
?/

p

x--y

2<1

x+yHi!

- Robert Sedgewick: Algorithms in C++, Parts 1–4: Fundamentals, Data Structure, Sorting, Searching,

Third Edition, Addison Wesley Professional, 1998

- William Pugh. Skip lists: A probabilistic alternative to balanced trees. Communications of the ACM,

33(6):668–676, 1990.

- William Pugh: A Skip List Cookbook [http://cglab.ca/~morin/teaching/5408/refs/p90b.pdf]

- Bradley T. Vander Zanden: [http://web.eecs.utk.edu/~huangj/CS302S04/notes/skip-lists.html]

To read

Skip List
Marko Berezovský

PAL 2015Skip List

A B C D E G L Q R S V XH M P 

A B C D E G H L M P Q R S V X

A B C D E G H X

A regular linked list

A linked list with faster search capability

A B C D E G H X

A linked list with even faster search capability

Skip list Motivation 1

Problem: Find(Q) in your list.

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

8
8

8

L M P Q R S V

L M P Q R S V

A B C D E G H

Difficulty:

Subsequent Insert/Delete operations would destroy this favourable list shape.

The cost of restauration is huge -- (N).

Note the shape similarity to a balanced binary search tree.

Solution:

Create a randomized shape, roughly similar to the optimal shape.

Random deviations from the nice shape in the long run nearly cancel each other.

The result is a list shape with properties relatively close to the optimal properties.

Skip list Improved linked list 2

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

A linked list with log(N) search capability.

X

8

L M P Q R S V

A skip list is an ordered linked list where each node contains a variable

number of links, with the k-th link in the node implementing singly

linked list that skips (forward) the nodes with less than k links.

[Sedgewick]

Each element points to its immediate successor (= next element).

Some elements also point to one or more elements further down the list.

A level k element has k forward pointers.

the j-th pointer points to the next element in level j .

A B C D E G H

Level 2

elements

Level 1

elements

Level 4

element

Level 3

elements

Skip list Definition 3

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

X

8

L M P Q R S V

while(x.forward[i].key < searchKey) // x.forward[i] != null

There is a sentinel with infinite key value at the tail of the list.

The level of the sentinel is the same as the whole list level.

The list may be implemented as circular with the header serving as the sentinel.

CA E G N R S

Skip list - Structure Sentinel 4

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14



CA E G H I N R S 

H I

Keeping the code simple

Note that the skiplist

is displayed as linear

in this presentation

(with separate sentinel)

to keep pictures

less cluttered.

A skip list data structure contains also:

-- Header A node with the initial set of forward pointers.

-- Sentinel Optional last node with  value, it is the header in circular list.

-- Level The current number of levels in the skip list.

-- MaxLevel The maximum number of levels to which a skip list can grow.

-- Update[] Auxiliary array with predecessors of an inserted/deleted element

see Insert and Delete operations.

Skip list Representation 5

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

A B C D E G H

A skip list element contains:

-- Key Search key.

-- Value (Optional, not discussed here, allowing associative structure.)

-- Forward[] Array of pointers to the following skip list elements.

The header and the sentinel are of the same type.

X

8

L M P Q R S V

Basic randomness

The level of an element is chosen by flipping a coin.

Flip a coin until it comes up tails. Count

one plus the number of times

the coin came up heads

before it comes up tails.

This result represents the level of the element.

Example of an experimental independent levels calculation (p = 0.5, see below) .

x x x x x x x x x x x x x x x xx x x x x x x x

Skip list Random level 6

Sixpence of Queen Elizabeth I,

struck in 1593 at the Tower Mint.

[wikipedia.org]

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Skip list Random level example 7

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Level 1 2 3 4 5 6 7 8 9 ...

Number of nodes Expected 64 32 16 8 4 2 1 1/2 1/4 ...

Actual 60 36 17 5 7 1 1 1 0 ...

Experiment with Lehmer generator

Xn+1 = 16807 Xn mod 2311

seed = 23021905 // birth date of Derrick Henry Lehmer

Coin flipping:

(Xn >> 16) & 1

Head = 1

128 nodes

More general randomness

Choose a fraction p between 0 and 1.

Rule: Fraction p of elements with level k pointers

will have level k+1 elements as well.

On average: (1p) elements will be level 1 elements,

(1p) · p elements will be level 2 elements,

(1p) · p2 elements will be level 3 elements, etc.

This scheme corresponds

to flipping a coin that has

p chance of coming up heads,

(1p) chance of coming up tails.

Example of an experimental independent levels calculation with p = 0.33.

x x x x x x x x x x x x x x x xx x x x x x x x

Skip list Random level 8

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

int randomLevel(List list) {

//random() returns a random value in [0..1)

int newLevel = 1;

while(random() < list.p) // no MaxLevel check!

newLevel++;

return min(newLevel, list.MaxLevel);// efficiency!

}

Choosing a Random Level

A level is chosen for an element in effect by flipping a coin that has probablility p

of coming up heads. We keep flipping until we get "tails" or until the maximum

number of levels is reached.

Skip list Random level 9

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Search

Scan through the top list until the current node either contains the search key

or it contains a smaller key and a link to a node with a larger key.

Then, move to the second-from-top list and iterate the procedure,

continuing forward and downward until the search key is found

or a search mismatch happens at the bottom level.

A B C D E G H

Find S

Skip list - Search Example 10

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

X

8

L M P Q R S V

Node search(List list, int searchKey) {

Node x = list.header;

// loop invariant: x.key < searchKey, strict ineq!!

for(int i = list.level; i >= 1; i--)

while(x.forward[i].key < searchKey)

x = x.forward[i];

// x.key < searchKey <= x.forward[1].key

x = x.forward[1];

if(x.key == searchKey) return x;

else return null; // not found

}

Search

Start with the coarsest grain list and find where in that list the key resides, then

drop down to the next less coarse grain list and repeat the search.

Skip list - Search Pseudocode 11

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Insert

Find the place for the new element.

Compute its level k by flipping the coin.

Insert the element into first k lists, starting at the bottom list.

A B C D E G LH M

A B C D E HG

Insert M, level M = 3

Skip list - Insert Example 12

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

X

8

L P Q R S V

X

8

P Q R S V

A B C D E G LH M

Insert M, level M = 3

Skip list - Insert Example 13

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

X

8

P Q R S V

undefined

The array update [] is an auxiliary array supporting Insert / Delete operations.

update[k] points to that element in the list

whose level k pointer points to the inserted (or deleted) element,

(= predecessor in the k-th level).

Note that in many cases, when the level of the inserted/deleted element is 1,
only update[1] will be used.

update[1]

update[4]

update[2]

update[3]

altered pointer

SA A SE

A SE R A SE RC

A EC H

A

A EC H I

Insert A, S, E, R, C, H, I, N, G.

continue...

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14



  



SR  SR 

The nodes, in the order of insertion, (A,S,E,R,C,H,I,N,G)

were assigned levels 1,3,2,1,1,3,1,3,2.

Skip list - Insert 14Example

[Sedgewick]

A SE RC H I

A SE RC H I N

A SE RC H I NG

Skip list - Insert 15

Insert A, S, E, R, C, H, I, N, G.

.. continued

Example

The nodes,

in the order of insertion,

were assigned levels
1,3,2,1,1,3,1,3,2.

(A,S,E,R,C,H,I,N,G)

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

CAA CA E

CA E G H

CA E G H I CA E G H I N

etc...

Skip list - Insert 16

Insert A, C, E, G, H, I, N, R, S. The nodes (A,C,E,G,H,I,N,R,S)

(Same values, different order) were assigned levels 1,3,2,1,1,3,1,3,2.

Example

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

 

CA E G



 

 

CA E G H I N R S

A SE RC H I NG

The nodes were inserted in sorted order.

The nodes were inserted in random order.

The result of the previous example

The shapes of the lists are different, the probabilistic properties are the same.

Skip list - Insert 17Example

The nodes,

in the order of insertion,

were assigned levels
1,3,2,1,1,3,1,3,2.

(A,C,E,G,H,I,N,R,S)

The nodes,

in the order of insertion,

were assigned levels
1,3,2,1,1,3,1,3,2.

(A,S,E,R,C,H,I,N,G)

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14





// update[k] .. predecessor at level k

void insert(List list, int searchKey, Data newValue){

Node x = list.header;

for(int i = list.level; i >= 1; i--){

//invariant: x.key < searchKey <= x.forward[i].key

while(x.forward[i].key < searchKey)

x = x.forward[i];

update[i] = x;

}

x = x.forward[1]; // expected position

if(x.key == searchKey)

x.value = newValue; // associative structure

else { // key not found, do insertion:

continue...

Skip list - Insert Pseudocode 18

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

... else { // key not found, do insertion here:

int newLevel = randomLevel(list);

/* If newLevel is greater than the current level

of the list, knock newLevel down so that it is only

one level more than the current level of the list.

In other words, increase the level of the list

by at most 1 in each insert operation. */

if(newLevel > list.level) {

if(list.level < list.MaxLevel) list.level++;

newLevel = list.level;

update[newLevel] = list.header; // sentinel

}

// finally, physical insertion:

Node x = makeNode(newLevel, searchKey, newValue);

for(int i = 1; i <= newLevel; i++) {

x.forward[i] = update[i].forward[i];

update[i].forward[i] = x; }

}

}} // of insert

.. continued

Skip list - Insert Pseudocode 19

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

CA E G H L N R S

CA E G H L N R S

CA E G H N R S

Skip list - Delete Example 20

Delete L

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14







update[1]

update[4]

update[2]

update[3]
undefined

Deleting in a skip list is like deleting the same value independently from each list in

which forward pointers of the deleted element are involved.

The algorithm registers the element's predecessor in the list,

makes the predecessor point to the element that the deleted element points to,

and finally deletes the element. It is a regular list delete operation.

// update is an array of pointers to the

// predecessors of the element to be deleted

void delete(List list, int searchKey) {

Node x = list.header;

for (int i = list.level; i >= 1; i--) {

while (x.forward[i].key < searchKey)

x = x.forward[i];

update[i] = x;

}

x = x.forward[1];

if (x.key == searchkey) { // go delete ...

continue...

Skip list - Delete Pseudocode 21

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

for (int i = 1; i <= list.level; i++) {

if (update[i].forward[i] != x) break; //(**)

update[i].forward[i] = x.forward[i];

}

destroy_remove(x);

/* if deleting the element causes some of the

highest level list to become empty, decrease the

list level until a non-empty list is encountered.*/

while ((list.level > 1) &&

(list.header.forward[list.level] == list.header))

list.level--;

}} // deleted

(**) If the element to be deleted is a level k node, break out of the loop when level

(k+1) is reached. Since the code does not store the level of an element, we

determine that we have exhausted the levels of an element when a predecessor

element points past it, rather than to it.

.. continued

Skip list - Delete Pseudocode 22

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Choosing p

One might think that p should be chosen to be 0.5.

If p is chosen to be 0.5, then roughly half our elements will be level 1 nodes,

0.25 will be level 2 nodes, 0.125 will be level 3 nodes, and so on.

This will give us

-- on average log(N) search time and

-- on average 2 pointers per node.

However, empirical tests show that choosing p to be 0.25

results in

-- roughly the same search time

-- but only an average of 1.33 pointers per node,

-- somewhat more variability in the search times.

There is a greater chance of a search taking longer than expected, but the

decrease in storage overhead seems to be worth it sometimes.

Skip list - Properties Parameter p 23

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Notes on size and compexity

The average number of links in a randomized skip list with parameter p is

N ∙ 1/(1  p)

The average number of key comparisons in search and insert

in a randomized skip list with parameter p is on average

 logp (N) / 2p = log(N) * (1) * (2p * log (p))1 = log(N) / (2p * log (1/p))

Search Insert Delete

Skip list 0.051 (1.0) 0.065 (1.0) 0.059 (1.0)

AVL tree 0.046 (0.91) 0.100 (1.55) 0.085 (1.46)

2-3 tree 0.054 (1.05) 0.210 (3.2) 0. 21 (3.65)

Splay tree 0.490 (9.6) 0.510 (7.8) 0.53 (9.0)

Times in ms on some antiquated HW [Pugh, 1990]

Experimental time comparisons:

Skip list - Properties Complexity/experiment 24

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Notes on compexity

The probabilistic analysis of skip lists is rather advanced.

However, it can be shown that the expected times of

search, insert, delete are all

O(lg n).

The choice of p determines the variability of these search times.

Intuitively, decreasing p will increase the variability since it will decrease the

number of higher-level elements (i.e., the number of "skip" nodes in the list).

The Pugh paper contains a number of graphs that show the probability of a search

taking significantly longer than expected for given values of p. For example, if p is

0.5 and there are more than 256 elements in the list, the chances of a search

taking 3 times longer than expected are less than 1 in a million. If p is decreased

to 0.25, the chances rise to about 1 in a thousand.

Skip list - Properties Complexity/memory 25

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Skip list - Index access Both list and array 26

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14



6

3

3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 1 2 2 2 1 1

3 7 2

9

A B C D E L Q R S V XH MG

list[10]== 'Q' (10 = 6 + 1 + 2 + 1)

Supplement each forward pointer with its

"length" = 1 + number of the list elements it skips.

A k-th list element can be acessed in expected O(log n) time.

Search, Insert, Delete are analogous to the "plain" variant. The length of the

affected pointers has to be updated after each Insert or Delete. Asymptotic

complexity remains the same in all cases -- O(log n).

Array-like property -- random element access

Skip list - References Rich sources 27

erikdemaine.org/

erikdemaine.org/
- Erik Demaine's presentation at MIT

http://videolectures.net/mit6046jf05_demaine_lec12/

- Robert Sedgewick: Algorithms in C++, Parts 1–4: Fundamentals, Data Structure,

Sorting, Searching, Third Edition, Addison Wesley Professional, 1998

- William Pugh: Skip lists: A probabilistic alternative to balanced trees.

Communications of the ACM, 33(6):668–676, 1990.

- William Pugh: A Skip List Cookbook [http://cglab.ca/~morin/teaching/5408/refs/p90b.pdf]

- Bradley T. Vander Zanden: [http://web.eecs.utk.edu/~huangj/CS302S04/notes/skip-lists.html]

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Also: java.util.concurrent.ConcurrentSkipListSet<E>

