Robotic Paradigms and Control Architectures

Jan Faigl, Stefan Edelkamp

Department of Computer Science Faculty of Electrical Engineering Czech Technical University in Prague

Lecture 02

B4M36UIR - Artificial Intelligence in Robotics

■ Part 1 – Robotic Paradigms and Control Architectures

Robotics Paradigms

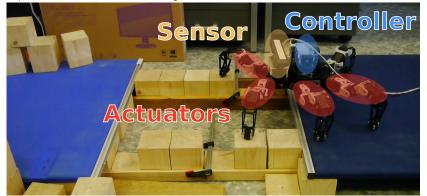
Hierarchical Paradigm

■ Example of Collision Avoidance

Reactive Paradigm

Hybrid Paradigm

Robot Control


Part I

Part 1 – Robotic Paradigms and Control Architectures

Robot

Overview of the Lecture

• A robot perceives an environment using sensors to control its actuators.

- The main parts of the robot correspond to the primitives of robotics: Sense, Plan, and Act.
- The primitives form a control architecture that is called robotic paradigm.

B4M36UIR - Lecture 02: Robotic Paradigms

Jan Faigl, Stefan Edelkamp, 2021

Robotic Paradigms

- Robotic paradigms define relationship between the robotics primitives: Sense, Plan, and Act.
- Three fundamental paradigms have been propose.
- 1. Hierarchical paradigm is purely deliberative system.

2. Reactive paradigm represents reactive control.

3. Hybrid paradigm combines reactive and deliberative.

Jan Faigl, Stefan Edelkamp, 2021

Disadvantages of the Hierarchical Model

- Disadvantages are related to planning and its computational requirements.
- Planning can be very slow and the "global world" representation has to further contain all information needed for planning Sensing and acting are always disconnected
- The "global world" representation has to be up-to-date.
 - The world model used by the planner has to be frequently updated to achieve a sufficient accuracy for the particular task.
- A general problem solver needs many facts about the world to search for a solution.
- Searching for a solution in a huge search space is quickly computationally intractable and the problem is related to the so-called frame problem.
 - Even simple actions need to reason over all (irrelevant) details.
- Frame problem is a problem of representing the real-word situations to be computationally tractable. Decomposition of the world model into parts that best fit the type of actions.

Hierarchical Paradigm

■ The robot senses the environment and create the "world model".

A "world model" can also be an a priori available, e.g., prior map.

Then, the robot plans its action and execute it.

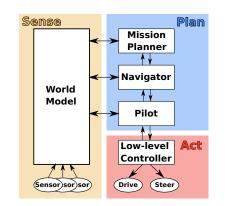
- The advantage is in ordering relationship between the primitives.
- It is a direct "implementation" of the first AI approach to robotics.
 - Introduced in Shakey, the first AI robot (1967-70).
- It is deliberative architecture.
 - It use a generalized algorithm for planning.
 - General Problem Solver STRIPS
- Stanford Research Institute Problem Solver
- It works under the closed world assumption.
 - The world model contains everything the robot needs to know.

Examples of Hierarchical Models

 Despite drawbacks of the hierarchical paradigm, it has been deployed in various systems. e.g., Nested Hierarchical Controller and NIST Realtime Control System.

It has been used until 1980 when the focus has been changed on the reactive paradigm.

- The development of hierarchical models further exhibit additional advancements such as a potential to address the frame problem.
- They also provide a way how to organize the particular blocks of the control architecture.
- Finally, the hierarchical model represents an architecture that supports evolution and learning systems towards fully autonomous control.



Jan Faigl, Stefan Edelkamp. 2021 B4M36UIR - Lecture 02: Robotic Paradigms Robotics Paradigms

Nested Hierarchical Controller

- Decomposition of the planner into three different subsystems: Mission Planner, Navigation, Pilot.
- Navigation is planning a path as a sequence of waypoints.
- Pilot generates an action to follow the path.

It can response to sudden objects in the navigation course. The plan exists and it is not necessary to perform a complete planning.

NIST Real-time Control System (RCS)

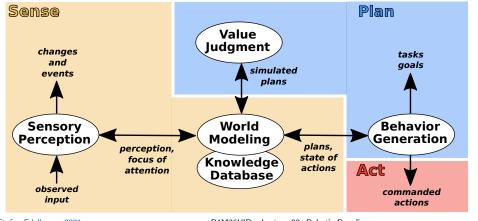
- Motivated to create a guide for manufacturers for adding intelligence to their robots.
- It is based on the NHC, and the main feature it introduces is a set of models for sensory perception.
- It introduces preprocessing step between the sensory perception and a world model.
- The sensor preprocessing is called as feature extraction, e.g.,
 - an extraction of the relevant information for creating a model of the environment such as salient objects utilized for localization.
- It also introduced the so-called Value Judgment module.
 - After planning, it simulates the plan to ensure its feasibility.
- Then, the plan is passed to Behavior Generation module to convert the plans into actions that are performed (Act).

The "behavior" is further utilized in reactive and hybrid architectures.

Jan Faigl, Stefan Edelkamp, 2021

B4M36UIR - Lecture 02: Robotic Paradigms

Jan Faigl, Stefan Edelkamp, 2021


B4M36UIR - Lecture 02: Robotic Paradigms

Hierarchical Paradigm

Hierarchical Paradigm

Overview of the Real-time Control System (RCS)

• Key features are sensor preprocessing, plan simulator for evaluation, and behavior generator.

Hierarchical paradigm represents deliberative architecture also called sense-plan-act.

Hierarchical Paradigm - Summary

The robot control is decomposed into functional modules that are sequentially executed.

The output of the sense module is the input of the plan module, etc.

- It has centralized representation and reasoning.
- May need extensive and computationally demanding reasoning.
- Encourage open loop execution of the generated plans.
- Several architectures have been proposed, e.g., using STRIP planner in Shakey, Nested Hierarchical Controller (NHC), NIST Real-time Control System (RCS).

NIST - National Institute of Standards and Technology

Despite the drawbacks, hierarchical architectures tend to support the evolution of intelligence from semi-autonomous control to fully autonomous control.

Navlab Testbed 1986 - https://voutu.be/ntIczNQKfiQ

Navlab (1996) uses 90% of autonomous steering from Washington DC to Los Angeles.

Jan Faigl, Stefan Edelkamp, 2021 B4M36UIR - Lecture 02: Robotic Paradigms B4M36UIR - Lecture 02: Robotic Paradigms

It can interact with the world to make changes and sense the world

The reactive paradigm is influenced by Computational-Level Theories.

What is the goal of the computation and why it is relevant?

How to physically realize the representation and algorithm?

Agent is a self-contained and independent entity.


■ Computational Level – What? and Why?

It has self-awareness.

■ Algorithmic level – How?

Reactive Paradigm

■ The reactive paradigm is a connection of sensing with acting.

- It is biologically inspired as humans and animals provide an evidence of intelligent behavior in an open world, and thus it may be possible to over come the close world assumption.
- Insects, fish, and other "simple" animals exhibit intelligent behavior without virtually no
- There must be same mechanism that avoid the frame problem.
- For a further discussion, we need some terms to discuss properties of "intelligence" of various entity.

Jan Faigl, Stefan Edelkamp, 2021

Reactive Paradigm

■ Physical level – How to implement the process?

How to implement the computational theory? What is the representation of input and

D. Marr a neurophysiologist working on computer vision techniques inspired by biological vision processes

lan Faigl, Stefan Edelkamp, 2021

Focus on the process rather the implementation

Behaviors

Behavior is mapping of sensory inputs to the pattern of motor action.

Sensory-Motor Pattern

- Behaviors can be divided into three categories.
 - Reflexive behaviors are "hardwired" stimulus-response (S-R).

Stimulus is directly connected to the response – fastest response time.

Reactive behaviors are learned and they are then executed without conscious thought.

E.g., Behaviors based on "muscle memory" such as biking, skiing are reactive behaviors.

Conscious behaviors are deliberative as a sequence of the previously developed behaviors.

Notice, in ethology, the reactive behavior is the learned behavior while in robotics, it connotes a reflexive behavior.

output? What is the algorithm for the transformation of input to output?

Agent and Computational-Level Theory

Reflexive Behaviors

- Reflexive behaviors are fast "hardwired" if there is sense, they produce the action.
- It can be categorized into three types.
 - 1. Reflexes the response lasts only as long as the stimulus.
 - The response is proportional to the intensity of the stimulus.
 - 2. Taxes the response to stimulus results in a movement towards or away of the stimulus,
 - e.g., moving to light, warm, etc.
 - 3. Fixed-Action Patterns the response continues for a longer duration than the stimulus.
- The categories are not mutually exclusive.
 - An animal may keep its orientation to the last sensed location of the food source (taxis) even when it loses the "sight" of it (fixed-action patterns).

Four Ways to Acquire a Behavior

Ethology provides insights into how animals might acquire and organize behaviors.

Konrad Lorenz and Niko Tinbergen

- 1. Innate be born with a behavior, e.g., be pre-programmed.
- 2. Sequence of innate behaviors be born with the sequence.
 - The sequence is logical but important.
 - Each step is triggered by the combination of internal state and the environment.

It is similar to the Finite State Machine.

- 3. Innate with memory be born with behaviors that need initialization. E.g., a bee does not bear with the known location of the hive. It has to perform some initialization steps to learn how the hive looks like.
 - Notice, S-R (stimulus-response) types of behaviors are simple to pre-program, but it certainly should not exclude usage of memory.
- 4. Learn to learn a set of behaviors.

Jan Faigl, Stefan Edelkamp, 2021

Concurrent Behaviors

- Behaviors can execute concurrently and independently which may result in different interactions.
 - **Equilibrium** the behaviors seems to balance each other out.

E.g., an undecided behavior of squirrel whether to go for food or rather run avoiding human.

- Dominance of one winner takes all as only one behavior can execute and not both simultaneously.
- Cancellation the behaviors cancel each other out.

E.g., one behavior going to light and the second behavior going out of the light.

- It is not known how different mechanisms for conflicting behaviors are employed.
- However, it is important to be aware how the behaviors will interact in a robotic system.

Releasing Behavior – When to Stop/Suppress the Behavior

■ The internal state and/or motivation may release the behavior.

Being hungry results in looking for food.

- Behaviors can be sequenced into complex behavior.
- Innate releasing mechanism is a way to specify when a behavior gets turned on and
- The releaser acts as a control signal to activate a behavior.
 - If the behavior is not released, it does not respond to sensory inputs, and it does not produce the motor outputs. Releaser The releaser filters the perception.

Notice, the releasers can be compound, i.e., multiple conditions have to be satisfied to release the behavior.

Behaviors Summary

- Behavior is a fundamental element in biological intelligence and is also a fundamental component of intelligence in robotic systems.
- Complex actions can be decomposed into independent behaviors which couple sensing and acting.
- Behaviors are inherently parallel and distributed.
- Straightforward activation mechanisms (e.g., boolean) may be used to simplify the control and coordination of behaviors.
- Perception filters may be used to sense what is relevant to the behavior (action-oriented perception).
- Direct perception reduces the computational complexity of sensing.

Allows actions without memory, inference or interpretation.

- Behaviors are independent, but the output from one behavior:
 - Can be combined with another to produce the output;
 - May serve to inhibit another behavior.

Jan Faigl, Stefan Edelkamp. 2021 B4M36UIR - Lecture 02: Robotic Paradigms Jan Faigl, Stefan Edelkamp, 2021 B4M36UIR - Lecture 02: Robotic Paradigms

ceiving.

Behavior Behavior

Two main representative methods have been proposed in literature.

Subsumption architecture proposed by Rodney Brooks.

Behavior

Multiple, Concurrent Behaviors

Strictly speaking, one behavior does not know what another behavior is doing or per-

Reactive Paradigm

• Reactive paradigm originates from dissatisfaction with the hierarchical paradigm (S-P-A), and it is influenced by ethology.

- Contrary to the S-P-A, which exhibit horizontal decomposition, the reactive paradigm (S-A) provides *vertical decomposition*.
 - Behaviors are layered, where lower layers are "survival" behaviors.
 - Upper layers may reuse the lower, inhibit them, or create parallel tracks of more advanced behaviors. If an upper layer fails, the bottom layers would still operate.

Jan Faigl, Stefan Edelkamp. 2021

B4M36UIR - Lecture 02: Robotic Paradigms

24 / 46

An Overview of Subsumption Architecture

Subsumption architecture has been deployed in many robots that exhibit walk, collision

Mechanisms for handling simultaneously active multiple behaviors are needed for com-

• Potential fields methodology studied by Ronald Arkin, David Payton, et al.

avoidance, etc. without the "move-think move-think" pauses of Shakey.

Level 3

Jan Faigl, Stefan Edelkamp, 2021

plex reactive architectures.

Behaviors are released in a stimulus-response way.

Modules are organized into layers of competence.

1. Modules at higher layer can override (subsume) the output from the behaviors of the lower layer.

Characteristics of Reactive Behaviors

- 1. Robots are situated agents operating in an ecological niche.
 - Robot has its intentions and goals, it changes the world by its actions, and what it senses influence its goals.
- 2. Behaviors serve as the building blocks for robotic actions and the overall behavior of the robot is emergent.
- 3. Only local, behavior-specific sensing is permitted usage of explicit abstract representation is avoided - ego-centric representation.

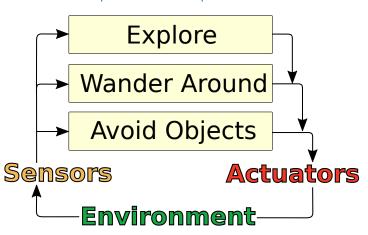
E.g., robot-centric coordinates of an obstacle are relative and not in the world coordinates.

- 4. Reactive-based systems follow good software design principles modularity of behaviors supports decomposition of a task into particular behaviors.
 - Behaviors can be tested independently.
 - Behaviors can be created from other (primitive) behaviors.
- 5. Reactive-based systems or behaviors are often biologically inspired.

Under reactive paradigm, it is acceptable to mimic biological intelligence.

It needs to be reprogrammed for a different task.

2. Internal states are avoided.


A good behavioral design minimizes the internal states, that can be, e.g., used in releasing behavior.

- 3. A task is accomplished by activating the appropriate layer that activities a lower layer and so on.
- In practice, the subsumption-based system is not easily taskable.

Winner-take-all - the winner is the higher laver.

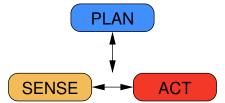
Jan Faigl, Stefan Edelkamp, 2021 B4M36UIR - Lecture 02: Robotic Paradigms Jan Faigl, Stefan Edelkamp, 2021 B4M36UIR - Lecture 02: Robotic Paradigms

An Example of Subsumption Architecture

B4M36UIR - Lecture 02: Robotic Paradigms

28 / 46

Characteristics of Reactive Paradigm in Hybrid Paradigm


- Hybrid paradigm is an extension of the Reactive paradigm.
- The term behavior in hybrid paradigm includes reflexive, innate, and learned behaviors. In reactive paradigm, it connotes purely reflexive behaviors.
- Behaviors are also sequenced over timed and more complex emergent behaviors can occur.
- Behavioural management planning which behavior to use requires information outside the particular model (a global knowledge).

Reactive behavior works without any outside knowledge.

- Performance monitor evaluates if the robot is making progress to its goal, e.g., whether the robot is moving or stucked.
 - In order to monitor the progress, the program has to know which behavior the robot is trying to accomplish.

Hybrid Paradigm

- The main drawback of the reactive-based architectures is a lack of planning and reasoning about the world.
 - E.g., a robot cannot plan an optimal trajectory.
- Hybrid architecture combines the hierarchical (deliberative) paradigm with the reactive paradigm. Beginning of the 1990's

- Hybrid architecture can be described as Plan, then Sense-Act.
 - Planning covers a long time horizon and it uses global world model.
 - Sense-Act covers the reactive (real-time) part of the control.

Components of Hybrid Deliberative/Reactive Paradigm

- Sequencer generates a set of behaviors to accomplish a subtask.
- Resource Manager allocates resources to behaviors, e.g., a selection of the suitable sensors. In reactive architectures, resources for behaviors are usually hardcoded.
- Cartographer creates, stores, and maintains a map or spatial information, a global world model and knowledge representation. It can be a map but not necessarily.
- Mission Planner interacts with the operator and transform the commands into the
 - Construct a mission plan, e.g., consisting of navigation to some place where a further action is taken.
- Performance Monitoring and Problem Solving it is a sort of self-awareness that allows the robot to monitor its progress.

Global

World

Models

Task Scheduling (PRODIGY)

Path Planning

Navigation

(POMDP - Partially Observable Markov Decision Process)

Obstacle Avoidance

(CVM - Curvature Velocity Method)

Task Architecture

Mission Planner

Cartographer

Sequencer.

Resource Manager

Deliberative Laver

Reactive Laver

Existing Hybrid Architectures

Managerial architectures use agents for high-level planning at the top, then there are agents for plan refinement to the reactive behaviors at the lowest level.

E.g., Autonomous Robot Architecture and Sensor Fusion Effects.

- State-Hierarchy architectures organize activity by the scope of the time knowledge
 - E.g., 3-Tiered architectures.
- Model-Oriented architectures concentrate on symbolic manipulation around the global world. E.g., Saphira.
- Task Control Architecture (TCA) layered architecture:
 - Sequencer Agent, Resource Manager Navigation Layer;
 - Cartographer Path-Planning Layer;
 - Mission Planner Task Scheduling Layer;
 - Performance Monitoring Agent Navigation, Path-Planning, Task-Scheduling;
 - Emergent Behavior Filtering.

Jan Faigl, Stefan Edelkamp, 2021

B4M36UIR - Lecture 02: Robotic Paradigms

Jan Faigl, Stefan Edelkamp, 2021

I GMD-based Collision Avoidance - Control Rule

Left LGMD

LGMD difference

 $e = u_{left} - u_{right}$

Right LGMD

A mapping function: Φ from the output of the LGMD vision system to the

uright

 $10000 \cdot \text{sgn}(e)$ for abs(e) < 0.2

CPG

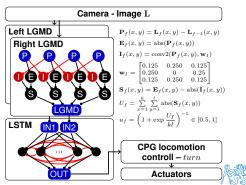
 $turn \leftarrow \Phi(e)$

Input image

turn parameter of the CPG

Left image

Right image

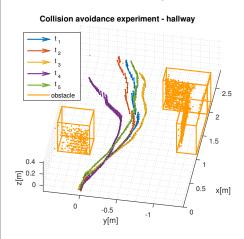

Example of Reactive Collision Avoidance

Biologically inspired reactive architecture with vision sensor and CPG.

Notice, all is hardwired into the program and the robot goes 'just' ahead with avoiding intercepting obstacles.

- CPG-based locomotion control can be parametrized to steer the robot motion to left or right to avoid collisions with approaching objects.
- Avoiding collisions with obstacles and intercepting objects can be based on the visual perception inspired by the Lobula Giant Movement Detector (LGMD).
- LGMD is a neural network detecting approaching objects.

Jan Faigl, Stefan Edelkamp, 2021


B4M36UIR - Lecture 02: Robotic Paradigms

Čížek, Milička, Faigl (IJCNN 2017)

Jan Faigl, Stefan Edelkamp, 2021

B4M36UIR - Lecture 02: Robotic Paradigms

Example of LGMD-based Collision Avoidance

■ LGMD output together with the proposed mapping function provide a smooth motion of the robot.

Čížek, Faigl (Bioinspiration & Biomimetics, 2019)

Jan Faigl, Stefan Edelkamp, 2021

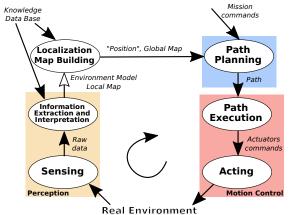
B4M36UIR - Lecture 02: Robotic Paradigms

38 / 46

Robot Control

Jan Faigl, Stefan Edelkamp, 2021

Motion Control

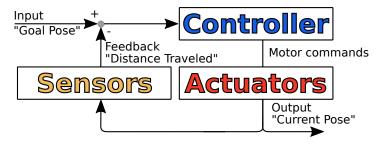

- An important part of the navigation is an execution of the planned path.
- Motion control module is responsible for the path realization.
 - Position control aims to navigate the robot to the desired location.
 - Path-Following is a controller that aims to navigate the robot along the given path.
 - Trajectory-Tracking differs from the path-following in that the controller forces the robot to reach and follow a time parametrized reference (path).

E.g., a geometric path with an associated timing law.

- The controller can be realized as one of two types:
 - Feedback controller:
 - Feedforward controller.

A Control Schema for a Mobile Robot

 A general control schema for a mobile robot consists of Perception Module, Localization and Mapping Module, Path Planning Module, and Motion Control Module.



In B4M36UIR, we focus on Path Planning Module

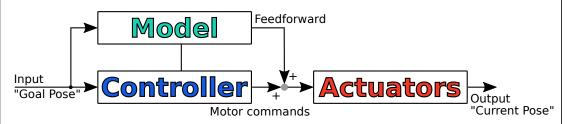
B4M36UIR - Lecture 02: Robotic Paradigms

FeedBack Controller

- The difference between the goal pose and the distance traveled so far is the error used to control the motors
- The controller commands the motors (actuators) which change the real robot pose
- Sensors, such as encoders for a wheeled robot, provide the information about the traveled distance

Notice, the robot may stuck, but it is not necessarily detected by the encoders.

Jan Faigl, Stefan Edelkamp, 2021


Jan Faigl, Stefan Edelkamp, 2021

Jan Faigl, Stefan Edelkamp, 2021

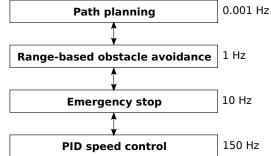
Topics Discussed

Feed-Forward Controller

- In the feed-forward controller, there is no feedback from the real world execution of the performed actions.
- Instead of that, a model of the robot is employed in the calculation of the expected effect of the performed action.

In this case, we fully rely on the assumption that the actuators will performed as expected.

B4M36UIR - Lecture 02: Robotic Paradigms


43 / 46 Jan Faigl, Stefan Edelkamp, 2021

Topics Discussed

Summary of the Lecture

Temporal Decomposition of Control Layers

- The robot control architecture typically consists of several modules (behaviors) that may run at different frequencies.
- Low-level control is usually the fastest one, while path planning is slower as the robot needs some time to reach the desired location.
- An example of possible control frequencies of different control layers.

Adapted from Introduction to Autonomous Mobile Robots, R. Siegwart et al

B4M36UIR - Lecture 02: Robotic Paradigms

Topics Discussed

- Robotic Paradigms:
 - 1. Hiearchical paradigm;
 - 2. Reactive paradigm;
 - 3. Hybrid Hiearchical/Reactive paradigm.
- Example of Reactive architecture collision avoidance.
- Robot Control.
- Next: Path and Motion Planning.

