations, e.g., found by a solution of
the Euclidean TSP.

2. Sampling-based approach with sampling of the headings at the locations into discrete sets of
values and considering the problem as the variant of the Generalized TSP.

Besides, further approaches are
� Genetic and memetic techniques (evolutionary algorithms);
� Unsupervised learning based approaches.
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Existing Approaches to the DTSP(N)
� Heuristic (decoupled & evolutionary) approaches

� Savla et al., 2005
� Ma and Castanon, 2006
� Macharet et al., 2011
� Macharet et al., 2012
� Ny et al., 2012
� Yu and Hang, 2012
� Macharet et al., 2013
� Zhant et al., 2014
� Macharet and Campost, 2014
� Váňa and Faigl, 2015
� Isaiah and Shima, 2015
� ...

� Sampling-based approaches
� Obermeyer, 2009
� Oberlin et al., 2010
� Macharet et al., 2016

� Convex optimization
� (Only if the locations are far enough)
� Goac et al., 2013

� Lower bound for the DTSP
� Dubins Interval Problem (DIP)
� Manyam et al., 2016

� DIP-based inform sampling
� Váňa and Faigl, 2017

� Lower bound for the DTSPN
� Using Generalized DIP (GDIP)
� Váňa and Faigl, 2018, 2020
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Planning with Dubins Vehicle – Summary
� The optimal path connecting two configurations can be found analytically.

E.g., for UAVs that usually operates in environment without obstacles.

� The Dubins maneuvers can also be used in randomized-sampling based motion planners, such
as RRT, in the control based sampling.

� Dubins vehicle model can be considered in the multi-goal path planning such as surveillance,
inspection or monitoring missions to periodically visits given target locations (areas).

� Dubins Touring Problem (DTP)
Given a sequence of locations, what is the shortest path visting the locations, i.e., what are the
headings of the vehicle at the locations.

� Dubins Traveling Salesman Problem (DTSP)
Given a set of locations, what is the shortest Dubins path that visits each location exactly once and
returns to the origin location.

� Dubins Orienteering Problem (DOP)
Given a set of locations, each with associated reward, what is the Dubins path visiting the most
rewarding locations and not exceeding the given travel budget.

Jan Faigl, 2021 B4M36UIR – Lecture 07: Data Collection with Dubins Vehicles 14 / 70

Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

Dubins Touring Problem – DTP

� For a sequence of the n waypoint locations P = (p1, . . . pn), pi ∈ R2, the Dubins Touring
Problem (DTP) stands to determine the optimal headings T = {θ1, . . . , θn} at the waypoints
qi such that

minimize T L(T ,P) =
n−1∑

i=1

L(qi , qi+1) + L(qn, q1)

subject to qi = (pi , θi ), θi ∈ [0, 2π), pi ∈ P,

where L(qi , qj) is the length of the Dubins maneuver connecting qi with qj .
� The DTP is a continuous optimization problem.
� The term L(qn, q1) is for possibly closed tour that can be for example requested in the TSP

with Dubins vehicle, a.k.a. DTSP.
On the other, the DTP can also be utilized for open paths such as solutions of the OP with Dubins vehicle.

� In some cases, it may be suitable to relax the heading at the first/last locations in finding closed
tours (i.e., solving DTSP).
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Sampling-based Solution of the DTP
� For a closed sequence of the waypoint locations

P = (p1, . . . , pn).

� We can sample possible heading values at each location i
into a discrete set of k headings, i.e., Θi = {θi1, . . . , θik}
and create a graph of all possible Dubins maneuvers.
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� For a set of heading samples, the optimal solution can
be found by a forward search of the graph in O(nk3).
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For open sequence we do not need to evalute all pos-
sible initial headings, and the complexity is O(nk2).

� The problem is to determine the
most suitable heading samples.
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Example of Heading Sampling – Uniform vs. Informed
Uniform sampling
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N = 224, Tcpu = 128 ms
L = 19.8, LU = 13.8

Informed sampling
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N = 128, Tcpu = 76 ms
L = 14.4, LU = 14.2.

� N is the total number of samples, i.e., 32 samples per waypoint for uniform sampling.
� L is the length of the tour (blue) and LU is the lower bound (red) determined as a solution of

the Dubins Interval Problem (DIP).
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Dubins Interval Problem (DIP)
� Dubins Interval Problem (DIP) is a generalization of Dubins maneuvers to the shortest path

connecting two points pi and pj .
� In the DIP, the leaving interval Θi at pi and the arrival interval Θj at pj are consider (not a

single heading value).
� The optimal solution can be found analytically. Manyam et al. (2015)

RSR maneuver

� Solution of the DIP is a tight lower bound for the DTP.
� Solution of the DIP is not a feasible solution of the DTP.

Notice, for Θi = Θj = 〈0, 2π) the optimal maneuver for DIP is a straight line segment.
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Lower Bound of the DTP

� For a discrete set of heading intervals H = {H1, . . . ,Hn}, where
Hi = {Θ1

i ,Θ
2
i , . . . ,Θ

ki
i }, a similar graph as for the DTP can be

constructed with the edge cost determined by the solution of the
associated DIP.
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for all combinations

� The forward search of the graph with dense samples provides a
tight lower bound of the DTP. Manyam and Rathinam, 2015
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Lower Bound and Feasible Solution of the DTP

� The arrival and departure angles may not be the same.
The lower bound solution is not a feasible solution of the DTP.

Feasible path

Lower bound

� DTP solution – use any particular heading of each interval in the lower bound solution.
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The DIP-based Sampling of Headings in the DTP
� Using heading intervals for a sequence of waypoints and a solution of the DIP, we can determine

lower bound of the DTP using the forward search graph as for the DTP.
� The ratio between the lower bound and feasible solution of the DTP provides an estimation of

the solution quality.
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Iteratively-Refined Informed Sampling (IRIS) of Headings in the Solution of
the DTP

� Iterative refinement of the heading intervals H
up to the angular resolution εreq.

� The angular resolution is gradually decreased
for the most promising intervals.

� refineDTP – divide the intervals of the lower
bound solution.

� solveDTP – solve DTP using the heading from
the refined intervals.

� It simultaneously provides feasible and lower
bound solutions of the DTP.

The lower bound provides a tight estimation of the
solution quality.

� The first solution is provided very quickly – any-time algorithm.

Algorithm 1: Iterative Informed Sampling-based DTP Algorithm
Input: P – Target locations to be visited
Input: εreq – Requested angular resolution
Input: αreq – Requested quality of the solution
Output: T – A tour visiting the targets
ε← 2π // initial angular resolution;
H ← createIntervals(P, ε) // initial intervals;
LL ← 0 // init lower bound;
LU ←∞ // init upper bound;
while ε > εreq and LU/LL > αreq do

ε← ε/2;
(H,LL)← refineDTP(P, ε,H);
(T ,LU)← solveDTP(P,H);

end
return T ;

Faigl, J., Váňa, P., Saska, M., Báča, T., and
Spurný, V.: On solution of the Dubins touring
problem, ECMR, 2017.
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Uniform vs Informed Sampling

ε = 2π/4, N = 28, TCPU= 8 ms
L = 27.9, LU = 13.2

ε = 2π/8, N = 56, TCPU= 16 ms
L = 20.8, LU = 13.2

ε = 2π/16, N = 112, TCPU= 40 ms
L = 20.3, LU = 13.5

ε = 2π/32, N = 224, TCPU= 140 ms
L = 19.8, LU = 13.8

ε = 2π/64, N = 448, TCPU= 456 ms
L = 14.5, LU = 14.5

ε = 2π/128, N = 896, TCPU= 1620 ms
L = 14.5, LU = 14.5

ε = 2π/256, N = 1792, TCPU= 6784 ms
L = 14.4, LU = 14.3

ε = 2π/4, N = 21, TCPU= 8 ms
L = 29.9, LU = 13.2

ε = 2π/8, N = 28, TCPU= 20 ms
L = 21.0, LU = 13.2

ε = 2π/16, N = 35, TCPU= 24 ms
L = 20.1, LU = 13.5

ε = 2π/32, N = 44, TCPU= 32 ms
L = 19.9, LU = 13.8

ε = 2π/64, N = 51, TCPU= 48 ms
L = 19.9, LU = 13.9

ε = 2π/128, N = 70, TCPU= 60 ms
L = 14.8, LU = 14.1

ε = 2π/256, N = 100, TCPU= 88 ms
L = 14.4, LU = 14.3
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Results and Comparison with Uniform Sampling
� Random instances of the DTSP with a sequence of visits to the targets determined as a solution

of the Euclidean TSP.
� The waypoints placed in a squared bounding box with the side s = (ρ

√
n)/d for the ρ = 1 and

density d = 0.5. It matters on the density of targets!

Quality of solution for increasing n

1.0001

1.0010

1.0100

1.1000

2.0000

0.01 0.1 1 10 100

Computational time [s]

Q
u
a
lit

y
 o

f 
th

e
 s

o
lu

ti
o
n
 -

 α n
100
70
50
20
10

Comparision with the uniform sampling

1.0001

1.0010

1.0100

1.1000

2.0000

0.01 0.1 1 10 100

Computational time [s]

Q
u
a
lit

y
 o

f 
th

e
 s

o
lu

ti
o
n
 -

 α Uniform
Informed

� The informed sampling-based approach provides solutions up to 0.01% from the optima.
� A solution of the DTP is a fundamental bulding block for routing problems with Dubins vehicle.
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Dubins Traveling Salesman Problem (DTSP)
1. Determine a closed shortest Dubins path visiting each location

pi ∈ P of the given set of n locations P = {p1, . . . , pn},
pi ∈ R2.

2. Permutation Σ = (σ1, . . . , σn) of visits.
Sequencing part of the problem

3. Headings Θ = {θσ1 , θσ2 , . . . , θσn} for pσi ∈ P.
Continuous optimization

� DTSP is an optimization problem over all possible permutations Σ and headings Θ in the
states (qσ1 , qσ2 , . . . , qσn) such that qσi = (pσi , θσi )

minimize Σ,Θ

n−1∑

i=1

L(qσi , qσi+1) + L(qσn , qσ1)

subject to qi = (pi , θi ) i = 1, . . . , n,

where L(qσi , qσj ) is the length of Dubins path between qσi and qσj .
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Decoupled Solution of the DTSP – Alternating Algorithm

Alternating Algorithm (AA) provides a solution of the DTSP for an even number of
targets n. Savla, K., Frazzoli, E., Bullo, F.: On the point-to-point and traveling salesperson problems for Dubins’vehicle,

IEE American Control Conference, 2005.

1. Solve the related Euclidean TSP.
Relaxed motion constraints

2. Establish headings for even edges us-
ing straight line segments.

3. Determine optimal maneuvers for odd
edges using the analytical form for
Dubins maneuvers.

Headings are known.
Solution of the ETSP
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Courtesy of P. Váňa
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DTSP with the Given Sequence of the Visits to the Targets

� If the sequence of the visits Σ to the target locations is given.
� the problem is to determine the optimal heading at each location.
� and the problem becomes the Dubins Touring Problem (DTP).

� Let for each location gi ∈ G sample possible heading to k values, i.e., for each gi the
set of headings be hi = {θ11, . . . , θk1}.

� Since Σ is given, we can construct a graph connecting two consecutive locations in the
sequence by all possible headings.

� For such a graph and particular headings {h1, . . . , hn}, we can find an optimal
headings and thus, the optimal solution of the DTP.
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DTSP as a Solution of the DTP
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The first layer is duplicated layer to support the forward search method

� The edge cost corresponds to the length of Dubins maneuver.
� Better solution of the DTP can be found for more samples, which will also improve the DTSP

but only for the given sequence.
Two questions arise for a practical solution of the DTP.

� How to sample the headings? More samples makes finding solution more demanding.
We need to sample the headings in a “smart” way, i.e., guided sampling using lower bound of the DTP?

� What is the solution quality? Is there a tight lower bound?
Yes, the lower bound can be computed as a solution of the Dubins Interval Problem (DIP).
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DTP Solver in Solution of the DTSP
� The solution of the DTP can be used to solve DTSP for the given sequence of the waypoints.

E.g., determined as a solution of the Euclidean TSP as in the Alternating Algorithm.

� Comparision with the Alternating Algorithm (AA), Local Iterative Optimization (LIO), and
Memetic algorithm.

AA – Savla et al., 2005, LIO – Váňa & Faigl, 2015, Memetic – Zhang et al. 2014
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DTSP – Sampling-based Approach

� Sampled heading values can be directly utilized to find the sequence as a solution of the
Generalized Traveling Salesman Problem (GTSP).

Notice For Dubins vehicle, it is the Generalized Asymmetric TSP (GATSP).

The problem is to determine a shortest tour in a graph that visits all specified subsets
of the graph’s vertices.

The TSP is a special case of the GTSP when each subset to be visited consists just a single vertex.

� GATSP → ATSP;
Noon and Bean (1991)

� ATSP can be solved by LKH;
� ATSP → TSP, which can be solved opti-

mally, e.g., by Concorde.
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DTSP – Evolutionary Approach with Surrogate Model
� Use standard genetic operators with tournament selection and OX1 crossover method.
� The population is evaluated using learned surrogate model based on multi-layer perceptron.
� The surrogate model estimates solution cost of candidate sequences (instances of the DTP).
� Massive speedup of the evaluation yields improved solutions and scalability.
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Drchal, J., Váňa, P., and Faigl, J.: WiSM: Windowing Surrogate Model for Evaluation of Curvature-Constrained Tours with
Dubins vehicle, IEEE Transactions on Cybernetics, 2020.
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Dubins Traveling Salesman Problem with Neighborhoods
� In surveillance planning, it may be required to visit a set of target regions G = {R1, . . . ,Rn}

by the Dubins vehicle.
� Then, for each target region Ri , we have to determine a particular point of the visit pi ∈ Ri and

DTSP becomes the Dubins Traveling Salesman Problem with Neighborhoods (DTSPN).
In addition to Σ and headings Θ, waypoint locations P have to be determined.

� DTSPN is an optimization problem over all permutations Σ, headings Θ = {θσ1 , . . . , θσn} and
points P = (pσ1 , . . . , pσn) for the states (qσ1 , . . . , qσn) such that qσi = (pσi , θσi ) and pσi ∈ Rσi :

minimizeΣ,Θ,P

n−1∑

i=1

L(qσi , qσi+1) + L(qσn , qσ1)

subject to qi = (pi , θi ), pi ∈ Ri i = 1, . . . , n.

� L(qσi , qσj ) is the length of the shortest possible Dubins maneuver connecting the
states qσi and qσj .
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DTSPN – Approches and Examples of Solution
� Similarly to the DTSP, also the DTSPN can be addressed by

� Decoupled approaches for which a sequence of visits to the regions can be found as a
solution of the ETSP(N);

� Sampling-based approaches and formulation as the GATSP.
� Clusters of sampled waypoint locations each with sampled possible heading values.

� Soft-computing techniques such as memetic algorithms.
� Unsupervised learning techniques.

Váňa and Faigl (IROS 2015), Faigl and Váňa (ICANN 2016, IJCNN 2017)

� Similarly to the lower bound of the DTSP based on the Dubins Interval Problem (DIP) a
lower bound for the DTSPN can be computed using the Generalized DIP (GDIP).
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DTSPN – Decoupled Approach
1. Determine a sequence of visits to the n target regions as the solution of the ETSP.
2. Sample possible waypoint locations and for each such a location sample possible heading values, e.g., s locations

per each region and h heading per each location.
3. Construct a search graph and determine a solution in O(n(sh)3).
4. An example of the search graph for n = 6, s = 6, and h = 6.
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Dubins Touring Region Problem (DTRP)
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DTSPN – Local Iterative Optimization (LIO)

� Instead of sampling into a discrete set of way-
point locations each with sampled possible
headings, we can perform local optimization,
e.g., hill-climbing technique.

� At each waypoint location pi , the heading can
be θi ∈ [0, 2π).

� A waypoint location pi can be parametrized as
a point on the bounday of the respective region
Ri , i.e., as a parameter α ∈ [0, 1) measuring a
normalized distance on the boundary of Ri .

� The multi-variable optimization is treated inde-
pendenly for each particular variable θi and αi

iteratively.

Algorithm 2: Local Iterative Optimization (LIO) for the
DTSPN
Data: Input sequence of the goal regions

G = (Rσ1 , . . . ,Rσn), for the permutation Σ
Result: Waypoints (qσ1 , . . . , qn), qi = (pi , θi ),

pi ∈ δRi

initialization() // random assignment of qi ∈ δRi ;
while global solution is improving do

for every Ri ∈ G do
θi := optimizeHeadingLocally(θi );
αi := optimizePositionLocally(αi );
qi := checkLocalMinima(αi , θi );

end
end

Váňa, P. and Faigl, J.: On the Dubins Traveling Salesman Problem with Neighborhoods, IROS, 2015, pp. 4029–4034.
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Lower Bound for the DTSP with Neighborhoods
Generalized Dubins Interval Problem

� In the DTSPN, we need to determine the headings and also the waypoint locations.
� The Dubins Interval Problem (DIP) is not sufficient to provide tight lower-bound.

� Generalized Dubins Interval Problem (GDIP) can be utilized for the DTSPN similarly as
the DIP for the DTSP.

Váňa and Faigl: Optimal Solution of the Generalized Dubins Interval Problem, RSS 2018,
best student paper finalist.
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Generalized Dubins Interval Problem (GDIP)
� Determine the shortest Dubins maneuver connecting Pi and Pj given the angle intervals θi ∈

[θmin
i , θmax

i ] and θj ∈ [θmin
j , θmax

j ].
Full problem (GDIP)

RSR maneuver

⇒

One-side version (OS-GDIP)

RSR maneuver

� Optimal solution – Closed-form expressions for (1–6) and convex optimization (7).

1) S type 2) CS type 3) Cψ type

7) CCψ type

4) CSC type 5) CSC type 6) CCψC type

Average computational time

Problem Time [µs] Ratio

Dubins maneuver 0.4 1.0
DIP 1.1 3.0
GDIP 5.4 14.5

https://github.com/comrob/gdip

Váňa, P. and Faigl, J.: Optimal Solution of the Generalized Dubins Interval Problem Finding the Shortest
Curvature-constrained Path Through a Set of Regions, Autonomous Robots, 44(7):1359-1376, 2020.
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GDIP-based Informed Sampling for the DTSPN
� Iterative refinement of the neighborhood samples and heading samples.
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GDIP-based Informed Sampling for the DTSPN
� Iterative refinement of the neighborhood samples and heading samples.
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GDIP-based Informed Sampling for the DTSPN
� Iterative refinement of the neighborhood samples and heading samples.
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GDIP-based Informed Sampling for the DTSPN
� Iterative refinement of the neighborhood samples and heading samples.
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GDIP-based Informed Sampling for the DTSPN
� Iterative refinement of the neighborhood samples and heading samples.
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GDIP-based Informed Sampling for the DTSPN
� Iterative refinement of the neighborhood samples and heading samples.
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GDIP-based Informed Sampling for the DTSPN
� Iterative refinement of the neighborhood samples and heading samples.
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DTSPN – Convergence to the Optimal Solution
� For a given sequence of visits to the target regions (locations).
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� The algorithm scales linearly with the number of locations.
� Complexity of the algorithm is approximately O(nk1.8).

https://github.com/comrob/gdip
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Data Collection / Surveillance Planning with Travel Budget
� Visit the most important targets because of limited travel budget.
� The problem can be formulated as the Orienteering Problem with Dubins vehicle, a.k.a.

Dubins Orienteering Problem (DOP). Robert Pěnička, Jan Faigl, Petr Váňa and Martin Saska, RA-L 2017

http://mrs.felk.cvut.cz/icra17dop
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Dubins Orienteering Problem
� Curvature-constrained data collection path respecting Dubins vehicle model with the minimal

turning radius ρ and constant forward velocity v .
� The path is a sequence of waypoints qi ∈ SE (2), q = (s, θ), θ ∈ S1.

� In addition to Sk , k ,Σ (OP) determine headings
Θ = (θσ1 , . . . , θσk ) such that

maximizek,Sk ,Σ R =
k∑

i=1

rσi

subject to
k∑

i=2

L(qσi−1 , qσi ) ≤ Tmax,

qσi = (sσi , θσi ), sσi ∈ S , θσi ∈ S1

sσ1 = s1, sσk
= sn

.

The problem combines discrete combinatorial optimization (OP) with the continuous
optimization for determining the vehicle headings.
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Variable Neighborhood Search (VNS)

� Variable Neighborhood Search (VNS) is a general metaheuristic for combinatorial
optimization (routing problems).

Hansen, P. and Mladenović, N. (2001): Variable neighborhood search: Principles and applications. European
Journal of Operational Research.

� The VNS is based on shake and local search procedures.
� Shake procedure aims to escape from local optima by changing the solution within the

neighborhoods N1,...,kmax . The neighborhoods are particular operators.

� Local search procedure searches fully specific neighborhoods of the solution using lmax

predefined operators.
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Variable Neighborhood Search (VNS) for the DOP
� The solution is the first k locations of the sequence of all target locations satisfying Tmax.

Sevkli Z., Sevilgen F.E.: Variable Neighborhood Search for the Orienteering Problem, SCIS, 2006.

� It is an improving heuristics, i.e., an initial solution has to be
provided.

� A set of predefined neighborhoods are explored to find a better
solution.

� Shake – explores the configuration space and escape from a
local minima using

� Insert – moves one random element;
� Exchange – exchanges two random elements.

� Local Search – optimizes the solution using
� Path insert – moves a random sub-sequence;
� Path exchange – exchanges two random sub-sequences.

� Randomized VNS – examines only n2 changes in the Local
Search procedure in each iteration.

S1 S6 S4 S2 S5 S3 S7 S10

Insert

S1 S6 S4 S2 S5 S3 S7 S10

Exchange

S1 S5 S3 S6 S4 S7 S2 S10

Path insert

S1 S3 S2 S5 S6 S4 S7 S10

Path exchange

Jan Faigl, 2021 B4M36UIR – Lecture 07: Data Collection with Dubins Vehicles 53 / 70



Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

Evolution of the VNS Solution to the DOP

Initial solution 4710th iteration
(4th improvement)

4790th iteration
(12th improvement)

5560th iteration
(16th improvement)

TCPU = 10.9 s,
L = 79.6, R = 960

TCPU = 144.8 s,
L = 79.7, R = 990

TCPU = 147.3 s,
L = 79.3, R = 1008

TCPU = 170.0 s,
L = 79.1, R = 1050
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Possible Solutions of the Dubins Orienteering Problem
1. Solve the Euclidean OP (EOP) and then determine Dubins path.

The final path may exceed the budget and the vehicle can miss the locations because of motion control.

2. Directly solve the Dubins Orienteering Problem (DOP) such as
� Sample possible heading values and use Variable Neighborhood Search (VNS);

Pěnička, R., Faigl, J., Váňa, P., and Saska, M.: Dubins Orienteering Problem, IEEE Robotics and Automation
Letters, 2(2):1210–1217, 2017.

� Unsupervised learning based on Self-Organizing Maps (SOM);
Faigl, J.: Self-organizing map for orienteering problem with dubins vehicle, Advances in Self-Organizing Maps,
Learning Vector Quantization, Clustering and Data Visualization, 2017, pp. 125–132.
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The VNS-based approach provides better solutions than the SOM-based solution, but it tends to be more demanding.
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Dubins Orienteering Problem with Neighborhoods
� Curvature-constrained path respecting Dubins vehicle model.
� Each waypoint consists of location p ∈ R2 and the heading θ ∈ S1.

� In addition to Sk , k ,Σ determine locations
Pk = (pσ1 , . . . , pσk ) and headings Θ = (θσ1 , . . . , θσk )
such that

maximizek,Sk ,Σ R =
k∑

i=1

rσi

subject to
k∑

i=2

L(qσi−1 , qσi ) ≤ Tmax,

qσi = (pσi , θσi ), pσi ∈ R2, θσi ∈ S1

||pσi , sσi || ≤ δ, sσi ∈ Sk

pσ1 = s1, pσk = sn

.

We need to solve the continuous optimization for determining the vehicle heading at each waypoint and the
waypoint locations Pk = {pσ1 , . . . , pσk }, pσi ∈ R2.
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Variable Neighborhoods Search (VNS) for the DOPN
Algorithm 3: VNS based method for the DOPN
Input : S – Set of the target locations
Input : Tmax – Maximal allowed budget
Input : o – Initial number of position waypoints for each target
Input : m – Initial number of heading values for each waypoints
Input : ri – Local waypoint improvement ratio
Input : lmax – Maximal neighborhood number
Output: P – Found data collecting path
Sr ← getReachableLocations(S , Tmax)
P ← createInitialPath(Sr , Tmax) // greedy
while Stopping condition is not met do

l ← 1
while l ≤ lmax do

P ′ ← shake(P, l)
P ′′ ← localSearch(P ′, l , ri )
if Ld(P ′′) ≤ Tmax and
[[R(P ′′) > R(P)] or [R(P ′′) == (P) and Ld(P ′′) < Ld(P)Ld(P ′′)]]
then

P ← P ′′

l ← 1
else

l ← l + 1
end

end
end

The particular l for the individual operators of
the shake procedure are:

� Waypoint Shake (l = 1);

� Path Move (l = 2);

� Path Exchange (l = 3).

The local search procedure consists of three op-
erators and the particular l for the individual op-
erators of the local search procedure are:

� Waypoint Improvement (l = 1);

� One Point Move (l = 2);

� One Point Exchange (l = 3).

Pěnička, R., Faigl, J., Saska, M., and Váňa, P.: Data collection
planning with non-zero sensing distance for a budget and curva-
ture constrained unmanned aerial vehicle, Autonomous Robots,
43(8):1937–1956, 2019.

Pěnička, R., Faigl, J., Váňa, P., and Saska, M.: Dubins Orienteering Problem with Neighborhoods,
International Conference on Unmanned Aircraft Systems (ICUAS), 2017, pp. 1555–1562.
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VNS for DOPN – Example of the Shake Operators
Path Move

s
1

 (start)

s
10

 (end)
s

2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

S1 S4 S3 S6 S9 S7 S2 S10

Path Exchange

s
1

 (start)

s
10

 (end)
s

2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

S1 S3 S2 S4 S6 S9 S7 S10

Jan Faigl, 2021 B4M36UIR – Lecture 07: Data Collection with Dubins Vehicles 59 / 70

Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

Comparision of the DOPN Solvers
� VNS-based DOPN solver with s = 16 sampled waypoint locations per sensor and h = 16

heading samples per waypoint location. Pěnička, Faigl, et al. (ICUAS 2017)

� SOM-based DOPN solver with h = 3. Faigl, Pěnička (IROS 2017)

� Aggregate results using average relative percentage error (ARPE) and relative percentage error
(RPE) to the reference (best found) solution.

Problem set
VNS-based SOM-based (h = 3)

ARPE Tcpu∗ [s] RPE ARPE Tcpu [s]

Set 3, δ = 0.0 1.0 1,178.9 3.6 7.4 7.0
Set 3, δ = 0.5 0.9 13,273.3 6.6 10.6 7.9
Set 3, δ = 1.0 0.5 13,304.4 5.5 9.2 8.3
Set 64, δ = 0.0 1.9 5,272.2 17.4 23.8 17.9
Set 64, δ = 0.5 2.8 13,595.6 18.7 24.2 20.2
Set 64, δ = 1.0 1.3 13,792.3 9.9 15.2 22.2
Set 66, δ = 0.0 1.5 6,546.6 3.6 9.1 22.9
Set 66, δ = 0.5 1.4 13,650.1 6.7 11.8 25.5
Set 66, δ = 1.0 3.2 13,824.5 16.1 21.3 26.7

*The results have been obtained with a grid Xeon CPUs running at
2.2 GHz to 3.4 GHz due to computational requirements.

ρ = 1.0, δ = 1.25, R = 1185
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DOPN – Example of Solution and Practical Deployment
� VNS-based solution of the DOPN.

Pěnička, R., Faigl, J., Váňa, P., and Saska, M.: Dubins Orienteering Problem with Neighborhoods,
International Conference on Unmanned Aircraft Systems (ICUAS), 2017, pp. 1555–1562.

http://mrs.felk.cvut.cz/jint17dopn
Jan Faigl, 2021 B4M36UIR – Lecture 07: Data Collection with Dubins Vehicles 61 / 70

Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

3D Data Collection Planning with Dubins Airplane Model
� Dubins Airplane model describes the vehicle state

q = (p, θ, ψ), p ∈ R3 and θ, ψ ∈ S1 as


ẋ
ẏ
ż

θ̇


 = v




cos θ · cos ψ
sin θ · cos ψ

sin ψ
uθ · ρ−1


 .

H. Chitsaz and S. M. LaValle: Time-optimal paths for a Dubins airplane,
IEEE Conference on Decision and Control, 2007, pp. 2379–2384.

� Constant forward velocity v , the minimal turn-
ing radius ρ, and limited pitch angle, i.e., ψ ∈
[ψmin, ψmax ].

� uθ controls the vehicle heading, |uθ| ≤ 1, and v is
the forward velocity.

� Generation of the 3D trajectory is based on the 2D
Dubins maneuver.

� If altitude changes are too high, additional helix segments are inserted.
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The DTSPN in 3D

� Using the same principles as for the DTSPN in 2D, we can
generalize the approaches for 3D planning using the Dubins
Airplane model instead of simple Dubins vehicle.

� The regions can be generalized to 3D and the problem can be
addressed by decoupled or sampling-based approaches, i.e.,
using GATSP formulation.

� In the case of LIO, we need a parametrization of the possible
waypoint location, such as point on the object boundary.

CCC maneuver

CSC maneuver

•ci
•pi

β

α •ci

•
pi

β

α •ci
•pi
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Jan Faigl, 2021 B4M36UIR – Lecture 07: Data Collection with Dubins Vehicles 64 / 70

Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

Solutions of the 3D-DTSPN
Algorithm 4: LIO-based Solver for 3D-DTSPN

Data: Regions R
Result: Solution represented by Q and Σ
Σ ← getInitialSequence(R);
Q ← getInitialSolution(R,Σ);
while terminal condition do
Q ← optimizeHeadings(Q,R,Σ);
Q ← optimizeAlpha(Q,R,Σ);
Q ← optimizeBeta(Q,R,Σ);

end
return Q,Σ;

� Solutions based on LIO (ETSP+LIO), TSP with the travel cost according to Dubins Airplane Model (DAM-TSP+LIO), and sampling-based
approach with transformation of the GTSP to the ATSP solved by LKH.
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Váňa, P., Faigl, J., Sláma, J., and Pěnička, R.: Data collection planning with Dubins airplane model and
limited travel budget European Conference on Mobile Robots (ECMR), 2017.
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3D Surveillance Planning
� Parametrization of smooth 3D multi-goal trajectory as a sequence of Bézier curves.
� Unsupervised learning for the TSPN can be generalized for such trajectories.
� During the solution of the sequencing part of the problem, we can determine a velocity profile along the curve

and compute the so-called Travel Time Estimation (TTE).
� Bézier curves better fit the limits of the multi-rotor UAVs that are limited by the maximal accelerations and

velocities rather than minimal turning radius as for Dubins vehicle.
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High altitude differences
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Faigl, J. and Váňa, P.: Surveillance Planning With Bézier Curves, IEEE Robotics and Automation Letters, 3(2):750–757, 2018.

� Low altitude differences saturate horizontal velocity while high altitudes changes saturate vertical velocity.
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Dubins Vehicle and Dubins Planning DTP DTSP DTSPN DOP DOPN Planning in 3D

Multi-Vehicle Multi-Goal Planning with Limited Travel Budget –

Curvature-Constrained Team Orienteering Problem (with Neighborhoods)
� Operational time of multi-rotor aerial vehi-

cles is limited and only a subset of locations
can be visited.

� Planning multi-goal trajectories as a se-
quence of Bézier curves.
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� Targets are missed in a case of colliding trajectories, because of local
collision avoidance and optimal trajectory following.

� There is a practical need to include coordination in multi-vehicle
multi-goal trajectory planning.
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Faigl, J., Váňa, P., and Pěnička, R.: Multi-Vehicle Close Enough Orienteering Problem with Bézier Curves
for Multi-Rotor Aerial Vehicles. ICRA 2019, pp. 3039–3044.
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Topics Discussed

Summary
� Data collection planning with curvature-constrained paths/trajectories

� The Traveling Salesman Problem (TSP) and Orienteering Problem (OP) with Dubins Vehicle, i.e.,
DTSP and DOP.

� It is a combination of the combinatorial and continuous (determining optimal headings) optimization.
� The continuous part can be solved using Dubins Touring Problem (DTP).
� Using a solution of the Dubins Interval Problem (DIP) we can establish tight lower bound of the DTP

and DTSP with a particular sequence of visits.
� The problems can be further extended to DTSP with Neighborhoods (DTSPN) and OP with Neigh-

borhoods (DOPN), and its Close Enough variants.

� The key ideas of the presented problems and approaches are as follows.
� Consider proper assumptions that fits the original problem being solved.

� Suitability of the vehicle model, requirements on the solution quality, and benefit of optimal or computationally demanding
solutions.

� Employing lower bound based on “a bit different problem” such as the DIP and GDIP, to find high quality
solutions, even using decoupled approaches.

� Challenging problems with continuous optimization can be addressed by decoupled and sampling-based
approaches.

� Be aware that the optimal solutions found for discretized problems, e.g., using ILP or combinatorial solvers, are not
optimal solutions of the original (continuous) problem!

Jan Faigl, 2021 B4M36UIR – Lecture 07: Data Collection with Dubins Vehicles 69 / 70

Topics Discussed

Topics Discussed
� Dubins vehicles and planning – Dubins maneuvers
� Dubins Interval Problem (DIP) (lower bound estimation to the DTP, DTSP)

� Dubins Touring Problem (DTP)
� Dubins Traveling Salesman Problem (DTSP) and Dubins Traveling Salesman with
Neighborhoods (DTSPN)

� Decoupled approaches – Alternating Algorithm
� Sampling-based approaches – GATSP

� Generalized Dubins Interval Problem (GDIP) (lower bound estimation to the DTSPN)

� Dubins Orienteering Problem (OP) and Dubins Orienteering Problem with
Neighborhoods (DOPN)

� Data collection and surveillance planning in 3D

� Next: Sampling-based motion planning
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