

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering Department of Cybernetics

A0M33EOA: Differential Evolution. Other Types of Metaheuristics.

Petr Pošík

Czech Technical University in Prague Faculty of Electrical Engineering Department of Cybernetics

Contents

Differential Evolution

Swarm Intelligence

PSO

Ant Colonies

Conclusions

Contents

Differential evolution (DE):

Another successful heuristic for optimization in \mathbb{R}^D .

Swarm intelligence:

- Particle Swarm Optimization (PSO, optimization in \mathbb{R}^D).
- Ant Colony Optimization (ACO, optimization on graphs).

Differential Evolution

Differential Evolution

- Differential Evolution
- DE Variants

Swarm Intelligence

PSO

Ant Colonies

Conclusions

Differential Evolution

Developed by Storn and Price [SP97].

- Simple algorithm, easy to implement.
- Unusual breeding pipeline.

Algorithm 1: DE Breeding Pipeline

Input: Population X with fitness in f. **Output:** Offspring population X_N .

```
1 begin

2 X_N \leftarrow \emptyset

3 foreach x \in X do

4 (x_1, x_2, x_3) \leftarrow \text{Select}(X, f, x)

5 u \leftarrow \text{Mutate}(x, x_1, x_2)

6 x_N \leftarrow \text{Recombine}(u, x_3)

7 X_N \leftarrow X_N \cup \text{BetterOf}(x, x_N)

8 return X_N
```

- Vectors x, x_1 , x_2 , x_3 shall all be different, x_1 , x_2 , x_3 chosen uniformly.
- For each population member x, an offspring x_N is created.
- \mathbf{x}_N replaces \mathbf{x} in population if it is better.

[SP97] Rainer Storn and Kenneth Price. Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. *Journal of Global Optimization*, 11(4):341–359, December 1997.

DE Mutation and Recombination

Mutation and recombination:

Introduction

Differential Evolution

- Differential Evolution
- DE Variants

Swarm Intelligence

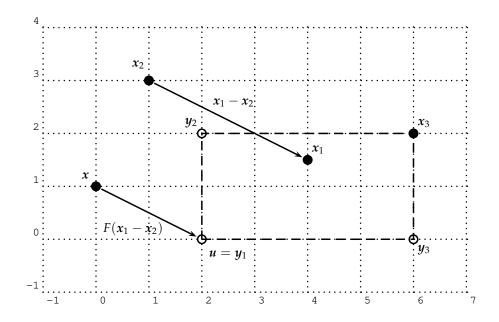
PSO

Ant Colonies

$$u \leftarrow x_1 + F(x_2 - x_3), \quad F \in (0, 2)$$

$$x_N, d \leftarrow \begin{cases} u_d & \text{iff } \text{rand}_d \leq CR \text{ or } d = I_{\text{rand}} \\ x_{4,d} & \text{iff } \text{rand}_d > CR \text{ and } d \neq I_{\text{rand}} \end{cases}$$

- rand_d $\sim \mathcal{U}(0,1)$, different for each dimension
- I_{rand} is a random index of the dimension that is always copied from u
- $lacksquare 2^D 1$ possible candidate points $m{y}$



Differential Evolution

• Differential Evolution

• DE Variants

Swarm Intelligence

PSO

Ant Colonies

Conclusions

DE Variants

Small variations of the base algorithm:

- DE/rand vs DE/best: the "best" variant variant uses the best of 4 parent vectors in place of x when generating the offspring.
- \blacksquare DE/./n: n is the number of difference vectors taken into account during mutation.
- DE/././bin vs DE/././exp: binomial recombination (described above), exponential recombination (not described here)

Differential Evolution

• Differential Evolution

• DE Variants

Swarm Intelligence

PSO

Ant Colonies

Conclusions

DE Variants

Small variations of the base algorithm:

- DE/rand vs DE/best: the "best" variant variant uses the best of 4 parent vectors in place of x when generating the offspring.
- \blacksquare DE/./n: n is the number of difference vectors taken into account during mutation.
- DE/././bin vs DE/././exp: binomial recombination (described above), exponential recombination (not described here)

Many adaptive variants: SaDE, JADE, ...

Swarm Intelligence

Differential Evolution

Swarm Intelligence

• Swarm Algorithms

PSO

Ant Colonies

Conclusions

Swarm Algorithms

Swarm intelligence:

- In nature: swarm (cz: roj, hejno) of small simple 'units' is able to create very complex behavioral patterns via cooperation.
- **Emergence**: non-linear interactions of simple rules complex behavior of the whole system.
- Analogy to the behavior of bees, wasps, ants, fish, birds, ...

An engineering view:

- Is it possible to model these systems *in silico* and use that model to solve a practical task?
- How to design the simple units and their interactions such that a practically useful system emerges?

Particle Swarm Optimization

Particle Swarm Optimization

Partice Swarm Optimization (PSO): an optimization algorithm inspired by the behavior of birds.

Introduction

Differential Evolution

Swarm Intelligence

PSO

- PSO
- PSO Algorithm
- PSO: Demo

Ant Colonies

Conclusions

Inspiration:

- Birds fly over the landscape and land on the highest hill.
- Birds are modeled by particles in a multidimensional vector space.
- The particles have their *position* and *speed* (and momentum).
- They remember their own best position (i.e., the highest place of the landscape they flew over), but also
- they communicate and use the best position of their neighboring particles to update their own position and speed.
- The communication is usually of 2 types:
 - 1. **Globally best position** is known to all particles and is updated as soon as any particle finds an improvement.
 - 2. **Best position in neighborhood** is shared among a group of neighboring particles.

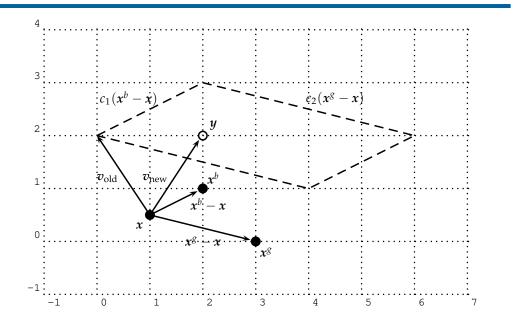
PSO Algorithm

Algorithm 2: Canonical PSO

```
1 begin
            Initialize positions x_i and velocities v_i.
 2
            Initialize personal best positions x_i^b \leftarrow x_i.
 3
           Initialize globally best position
 4
             \mathbf{x}^g \leftarrow \mathbf{x}_k, \forall i : f(\mathbf{x}_k) \leq f(\mathbf{x}_i)
           for i = 1, ..., N do
 5
                  v_i \leftarrow
                    \omega v_i + c_1 r_1 \circ (x_i^b - x_i) + c_2 r_2 \circ (x^g - x_i)
                  x_i \leftarrow x_i + v_i
                 If f(x_i) < f(x_i^b), x_i^b \leftarrow x_i.
If f(x_i) < f(x_i^g), x_i^g \leftarrow x_i.
           If termination condition not satisfied, go to 5.
10
```

Meaning of symbols:

f objective function (landscape) $f: \mathcal{R}^D \to \mathcal{R}$ N the number of particles x_i particle positions, $x_i \in \mathcal{R}^D$ v_i particle velocities, $v_i \in \mathcal{R}^D$ x_i^b personal best position



- x^g globally best position ω particle momentum, suitable value is e.g. 0.9, sometimes it decreases during
 - e.g. 0.9, sometimes it decreases during simulation e.g. to 0.4.
- c_1, c_2 attraction constants, 'cognitive' and 'social' componments, suitable values between 1 and 2
- r_1, r_2 random vectors from $U(0,1)^D$ ovector multiplication by items

PSO on 2D Sphere function:

Introduction

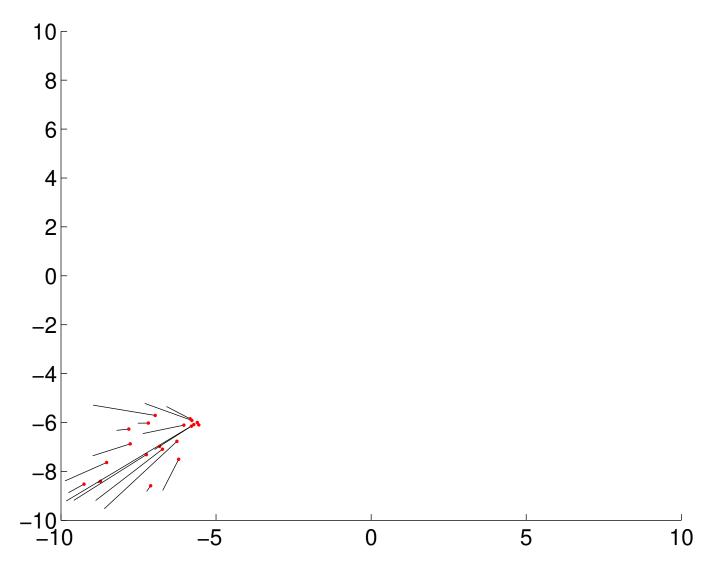
Differential Evolution

Swarm Intelligence

PSO

- PSO
- PSO Algorithm
- PSO: Demo

Ant Colonies



PSO on 2D Sphere function:

Introduction

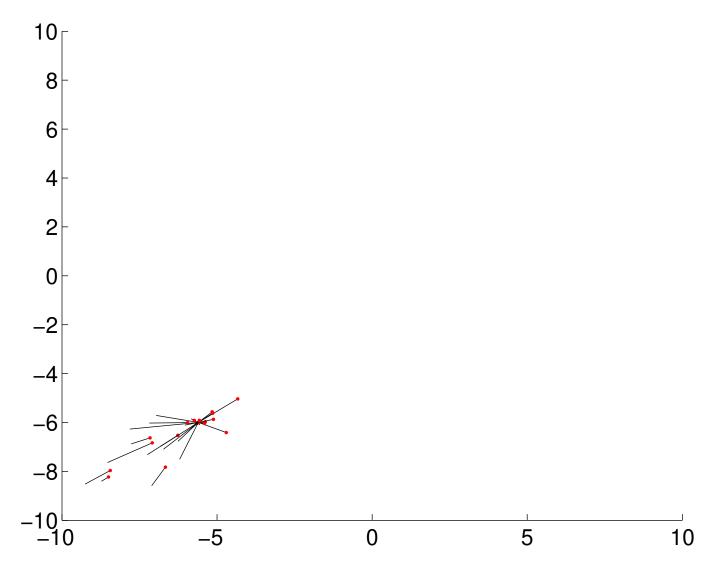
Differential Evolution

Swarm Intelligence

PSO

- PSO
- PSO Algorithm
- PSO: Demo

Ant Colonies



PSO on 2D Sphere function:

Introduction

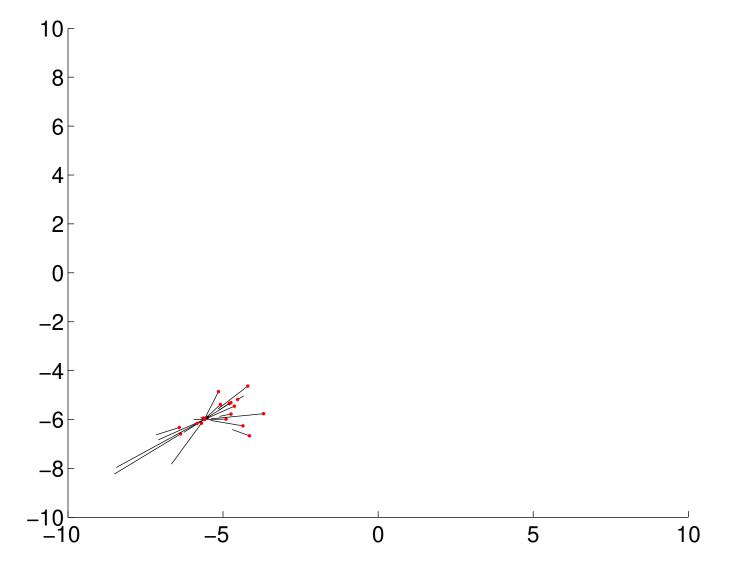
Differential Evolution

Swarm Intelligence

PSO

- PSO
- PSO Algorithm
- PSO: Demo

Ant Colonies



PSO on 2D Sphere function:

Introduction

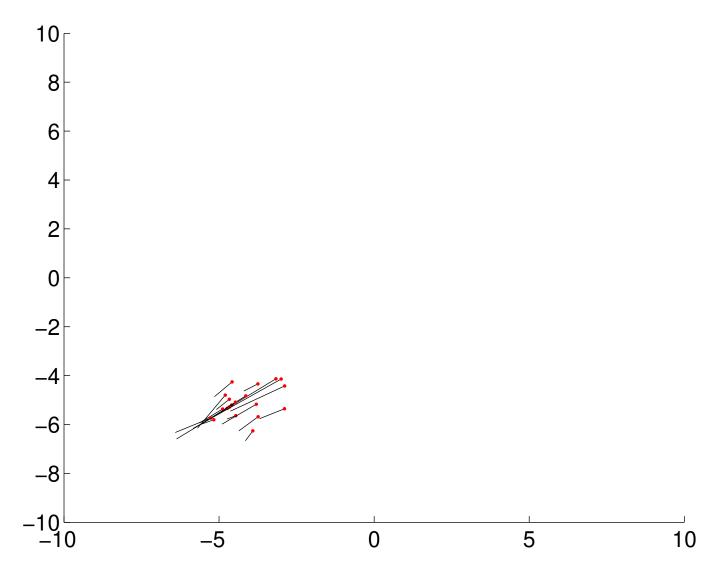
Differential Evolution

Swarm Intelligence

PSO

- PSO
- PSO Algorithm
- PSO: Demo

Ant Colonies



PSO on 2D Sphere function:

Introduction

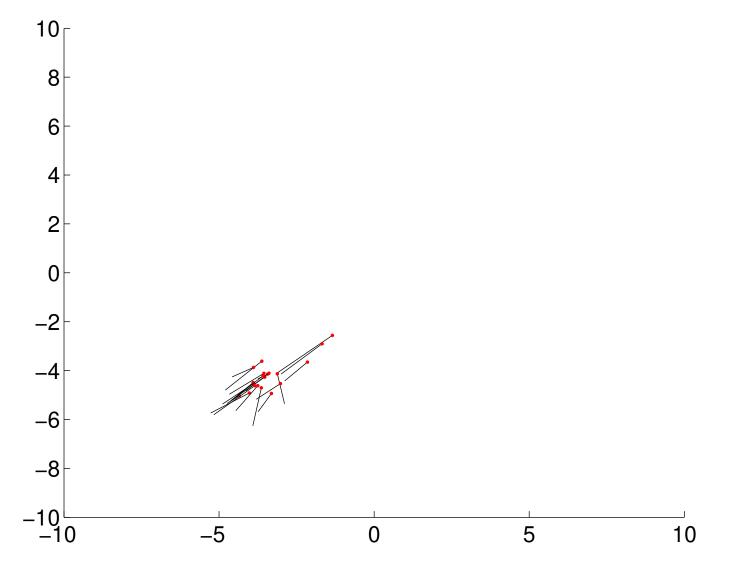
Differential Evolution

Swarm Intelligence

PSO

- PSO
- PSO Algorithm
- PSO: Demo

Ant Colonies



PSO on 2D Sphere function:

Introduction

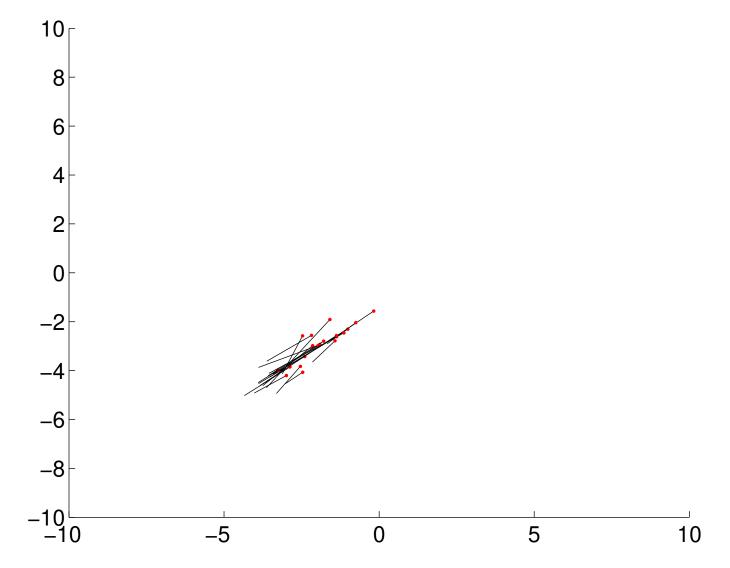
Differential Evolution

Swarm Intelligence

PSO

- PSO
- PSO Algorithm
- PSO: Demo

Ant Colonies



PSO on 2D Sphere function:

Introduction

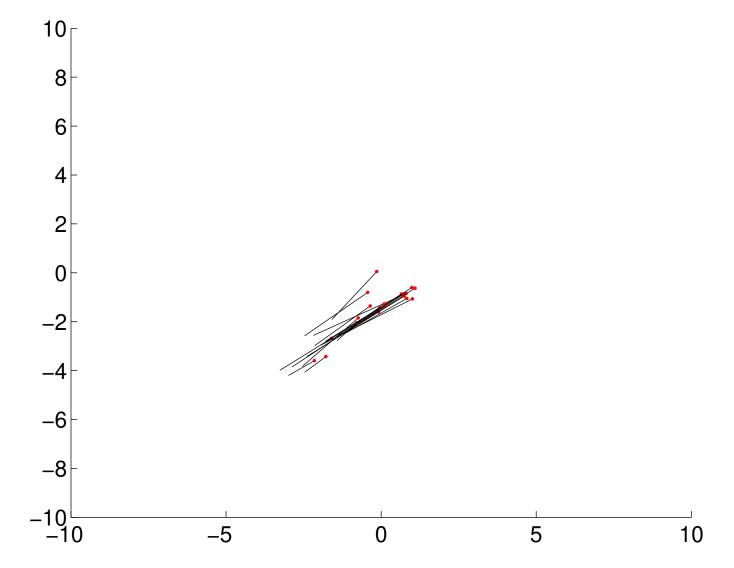
Differential Evolution

Swarm Intelligence

PSO

- PSO
- PSO Algorithm
- PSO: Demo

Ant Colonies



PSO on 2D Sphere function:

Introduction

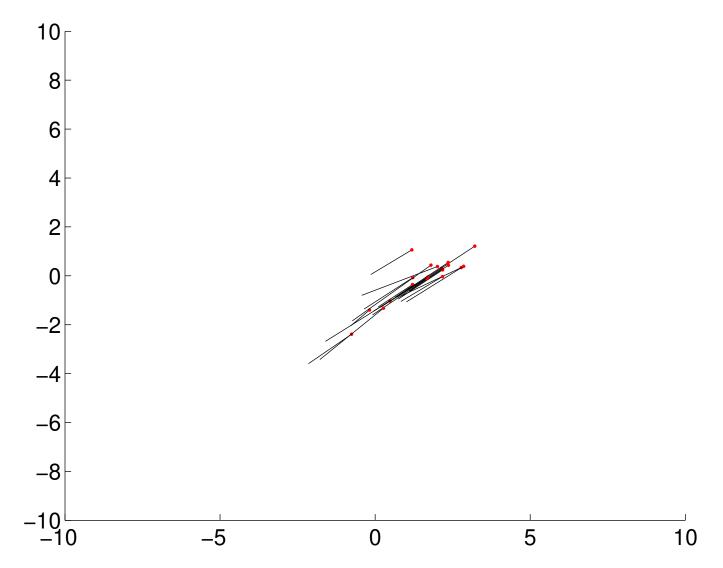
Differential Evolution

Swarm Intelligence

PSO

- PSO
- PSO Algorithm
- PSO: Demo

Ant Colonies



PSO on 2D Sphere function:

Introduction

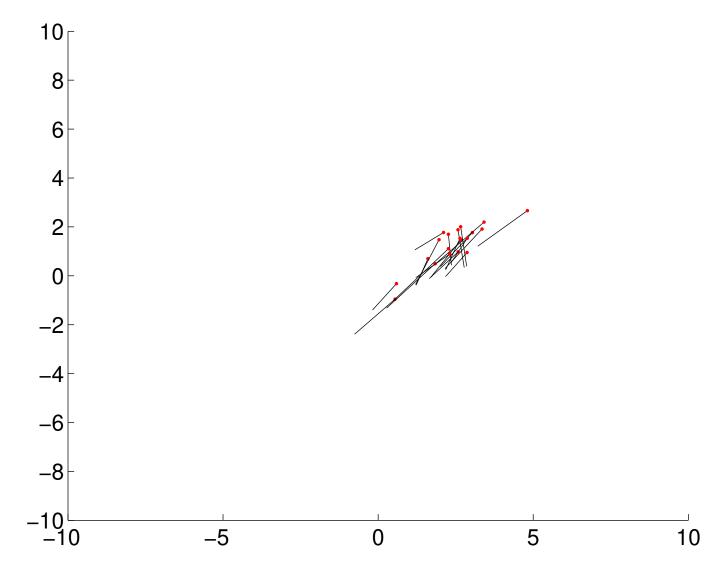
Differential Evolution

Swarm Intelligence

PSO

- PSO
- PSO Algorithm
- PSO: Demo

Ant Colonies



PSO on 2D Sphere function:

Introduction

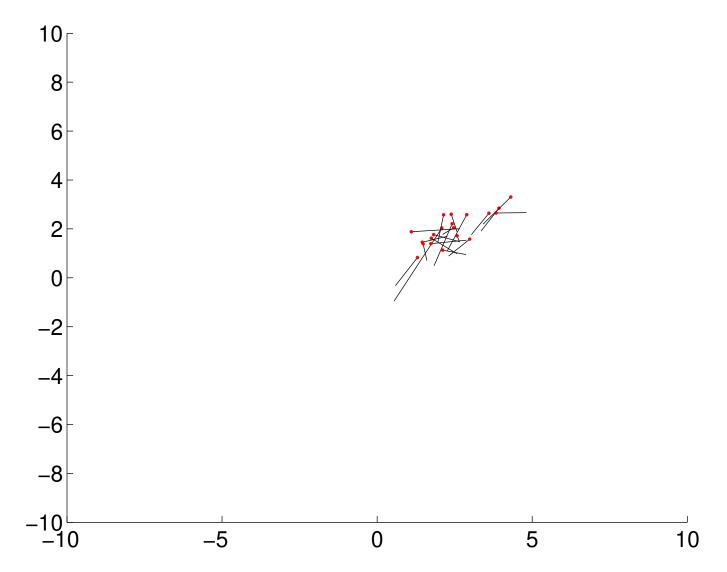
Differential Evolution

Swarm Intelligence

PSO

- PSO
- PSO Algorithm
- PSO: Demo

Ant Colonies



PSO on 2D Sphere function:

Introduction

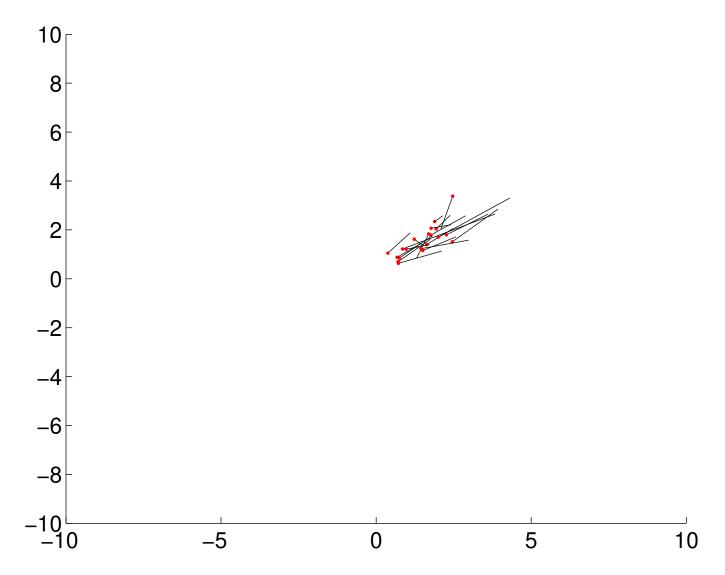
Differential Evolution

Swarm Intelligence

PSO

- PSO
- PSO Algorithm
- PSO: Demo

Ant Colonies



PSO on 2D Sphere function:

Introduction

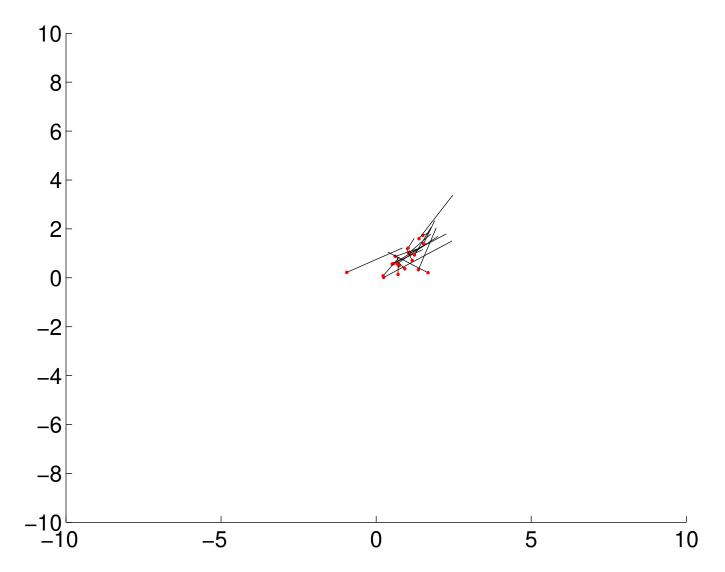
Differential Evolution

Swarm Intelligence

PSO

- PSO
- PSO Algorithm
- PSO: Demo

Ant Colonies



PSO on 2D Sphere function:

Introduction

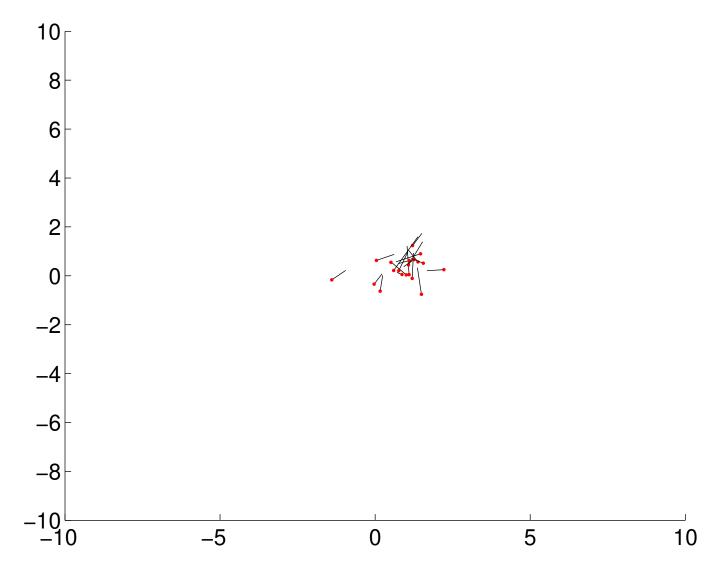
Differential Evolution

Swarm Intelligence

PSO

- PSO
- PSO Algorithm
- PSO: Demo

Ant Colonies



PSO on 2D Sphere function:

Introduction

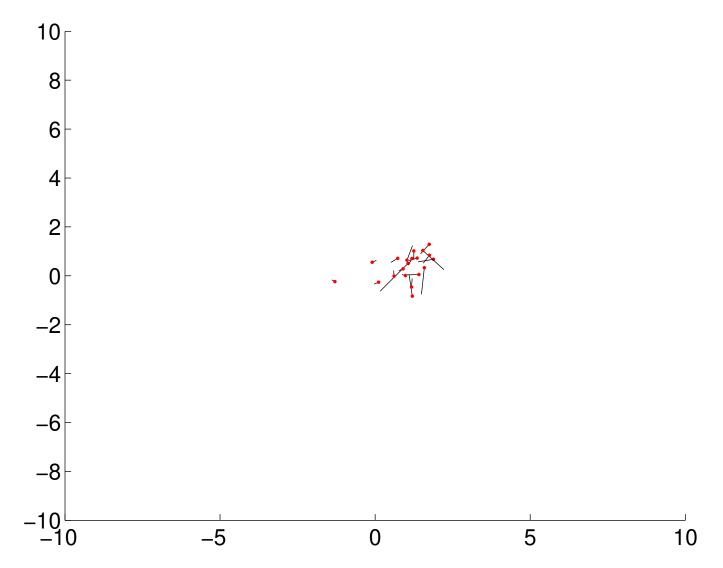
Differential Evolution

Swarm Intelligence

PSO

- PSO
- PSO Algorithm
- PSO: Demo

Ant Colonies



PSO on 2D Sphere function:

Introduction

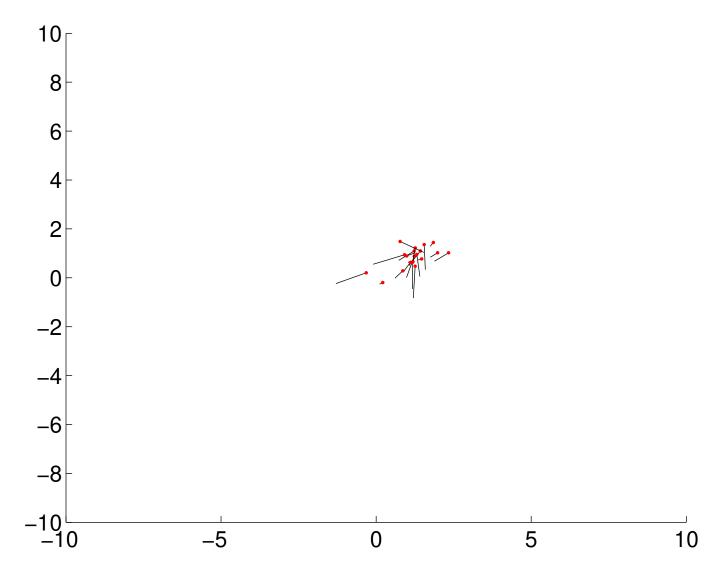
Differential Evolution

Swarm Intelligence

PSO

- PSO
- PSO Algorithm
- PSO: Demo

Ant Colonies



PSO on 2D Sphere function:

Introduction

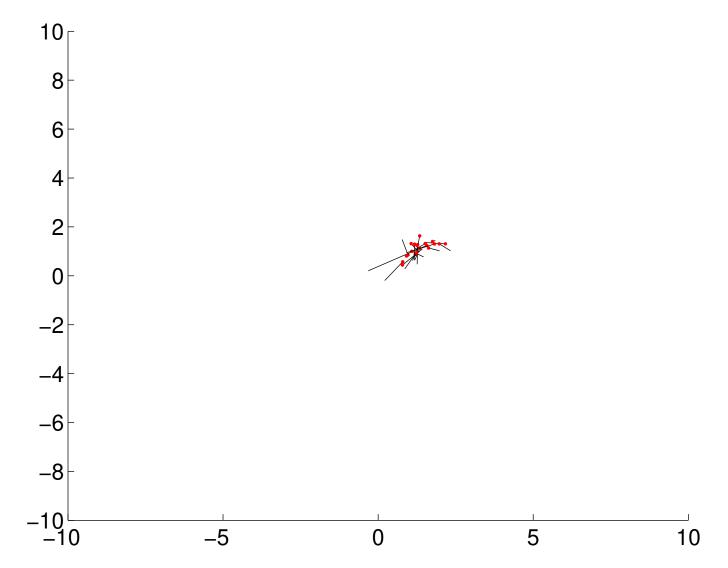
Differential Evolution

Swarm Intelligence

PSO

- PSO
- PSO Algorithm
- PSO: Demo

Ant Colonies



PSO on 2D Sphere function:

Introduction

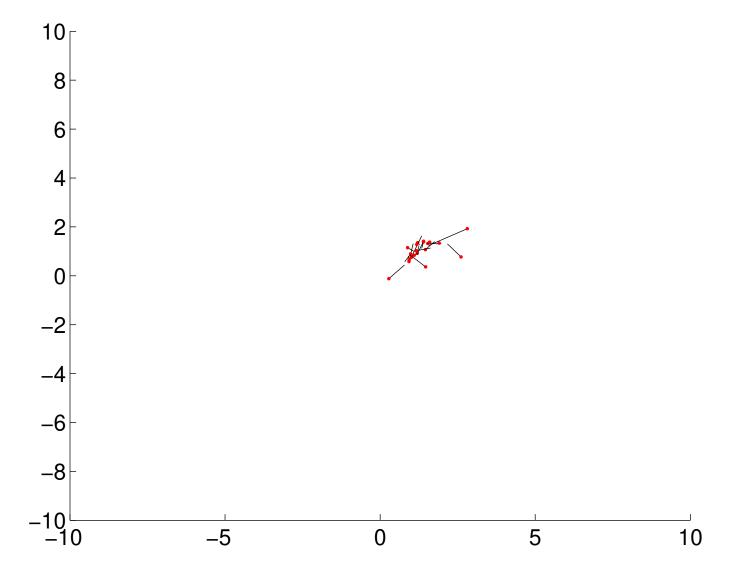
Differential Evolution

Swarm Intelligence

PSO

- PSO
- PSO Algorithm
- PSO: Demo

Ant Colonies



Ant Colonies

Differential Evolution

Swarm Intelligence

PSO

Ant Colonies

- Ant colonies
- ACO
- Algorithm parts
- Applications

Conclusions

Ant colonies

Ants:

- Social insects
- Ant colonies exhibit an intelligent behavior:
 - labor division, work coordination
 - complex nests
 - ability to find 'low-energy' path between the nest and a food source
- They communicate by
 - 1. physical contact (they touch with their antennas)
 - 2. interaction with the environment (pheromone trails)

"In nature, ants first search their environment randomly, until they find a source of food. Then, they return to the nest and lay a pheromone trail behind. Other ants are able to sense this pheromone trail and are able to follow it, and thus make it stronger. The pheromone evaporates; after the food source is exhausted, the random foraging reemerges."

Ant Colony Optimization

Ant Colony Optimization (ACO) is a class of stochastic optimization algorithms for solving combinatorial problems.

Introduction

Differential Evolution

Swarm Intelligence

PSO

Ant Colonies

- Ant colonies
- ACO
- Algorithm parts
- Applications

Conclusions

Similarities with the real ants:

- a colony of cooperating individuals
- pheromone trail
- indirect communication via pheromone (stigmergy)
- probabilistic decision making, local strategies

Differences from the real ants:

- (usually) discrete world (a graph)
- inner state, memory
- the amount of pheromone train can depend on the solution quality
- may use several types of pheromones

Ant Colony Optimization

Ant Colony Optimization (ACO) is a class of stochastic optimization algorithms for solving combinatorial problems.

Introduction

Differential Evolution

Swarm Intelligence

PSO

Ant Colonies

- Ant colonies
- ACO
- Algorithm parts
- Applications

Conclusions

Similarities with the real ants:

- a colony of cooperating individuals
- pheromone trail
- indirect communication via pheromone (stigmergy)
- probabilistic decision making, local strategies

Differences from the real ants:

- (usually) discrete world (a graph)
- inner state, memory
- the amount of pheromone train can depend on the solution quality
- may use several types of pheromones

Algorithm 3: ACO

```
1 begin
2 | Initialize the pheromone trails on graph edges: \tau_{ij}(0) = \tau_0.
3 | Set the initial position of ants in the graph.
4 | while not termination condition do
5 | foreach ant do
6 | Build a solution.
7 | Apply local search. // Optional, but used very often.
8 | Update pheromone trails.
```



Differential Evolution

Swarm Intelligence

PSO

Ant Colonies

- Ant colonies
- ACO
- Algorithm parts
- Applications

Conclusions

Algorithm parts

Ant *k* constructs a solution:

 \blacksquare Probability the ant will move from the current node i to neighboring node j is

$$p_{ij}^k(t) = \frac{(\tau_{ij}(t))^{\alpha}(\eta_{ij})^{\beta}}{\sum_{l \in \mathcal{N}_i^k} (\tau_{il}(t))^{\alpha}(\eta_{il})^{\beta}}, \text{kde } j \in \mathcal{N}_i^k,$$

where

 au_{ij} the amount of pheromone on edge $i \to j$, $\eta_{ij} = \frac{1}{d_{ij}}$ known heuristic information, α, β the influence of pheromone and heuristic information, respectively, \mathcal{N}_i^k a set of graph nodes accessible to ant k from node i.

- If $\alpha = 0$, only the heuristic information has an effect, and the solution construction reduces to greedy algorithm (nearest neighbor heuristic).
- If $\beta = 0$, only the pheromone trail has an effect. The paths found in the first iteration have a big influence. Moreover, if $\alpha > 1$, stagnation occurs very fast, i.e. all ants use the same (not optimal) path.
- Suggested values of parameters:

$$\alpha=1$$
 $\beta=2$ až 5 $p=0.5$ $m=n$ (TSP) $\tau_0=m/C^{nn}$ (TSP)

m is the number of ants, n is the number of cities, C^{nn} is the length of the path constructed by the nearest neighbor heuristic.

Differential Evolution

Swarm Intelligence

PSO

Ant Colonies

- Ant colonies
- ACO
- Algorithm parts
- Applications

Conclusions

Algorithm parts (cont.)

Pheromone update on all edges

- Done after all ants find their solution.
- Pheromone evaporation: $\tau_{ij} \leftarrow (1 \rho)\tau_{ij}$. ρ is the evaporation rate, allows to 'forget' bad paths.
- Pheromone deposition from all ants: $\tau_{ij} \leftarrow \tau_{ij} + \sum_{k=1}^{m} \Delta \tau_{ij}^{k}$, where

$$\Delta \tau_{ij}^k = \begin{cases} 1/C^k & \text{if ant } k \text{ used edge } i \to j \\ 0 & \text{otherwise,} \end{cases}$$

 C^k is the length of the path of ant k.

Other options:

- The best path is reinforced the most.
- The amount of deposited pheromone is proportional to the ant rank according to the path lengths (i.e., not directly proportional to path lengths).
- Update of pheromone trails as soon as an ant uses and edge.
- More types of pheromones can be used:
 - Ants can start from both the nest and the food source.
 - We can have more types of ants.

Differential Evolution

Swarm Intelligence

PSO

Ant Colonies

- Ant colonies
- ACO
- Algorithm parts
- Applications

Conclusions

Applications

ACO was able to find good solutions in the following tasks:

- Traveling salesperson problem
- Network routing, vehicle routing
- Scheduling
- Quadratic assignment problem
- Shortest common supersequence
- Classification rule learning
- ...

Advantages:

The graph topology can change in time (e.g. in routing problems)

Demo: ant foraging

Differential Evolution

Swarm Intelligence

PSO

Ant Colonies

Conclusions

Summary

Summary

- There are plenty of nature-inspired techniques, other than EAs.
- Swarm intelligence takes advantage of the emergent swarm behavior which is a result of simple interactions among individual swarm members.
- Particle swarm optimization primarily aims at real-parameter optimization, but there are also variants suitable for discrete spaces.
- Ant colonies are used to solve problems which can be reduced to search for the shortest path in a graph (combinatorial problems). Again, variants for real-parameter optimization exist (but are somewhat 'unnatural').