
STATISTICAL MACHINE LEARNING (WS2021/22)
SEMINAR 1

Assignment 1. Assume a prediction problem with a scalar observation X = R, two classes
Y = {−1,+1} and 0/1-loss `(y, y′) = [[y 6= y′]]. The observations of both classes are gener-
ated according to the Normal distribution, i.e.

p(x, y) = p(y)
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2σ2
(x− µy)
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)
, y ∈ Y ,

where p(y) is the prior distribution of the hidden state, σ+, σ− ∈ R+ are the standard devia-
tions and µ+, µ∈ ∈ R are the mean values.
a) Assume µ− < µ+ and σ+ = σ−. Show that under this assumption the optimal prediction
strategy is the thresholding rule

h(x) =

{
−1 if x < θ ,
+1 if x ≥ θ ,

parametrized by the scalar θ ∈ R. Write an explicit formula for computing θ.
b) Show what is the optimal prediction strategy in case when µ+ = µ− and σ+ 6= σ−.

Assignment 2. Consider the following probabilistic model for real valued sequences x =
(x1, . . . , xn), xi ∈ R of fixed length n. Each sequence is a combination of a leading part i 6 k
and a trailing part i > k. The boundary k = 0, . . . , n is random with uniform distribution.
The values xi, in the leading and trailing part are statistically independent and distributed with
some probability density function p1(x) and p2(x) respectively. Altogether the distribution for
pairs (x, k) reads

p(x, k) =
1

n+ 1

k∏
i=1

p1(xi)
n∏

j=k+1

p2(xj).

The densities p1 and p2 are known. Given a sequence x, we want to predict the boundary k.

a) Deduce the optimal predictor for the 0/1 loss, i.e `(k, k′) = Jk 6= k′K.

b) Deduce the optimal predictor for the quadratic loss `(k, k′) = (k − k′)2.
Assignment 3. We are given a prediction strategy h : X → Y = {1, . . . , Y } assigning
observations x ∈ X into one of Y classes. Our task is to estimate the true risk R(h) =
E(x,y)∼p`(y, h(x)) where ` : Y × Y → R is some application specific loss function. To this
end, we collect a set of examples S l = {(xi, yi) ∈ (X × Y) | i = 1, . . . , l} drawn i.i.d. from
the distribution p(x, y) and compute the test error

RSl(h) =
1

l

l∑
i=1

`(yi, h(xi)) .

What is the minimal number of test examples l we need to collect in order to have a guarantee
that the true riskR(h) is inside the interval (RSl(h)−ε, RSl(h)+ε) with probability γ ∈ (0, 1)
for some predefined ε > 0 ?
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a) Use Hoeffding’s inequality to derive a formula to compute l as a function of ε and γ.

b) Assume the loss defined as `(y, y′) = [[|y − y′| > 5]]. Evaluate l for ε = 0.01 and γ ∈
{0.90, 0.95, 0.99}. Give an interpretation of the expectation of the loss.

c) Solve the problem b) in case that the loss is the mean absolute error, `(y, y′) = |y − y′|.
Evaluate l for ε = 1, Y = 100 and γ ∈ {0.90, 0.95, 0.99}.

d) How do the formulas depend on the particular loss function?

Assignment 4. Let us consider the family of linear classifiers h ∈ H defined by

y = h(x;w, b) = sign(xTw − b), (1)

where x ∈ Rn denotes a feature vector and y = ±1 denotes the binary class. The predictors
are parametrised by the vector w ∈ Rn and the scalar b ∈ R. Given training data T =
{(xi, yi) | i = 1, 2, . . . ,m}, we want to find the predictor that minimises the empirical risk on
the training data, i.e.

RT (h) =
1

|T |
∑

(x,y)∈T

`(y, h(x))→ min
h∈H

,

for the 0/1 loss `(y, y′) = Jy 6= y′K.1

a) Consider the loss for a single example (x, y) ∈ T as a function of the classifier parameters,
i.e. f(w, b) = `

(
y, h(x;w, b)

)
. What type of function is it? Can we minimise it by gradient

descent? Conclude that the empirical risk RT (h) can not be minimised by gradient descent
w.r.t. w and b.

b) Suppose, we know that there is a classifier h∗ ∈ H, with zero empirical risk on the training
data. Give an algorithm that finds such a predictor.

c) Suppose now, no such predictor exists. How can we resolve the problem we encountered in
a)?

1JeK denotes the Iverson bracket with value 1 if the expression in the brackets is true and 0 otherwise.


