STATISTICAL MACHINE LEARNING (WS2021/22)
SEMINAR 1

Assignment 1. Assume a prediction problem with a scalar observation X = R, two classes
Y ={-1,+1} and 0/1-loss ¢(y,y') = [y # v']- The observations of both classes are gener-
ated according to the Normal distribution, i.e.
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p(x,y) = p(y)

where p(y) is the prior distribution of the hidden state, 0,0 € R, are the standard devia-
tions and iy, te € R are the mean values.

a) Assume p < p, and o, = o_. Show that under this assumption the optimal prediction
strategy is the thresholding rule

-1 if z<6,
h(f”):{ +1 if x>0,

parametrized by the scalar # € R. Write an explicit formula for computing 6.
b) Show what is the optimal prediction strategy in case when i, = p_ and o, # o_.

Assignment 2. Consider the following probabilistic model for real valued sequences * =
(x1,...,2,), x; € Rof fixed length n. Each sequence is a combination of a leading part i < k
and a trailing part ¢ > k. The boundary £ = 0,...,n is random with uniform distribution.
The values z;, in the leading and trailing part are statistically independent and distributed with
some probability density function p;(x) and py(x) respectively. Altogether the distribution for
pairs (z, k) reads

P, k) = —— [[ite) T polos).

n+1
= j=k+1
The densities p; and p, are known. Given a sequence x, we want to predict the boundary k.
a) Deduce the optimal predictor for the 0/1 loss, i.e {(k, k') = [k # K'].
b) Deduce the optimal predictor for the quadratic loss £(k, k') = (k — k')%.

Assignment 3. We are given a prediction strategy h: X — )Y = {1,...,Y} assigning
observations € X into one of Y classes. Our task is to estimate the true risk R(h) =
E(zy)~pl(y, h(x)) where £: ) x ) — R is some application specific loss function. To this
end, we collect a set of examples S' = {(z%,4') € (X x V) | i =1,...,1} drawn i.i.d. from
the distribution p(x, y) and compute the test error

Rsi(h) = 7 37 £(y',hla))

What is the minimal number of test examples [ we need to collect in order to have a guarantee
that the true risk R(h) is inside the interval (Rgi(h)—¢, Rgi(h)+¢) with probability v € (0, 1)
for some predefined € > (0 ?

1



STATISTICAL MACHINE LEARNING (WS2021/22) SEMINAR 1 2
a) Use Hoeffding’s inequality to derive a formula to compute [ as a function of € and ~.

b) Assume the loss defined as ¢(y,y’) = [ly — ¥/| > 5]. Evaluate [ for ¢ = 0.01 and v €
{0.90,0.95,0.99}. Give an interpretation of the expectation of the loss.

¢) Solve the problem b) in case that the loss is the mean absolute error, ¢(y,vy') = |y — /|
Evaluate [ fore =1, Y = 100 and vy € {0.90,0.95,0.99}.

d) How do the formulas depend on the particular loss function?

Assignment 4. Let us consider the family of linear classifiers & € H defined by

y = h(z;w,b) = sign(z’w —b), (1)
where € R" denotes a feature vector and y = +1 denotes the binary class. The predictors
are parametrised by the vector w € R™ and the scalar b € R. Given training data 7 =

{(x;,y;) | i =1,2,...,m}, we want to find the predictor that minimises the empirical risk on
the training data, i.e.

1
Br(h) = i > Uy, h(x)) — min,
(z,y)eT

for the 0/1 loss £(y, ) = [y # v'].!
a) Consider the loss for a single example (x,y) € T as a function of the classifier parameters,
ie. f(w,b) = ((y, h(x;w,b)). What type of function is it? Can we minimise it by gradient
descent? Conclude that the empirical risk R (%) can not be minimised by gradient descent
w.r.t. w and b.

b) Suppose, we know that there is a classifier h* € H, with zero empirical risk on the training
data. Give an algorithm that finds such a predictor.

¢) Suppose now, no such predictor exists. How can we resolve the problem we encountered in
a)?

1[[eﬂ denotes the Iverson bracket with value 1 if the expression in the brackets is true and 0 otherwise.



