Dynamic programming

Vojtech Franc

November 2021

We want to find a maximal cost sequence

$$
\begin{equation*}
\left(y_{1}^{*}, \ldots, y_{L}^{*}\right) \in \underset{\left(y_{1}, \ldots, y_{L}\right) \in \mathcal{Y}^{L}}{\operatorname{Argmax}}\left[\sum_{i=1}^{L} q_{i}\left(y_{i}\right)+\sum_{i=1}^{L-1} g\left(y_{i}, y_{i+1}\right)\right] \tag{1}
\end{equation*}
$$

where $L \in \mathbb{N}$ is a length of the sequence, \mathcal{Y} is a finite set of labels, $q_{i}: \mathcal{Y} \rightarrow \mathbb{R}$, $i \in\{1, \ldots, L\}$, and $g: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ are some fixed functions.

Let $F_{i}: \mathcal{Y} \rightarrow \mathbb{R}, i \in\{1, \ldots, L\}$, and $L_{i}: \mathcal{Y} \rightarrow \mathcal{Y}, i \in\{2, \ldots, L\}$, be functions defined recursively as follows:

$$
\begin{aligned}
F_{1}(y) & =q_{1}(y), \quad \forall y \in \mathcal{Y}, \\
F_{i}(y) & =q_{i}(y)+\max _{y^{\prime} \in \mathcal{Y}}\left[F_{i-1}\left(y^{\prime}\right)+g\left(y^{\prime}, y\right)\right], \quad i=2, \ldots, L \\
L_{i}(y) & \in \underset{y^{\prime} \in \mathcal{Y}}{\operatorname{Argmax}}\left[F_{i-1}\left(y^{\prime}\right)+g\left(y^{\prime}, y\right)\right], \quad i=2, \ldots, L
\end{aligned}
$$

Then, the optimal value of the problem (1) equals to

$$
F^{*}=\max _{y \in \mathcal{Y}} F_{L}(y),
$$

and the last label in the optimal sequence is

$$
y_{L}^{*} \in \underset{y \in \mathcal{Y}}{\operatorname{Argmax}} F_{L}(y) .
$$

The other labels in the optimal sequence are found recursively as follows

$$
y_{i-1}^{*}=L_{i}\left(y_{i}^{*}\right), \quad i=L-1, \ldots, 2 .
$$

