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Evolutionary Algorithms

Evolutionary Algorithms are general-purpose stochastic optimization algorithms.

Problem solution can be represented as binary string, real-valued string, string of
symbols, tree or graph.

Optimized objective function can be continuous/discrete, multimodal, nonlinear,
multidimensional, noisy.

The problem can involve multiple optimization objectives as well.

A typical evolutionary model:

Selection
Parents
[ Population ] Crossover
+
Mutation
Offspring

Replacement

Evaluation



Multiple Traveling Salesman Problem

MTSP - rescue operations planning
Given N cities and K agents,
find an optimal tour for each
agent so that every city is visited
exactly once.

The optimization objective is to
minimize the overall time spent
by the squad (i.e. the slowest
team member) during the
environment exploration.




Evolutionaty Algorithms for Dynamic Opt.

Dynamic optimizations - a class of problems whose specifications commonly termed
optimization objectives, and/or
problem-specific constraints, and/or
environmental parameters and problem settings

change over time, resulting in continuously moving optima.

Ex.: Scheduling, manufacturing, trading with stochastic arrival of new tasks, machine
faults, climatic change, market fluctuation, economic and financial factors.

The goal of optimization in dynamic environment is to
continuously track the optimum, or

find robust solutions that perform satisfactorily even when the environmental
parameters change.




Evolutionaty Algorithms for Dynamic Opt.




Application Areas of EAs

EAs are popular for their
simplicity,
effectiveness,
robustness.

Holland: "It’s best used in areas where you don’t really have a good idea what the solution might
be. And it often surprises you with what you come up with.”

Well suited for black-box optimization
No information about what the optimal solution looks like, no information about how to go
about finding it in a principled way.
Very little information about what the optimized function looks like.
Very little heuristic information to go on.
Brute-force search is out of the question because of the huge search space.

Applications
control, network optimization & routing problems,
engineering design, optimal resource allocation,
image processing, marketing,
planning & scheduling, credit scoring & risk assessment,

VLSI circuit design, and many others.



Human-Competitive Results

John R. Koza et al.: What's Al Done for
Me Lately? Genetic Programming's
Human-Competitive Results.
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. Creating a better-than-classical quantum algorithm for the Deutsch-Jozsa “early promise” problem?

. Greating a better-than-classical quantum algorithm for Grover's database search prodlem?

. Creating a quantum algorithm for the depth-two AND/OR query problem that is detter than any previously published result*s
. Creating a quantum algorithm for the depth-one OR query problem that is better than any previously published results

. Creating a protocol for communicating information through a quantum gate that was previously thought not to permit such communication®
. Greating a novel variant of quantum dense coding®
. Creating soccer-playing program that ranked in the middle of the field of 34 human-written programs in the Robo Cup 1998 competition”
. Greating four different algorithms for the transmembrane segment identification problem for proteins®?

. Creating a sorting network for seven items using only 16 steps®

. Rediscovering the Campbell ladder topology for lowpass and highpass filters?

. Rediscovering the Zobel “M-derived half section” and “constant K™ filter sections®

. Rediscovering the Cauer (elliptic) topology for filters®

. Automatic decomposition of the problem of synthesizing a crossover filter®

. Rediscovering a recognizable voltage gain stage and a Darlington emitter-follower section of an amplifier and other ¢ircults?

. Synthesizing 60 and 96 decibel amplifiers®

. Synthesizing analog computational circuits for squaring, cuding, square root, cube root, logarithm, and Gausslan functions?

. Synthesizing a real-time analog circuit for ime-optimal control of a robot?

. Synthesizing an electronic thermometer®

. Syntheslzing a voltage reference circuit®

. Greating a cellular automata rule for the majority classification prodlem that is better than the Gacs-Kurdyumov-Levin (GKL) rule

and all other known rules wiitten by humans®

Creating motifs that detect the D-E-A-D box family of proteins and the manganese superoxide dismutase family®
Syntheslzing topology for a PID-D2 (proportional, Integrative, derivative, and second derlvative) controller'®
Synthesizing topology for a PID (proportional, Integrative, and derivative) controller'®

Synthesizing analog clrcult equivalent to Phildrick clrcult'®

Synthesizing NAND clrcuit!®

Simultaneously synthesizing topelogy, sizing, placement, and routing of analog electrical circuits'®

Rediscovering Yagi-Uda antenna'™

Creating PID tuning rules that outperform a PID controller using the Ziegler-Nichols and Astrom-Hagglund tuning rules?
Creating three non-PID controllers that outperform PID controllers using the Ziegler-Nichols and Astrom-Hagglund tuning rules™
Rediscovering negative feedback'®

Synthesizing a low-voltage balun circuif'®

Synthesizing a mixed analog-digital variable capacitor circuit’®

Synthesizing a high-current load circuit™®

Synthesizing a voltage-current conversion circui'

Synthesizing a cubic signal generator’®

Synthesizing a tunable integrated active filter'®

Basis for claim
(criteria number)

2,5
2,5

1,6
1,6
1,6
1,6
7
2,67



Six Post-2000 patented analog circuits

John R. Koza et al.: What's Al Done for Me Lately? Genetic Programming's Human-Competitive
Results.

Invention Date Inventor Place Patent
Low-voltage balun 2001 Sang Gug Lee Information and Communications 6,265,908
(balance/unbalance) circuit University

Mixed analog-digital circuit for 2000 Turgut Sefket Aytur Lucent Technologies 6,013,958
variable capacitance

Voltage-current conversion circuit 2000 Akira Ikeuchi and Naoshi Tokuda Mitsumi Electric 6,166,529
Low-voltage high-current circuit for 2001 Timothy Daun-Lindberg and International Business Machines 6,211,726
testing a voltage source Michael Miller

Low-voltage cubic function generator 2000 Stefano Cipriani and Anthony A. Takeshian ~ Conexant Systems 6,160,427

Tunable integrated active filter 2001 Robert Irvine and Bernd Kolb Infineon Technologies 6,225,859



Automated Design of Electrical Circuits

Automated “What You Want Is What You Get” process for circuit synthesis.

Genetic programming used to synthesize both
the structure/topology, and
sizing (numerical component values)

for circuits that duplicate the patented inventions’ functionality.

Method

Starts from a high-level statement of a circuit’s desired behavior and
characteristics and only minimal knowledge about analogue electrical circuits.

Then, a fitness measure is created that reflects the invention’s performance and
characteristics — it specifies the desired time- or frequency-domain outputs,
given various inputs.

Employs a circuit simulator for analyzing candidate circuits, but does not rely
on domain expertise or knowledge concerning the synthesis of circuits.



Automated Design of Electrical Circuits

Method
For each problem, a test fixture consisting of appropriate hard-wired
components (such as a source resistor or load resistor) connected to the input
ports and desired output ports is used.
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WYWIWYG: Embryonic Electrical Circuit

The Mapping between Program Trees and Electrical Circuits

The growth process used for electrical circuits begins with a very simple embryonic
electrical circuit and builds a more complex circuit by progressively executing the
functions in a circuit-constructing program tree.

The embryonic circuit used on a particular problem depends on the number of input
signals and the number of output signals.
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WYWIWYG: Fitness Assignment

Circuit-constructing program tree evaluation in the population begins with its
execution.

0 This execution applies the functions in the program tree to the very simple
embryonic circuit, thereby developing the embryonic circuit into a fully
developed circuit.

0 A netlist that identifies each component of the circuit, the nodes to which that
component is connected, and the value of that component is then created.

Circuit is then simulated using SPICE (an acronym for Simulation Program with
Integrated Circuit Emphasis) to determine its behavior.

Fitness measure may incorporate many characteristic or combination of
characteristics of the circuit, including

the circuit's behavior in the time domain,

0 its behavior in the frequency domain,
O its power consumption,
0O or the number, cost, or surface area of its components.



GP Control Parameters Setup

Population size: 640,000

Note, this is far from
being a brute force
search.

Pcrossover = 89%

Pmutation =1%

Preproduction = 10%
Maximum 200 nodes for each value-producing branch o O

Parallel Parsytec computer system o

0 64 x 80 MHz Power PC 601 processors arranged in a toroidal mesh
Parallel GA

0  deme size: 10,000

0 64 demes

0 Migration rate: 2%



Low-Voltage Balun Circuit

A balun (balance/unbalance) circuit’s purpose is to produce two outputs from a
single input
each having half of the input’s amplitude;

one output should be in phase with the input while the other should be 180
degrees out of phase with the input, and both should have the same DC offset.

The fitness measure was based on

a frequency sweep analysis designed to measure the magnitude and phase of the
circuit’s two outputs and

a Fourier analysis designed to measure harmonic distortion.



Genetically Evolved Low-Voltage Balun

Circuit

Evolved circuit is roughly a fourfold improvement over the patented circuit

in terms of the fitness measure.
It is superior both in terms of its frequency response and harmonic distortion.

Test fixture
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John R. Koza et al.: What's Al Done for Me Lately? Genetic

Programming's Human-Competitive Results.




Voltage-Current Conversion Circuit

Voltage-current conversion circuit’s purpose is to take two voltages as input and to
produce as output a stable current whose magnitude is proportional to the difference
between the voltages.

Fitness measure is based on four time-domain input signals.

Genetically evolved circuit (entirely different than the patented circuit)

has roughly 62 percent of the average (weighted) error of the patented circuit
and

outperformed the patented circuit on additional previously unseen test cases.
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Mixed Analog-Digital Register-Controlled
Variable Capacitor

Mixed analog-digital variable capacitor circuit has a capacitance controlled by the
value stored in a digital register.

Fitness measure was based on the error accumulated by 16 combinations of time-
domain test signals ranging over all eight possible values of a 3-bit digital register for
two different analog input signals.

The evolved circuit performs as well as the patented circuit.

Eyolved circuit Patented circuit
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HUMIES

Annual “HUMIES” awards for human-competitive results
produced by genetic and evolutionary computation held at
the Genetic and Evolutionary Computation Conference

(GECCO)

Entries present human-competitive results that have been produced by any form of
genetic and evolutionary computation (including, but not limited to genetic
algorithms, genetic programming, evolution strategies, evolutionary programming,
learning classifier systems, grammatical evolution, gene expression programming,
differential evolution, etc.) and that have been published in the open literature.

Human-competitive results awarded in areas:

- Analog circuit design - Game strategies

- Quantum circuit design - Image processing

- Physics - Antenna design

- Digital circuits/programs - Classical optimization
- Chemistry - ...

http://www.genetic-programming.org/combined.html



2004 Human-Competitive Awards
in Genetic and Evolutionary Computation

http://www.genetic-programming.org/gecco2004hc.html

Jason D. Lohn, Gregory S. Hornby, Derek S. Linden: An Evolved Antenna for
Deployment on NASA's Space Technology 5 Mission

Lee Spector: Automatic Quantum Computer Programming: A Genetic
Programming Approach

Alex Fukunaga: Evolving Local Search Heuristics for SAT Using GP
Hod Lipson: How to Draw a Straight Line Using a GP: Benchmarking
Evolutionary Design Against 19th Century Kinematic Synthesis

Bijan Khosraviani, Raymond E. Levitt, John R. Koza: Organization Design
Optimization Using Genetic Programming

Adrian Stoica, Ricardo Zebulum, Didier Keymeulen, Michael Ian Ferguson, Vu
Duong, Xin Guo: Taking evolutionary circuit design from experimentation to
implementation: some useful techniques and a silicon demonstration



The winner of Humies 2004

¢ Three nanosats (20in diameter).
* Measure effect of solar activity on
the Earth's magnetosphere.

Graphite Magnetometer —= =
Composite |
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ConstellationAntennas

© Jason D. Lohn, Gregory S. Hornby, Derek S. Linden: Human-Competitive Results: Evolved Antennas for Deployment on NASA’s Space Technology 5 Misson



Evolved Antennas for Deployment on NASA's
Space Technology 5 Mission

Original ST5 Antenna Requirements ST5 Quadrifilar Helical Antenna
01 Transmit: 8470 MHz 1 designed by a team of human
1 Receive: 7209.125 MHz designers

O Gain:
>=(0dBic, 40 to 80 degrees
>=2dBic, 80 degrees
>=4dBic, 90 degrees

1 50 Ohm impedance

1 Voltage Standing Wave Ratio (VSWR): &
< 1.2 at Transmit Freq 3
< 1.5 at Receive Freq

01 Fitinside a 6” cylinder

© Jason D. Lohn, Gregory S. Hornby, Derek S. Linden: Human-Competitive
Results: Evolved Antennas for Deployment on NASA’s ST5 Misson



Evolved Antenna
for Space Technology 5 mission

Branching EA: Antenna Genotype

Genotype is a tree-structured encoding that specifies the construction of a wire
form

Genotype specifies design of 1 arm in 3D-space:
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Branching in genotype results in branching
in wire form

Feed
Wire

© Jason D. Lohn, Gregory S. Hornby, Derek S. Linden: Human-Competitive Results: Evolved Antennas for Deployment on NASA’s Space Technology 5 Misson



Evolved Antenna
for Space Technology 5 mission

Branching EA: Antenna Construction Commands
forward(length radius)
rotate_x(angle)
rotate_y(angle)
rotate_z(angle)

Forward() command can have 0,1,2, or 3 children.
Rotate_x/y/z() commands have exactly 1 child (always non-terminal). 6 6

Fitness function (to be minimized):
F = VSWR_Score * Gain_Score * Penalty_Score



Evolved Antenna
for Space Technology 5 mission

15t Set of Genetically Evolved Antennas

© Jason D. Lohn, Gregory S. Hornby, Derek S. Linden: Human-Competitive Results: Evolved Antennas for Deployment on NASA’s Space Technology 5 Misson

Non-branching: Branching:
ST5-4W-03 ST5-3-10



Evolved Antenna
for Space Technology 5 mission

2nd Set of genetically evolved antennas for new mission requirements

© Jason D. Lohn, Gregory S. Hornby, Derek S. Linden: Human-Competitive Results: Evolved Antennas for Deployment on NASA’s Space Technology 5 Misson

EA 1 - Vector of Parameters EA 2 — Constructive Process



Evolved Antenna
for Space Technology 5 mission

Conclusion
Meets mission requirements
Better than conventional design
Successfully passed space qualification
First Evolved Hardware in Space when mission launched in 2005

Direct competition: The antenna designed by the contracting team of human
designers for the Space Technology 5 mission - which won the bid against several
competing organizations to supply the antenna - did not meet the mission
requirements while the evolved antennas did meet these requirements.

Evolutionary design:
Fast design cycles save time/money (4 weeks from start-to-first-hardware)
Fast design cycles allow iterative “what-it”
Can rapidly respond to changing requirements
Can produce new types of designs
May be able to produce designs of previously unachievable performance



2007 Human-Competitive Awards
in Genetic and Evolutionary Computation

http://www.genetic-programming.org/hc2007/cfe2007 html

Steven Manos et al.: Evolutionary Design of Single-Mode Microstructured
Polymer Optical Fibres using an Artificial Embryogeny Representation

Ami Hauptman, Moshe Sipper: Evolution of an Efficient Search Algorithm for
the Mate-In-N Problem in Chess

Jaume Bacardit et al.: Automated Alphabet Reduction Method with
Evolutionary Algorithms for Protein Structure Prediction

Xavier Llora et al.: Towards Better than Human Capability in Diagnosing
Prostate Cancer Using Infrared Spectroscopic Imaging



Evolutionary Design of Single-Mode
Microstructured Polymer Optical Fibres

Steven Manos, Leon Poladian, Maryanne Large: Evolutionary Design of
Microstructured Polymer Optical Fibres using an Artificial Embryogeny
Representation

reference: http://www.genetic-programming.org/hc2007/cfe2007.html

Applications of optical fibres
Long distance telecommunications
Computer networks
Automotive and aeronautical
Electrical current measurement
Temperature and strain sensing
Medical (lasers and endoscopy)

The behaviour of light depends on this
internal structure

New functionality = more complex designs?



http://www.genetic-programming.org/hc2007/cfe2007.html

Single-moded fibres

Typical hexagonal design First mode (confined) Second mode (leaky)
50 50

£o
>
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X (um) X (um)

y (um)

Standard design since
the early 1990°s

Single-moded operation

Single-moded fibres support the propagation of only the fundamental mode.

These fibres are important in applications such as high-bandwidth communications,
temperature sensing and strain sensing.

By discovering fibres that don’t have a typical hexagonal design, we can start doing more
interesting things with them.



Evolved single-mode designs
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All designs have confined fundamental modes with [I_; < 10! dB/m, with losses more
typically being I, ; <10 dB/m.
The loss of the second mode [ ,>10* dB/m in all cases.

All single-moded, yet phenotypically different.



Manufactured single-mode MPOF

Evolved designs are simpler than previous designs, and easier to manufacture.

Provided us with a rich set of never before seen single-moded microstructured fibre
designs to investigate further.



A different fithess function

Highly multi-moded fibres designed for use in LANs and other short-distance high-
bandwidth applications.

‘GIMP 1’

| Hand-designed fibre

‘GIMP 3’ " ,
Patented GA-designed

~ fewer holes, easier to
' manufacture.




How to Draw a Straight Line Using a GP

Hod Lipson: How to Draw a Straight Line Using a GP: Benchmarking Evolutionary
Design Against 19th Century Kinematic Synthesis

This entry presents the application of genetic programming to the synthesis of
compound 2D kinematic mechanisms, and benchmarks the results against one of
the classical kinematic challenges of 19th century mechanical design.

Test Case: The Straight Line Problem

The straight-line problem seeks a kinematic mechanism that traces a straight line
without reference to an existing straight line.

For example, a circle is easy, a line is a challenge!




How to Draw a Straight Line Using a GP

Some key straight-line mechanisms

Silverster-Kempe’s Peaucelier Chebyshev Robert
(1877) (1873) (1867) \ (1841) )

See
http://kmoddl.library.cornell.edu

C” c/
Chebyshev Chebyshev-Evans
(1867) (1907)



How to Draw a Straight Line Using a GP

Top down encoding of a mechanism

L

Start with Embryo with desired # of

DoF, e.g. a four-bar mechanism (1
DoF)

Two variation operators
maintain DoF

~_/
/\ —(D@®—
Example: A tree that constructs this 1-

E.g. Transform dyad into tryad DoF compound mechanism




How to Draw a Straight Line Using a GP

Comparison of mechanisms can be difficult
Equivalent mechanisms may appear very different
Masked by excess and redundant topology

Two transformations allow moving in “neutral pathways” of mechanisms
Rigid diagonal swap
Redundant dyad removal/addition

\

Delete
excess
dyad




How to Draw a Straight Line Using a GP

Used GP with Top-down tree encoding and 2-bar or 4-bar embryo
Population size: 100
Crossover 90%
Mutation 10% (Node positions, Operator types)

Selection: Stochastic Universal Sampling

Evaluation of an evolved straight-line mechanism

The mechanism is actuated at an arbitrary handle and the aspect ratios of bounding boxes of
node trajectories are measured.

One node of the evolved machine on the left traces a curve that is linear to 1:5300 accuracy.
The evolved mechanism on the right traces a curve that is linear to 1:28340 accuracy

 Actuation mode Linearity

“handle”) 1283400

- '

A Al
Linearity Boundin
: g box
1:5300 around trace T
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How to Draw a Straight Line Using a GP

A typical run - each dot represents an evaluated individual
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Some results
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Linearity 1:4979



Some results

Linearity 1:5300

Infringes on Robert’s Linkage (1841)
Published: Kempe A. B., (1877), How To Draw A Straight Line, London




Some results




Some results

Linearity 1:28340




2005 Human-Competitive Awards in
Genetic and Evolutionary Computation cont.

Richard J. Terrile et al.:

Evolutionary Computation Technologies for the Automatic Design of
Space Systems,

Evolutionary Computation applied to the Tuning of MEMS gyroscopes,

Multi-Objective Evolutionary Algorithms for Low-Thrust Orbit Transfer
Optimization

Moshe Sipper et al.: Attaining Human-Competitive Game Playing with
Genetic Programming (Backgammon Players, Robocode Players, Chess
Endgame)

Moshe Sipper: Evolved to win
(http://www.moshesipper.com/evolved-to-win.html)

Uli Grasemann, Risto Miikkulainen: Effective Image Compression using
Evolved Wavelets


http://www.moshesipper.com/evolved-to-win.html

Moshe Sipper: Evolved to Win

Board games
Checkers
Chess endgames

Backgammon

Simulation games
Robocode
Robot Auto Racing Simulator

Puzzles
Rush hour W T
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Learning Game Strategies:
FreeCell

GP used to evolve heuristics to guide staged deepening
search for the hard game of FreeCell.

Trained and tested on 32,000 problems —known as
Microsoft 32K —all solvable but one.

FreeCell requires an enormous amount of search, due
both to long solutions and to large branching factors.

It remains out of reach for optimal heuristic search algorithms, such as variants of A*.

FreeCell remains intractable even when powerful enhancement techniques are employed,
such as transposition tables and macro moves.

The previous top gun is the Heineman’s FreeCell solver
Heineman’s staged deepening algorithm, based on a hybrid A* / hillclimbing search

Heineman’s heuristic

solved 96% of Microsoft 32K.

Source: Elyasaf, A. at all.: Evolutionary Design of FreeCell Solvers. 2013



Automatically Finding Patches
Using GP



Automatically Finding Patches Using GP

Fully automated GP-based method for locating and repairing bugs in software
Set of testcases consists of both
a set of negative testcases — that characterize a fault
A set of positive testcases that encode functionality requirements.

Special GP representation of evolved repaired programs.

An abstract syntax tree (AST) including all of the statements in the program
(CIL toolkit for manipulating C programs)

A weighted path through the program — a list of pairs [statement, weight]
where the weight is based on that statement’s occurences in the tescases.

Genetic operators are restricted to AST nodes visited when executing the
negative testcases.

Genetic operators realize insertion, deletion, and swapping program
statements and control flow.
Insertions based on the existing program structures are favored.

After a primary repair that passes all negative and positive testcases has been
found, it is further minimized w.r.t. the number of differences between the
original and repair program.



Automatically Finding Patches Using GP

Example: Euclid’s greatest common divisor

Weimer, W. et al.: Automatically Finding Patches Using Genetic Programming

Original program

1 [/* requires: a >= 0, b >= 0 */
2 woid ged(int a, int b) {

- if (a == 0) {

- printf("%d", b);

}
while (b != 0)
T if (a > b)
a=a- b;
else
. b=D>b- a;
1 printf ("sd", a);

2 exit (0);



Automatically Finding Patches Using GP

Example: Euclid’s greatest common divisor

Weimer, W. et al.: Automatically Finding Patches Using Genetic Programming

Original program

void ged(int a,
if (a == 0) {
printf ("sd",
}
while (b != 0)

if (a > b)
a=a-b;

else
b=Db- a;

int b)

b);

printf ("sd", a);

exit (0);
}

1 [/* requires: a >= 0, b >= 0 */

{

Primary repair

void gcd 3 (int a,

if (a == 0) {

int b)

printf("sd", b);

exit (0);
a=a- b;
}
while (b !'= 0)
if (a > b)
a=a- b;
else
b=>b- a;

printf("sd", a);

exit (0);

{

//
//

inserted
inserted

generated given the bias towards modifying lines that are involved in producing the
faults and the preference for insertions similar to existing code.



Automatically Finding Patches Using GP

Example: Euclid’s greatest common divisor

Weimer, W. et al.: Automatically Finding Patches Using Genetic Programming

Original program

1 [/* requires: a >= 0, b >= 0 */

2 woid ged(int a, int b)
3 if (a == 0) {
4 printf("sd", b);

}

£ while (b !'= 0)

T if (a > b)

: a=a- b;

9 else
1C b=Db- a;
11 printf("sd", a);
12 exit (0);

13}

{

Primary repair

void ged _3(int a, int b) {

if (a == 0) {
printf ("%d", b);
exit (0); // inserted
i —; gl el
} After repair minimization
while (b !'= 0)
if (a > b)
a=a - b;
else
b=b - 3;
printf("sd", a);
exit (0);

generated given the bias towards modifying lines that are involved in producing the
faults and the preference for insertions similar to existing code.



Automatically Finding Patches Using GP

10 different C programs of different size totaling 63,000 lines of code (LOC)

Positive Initial Repair Minimized Repair
Program LOC Tests | Path)| Time | fithess | Success | Size | Time | fithness | Size
gcd 22 | 5x human [.3 149 s 41.0 54% 21 45 4 2
uniq 1146 | 5x fuzz 81.5 325 9.5 100% 24 2s 6 4
look-u 1169 | 5x fuzz 213.0 42 s 1.1 99% 24 3s 10 [1
look-s 1363 | 5x fuzz 32.4 515 8.5 100% 21 45 5 3
units 1504 | 5x human | 2159.7 107 s 55.7 7% 23 2s 6 4
deroff 2236 | Sx fuzz 2514 129 s 21.6 07 % 61 2s 7 3
nullhttpd 5575 | 6Xx human | 768.5 502 s 79.1 36% 71 76 s 16 5
indent 9906 | 5x fuzz 1435.9 5335 95.6 T9% | 221 135 13 2
flex 18775 | 5x fuzz | 3836.6 233 s 334 5% 52 7s 6 3
atris 21553 | 2x human 34.0 69 s 13.2 82% 19 I1s 7 3
average 881.4 | 184.7 s 36.9 387% | 53.7 || 1245 8.0 4.0

Weimer W. et al.: Automatically Finding Patches Using Genetic Programming
Forrest S. et al.: A Genetic Programming Approach to Automated Software Repair, GECCO 2009




i Evolutionary Design of Image
- Filters
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- Evolutionary design of image filters

FACULTY
OF INFORMATION
TECHNOLOGY

Input image

Image
filter

Can EA design an image filter which exhibits better filtering properties and lower
implementation cost w.r.t. conventional solutions?

Target domain: filters suppressing shot noise, Gaussian noise, burst noise, edge
detectors, ...



Image filter in CGP

Input image Filtered image
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Sekanina L.: EVOAISP 2002
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fll= N Burst Noise Filtering

Image corrupted by
5% impulse bursts

avE R

VASICEK, BIDLO, SEKANINA: Evolution of efficient real-time non-linear image filters for FPGAs. Soft Computing. 17(11), 2013



Symbolic Regression for RL



Symbolic Regression

« Fitting models in the form of mathematical expressions to a set of
discrete data points

-3.141592654 -30 -23.34719731 f = -15.42978401 + 2.42980826 * ((x1 — (x1 *
-2.932153143 -30 -22.67195916 -1.49416733 + x2 * 0.51196778 + 0.00000756)) +
-2.722713633 -30 -22.07798667 (sgrt(power((x1 — (x1 * -1.49416733 + x2 *
-2.513274123 -30 -21.63117778 0.51196778 + 0.00000756)), 2) + 1) — 1) / 2) ...

-2.303834613 -30 -21.2992009




Reinforcement Learning Framework

Dynamic system of interest is described by the state transition function
X+1 = [ (ks Uk)
with

state: xg, Xk 41 €EXcR"
action:u, €U R™
as a generative model given by a numerical simulation of complex differential equations.

Control goal is specified through a reward function which assigns a scalar reward 7,4 € R
to each state transition from xj to xj.,q:

Tht1 = P(Xk, Upy X 41)

This function typically calculates the reward based on the distance of the current state x;,
from a given reference state x, that should be attained.

Goal of RL s to find an optimal control policy m which maximizes

VT (x) = E{Z v plag, w(wq), wir)

i=0

&rog = &, W} ,forall x € X.
Optimal V-function computed by solving the Bellman optimality equation

V*(r) = max {P(st (), f(x,u)) + YV (f(, “))}

ueld



Single Node Genetic Programming (SNGP)

« Graph-based GP technique
« Evolves a linear population of individuals, each representing a single program node

« Program node types
-  Terminals — variables, constants
 Functions

[ N

0 1 2 3 4 5 6 7 3 9 10 11
u X + - # 4+ ,{ * + - )f + *
Succ 3 0,0 0,1 0,0 0,3 1,3 0,3 0,4 U,x 5,6 6,8 2,8
Pred 3 2,5 11 (456)| 7,8 9 9,10 - 10,11 - - -
u X + - # + ,{ * + - )f + *
Succ - oo(fo01f{00|03]| 13|03|04]|00(56]|68] 28
Pred 3 2,5 11 (4,56 7,8 9 9,10 - 10,11 - - -

(+) (1)
(1 () — (] ()

® O @ © ® =
ONO O ®
© @




Learning Transition Function



Inverted Pendulum

« The pendulum system consists of a weight of mass m attached to an actuated
link that rotates in a vertical plane.

« The state vector is x = [a, @], where « is the angle and « is the angular velocity.

« The control input is the voltage w.

» The control goal is to stabilize the pendulum in the unstable equilibrium x,;., =
[, 0]7.




Experiments with Real Inverted Pendulum

Data were collected while applying random input to the system.




Experiments with Real Inverted Pendulum




Experiments with Real Inverted Pendulum

Example of the refined model

1 = 0.99997 o 4 0.04872 6y, + 0.03432 14y, —
— 0.00293 sign(6y — 0.50985) 4-0.00293 cos oy ux )+
+0.00293 cos(og ) +0.01192sign () — 0.14159 sin( oy )+
+0.00041 (sign(cy ) + 2.8284) (sign(oy 1y ) + o sin(ay ) —38.199)—
— 0.00008 cos(u 425.0) (1 — 1.0 cos(oy ) + (o — 2.6069)% +25.0)—
— 0.00517 sin(2.25u + 56.25) cos(oy — 0.79209 sin(céy ) )—
— 0.00241 ¢y, cos(oy.) +0.00001 cos (2.0 ot 1) (o4 — 2.6069)*+
+0.04182,

01 = 0.8041 6 —0.01419 0y + 1.2414 1 4+ 0.10012 sign(cos( oy ) ) —
—0.24194sign(1.0sign (e +1.118) — 6y — cos(oy ) + 1.0sign(cy ))+
+0.00162 sin(6.9282 oy + 1.1995 sin(u ) ) +0.10012 cos( oy )—
—0.06341 cos(uy ) —0.1117 sin(sin(cos(o ) ) + oy sin(uy ) )+
+ 0.06341sign(uy ) —5.1187 sin(oy ) +0.06341 sin(cy ) —

— 0.06341 cos(sin(6y )) (sin(og sin(uy)) +sign(éy))+

+ 0.1117 & (cos(sin(cos(oy ))) — 1.0 sin(sin(cos(og))) )+

+ 0.08627 (cos(oy ) — 1.0) (sin(ug ) — 0.9093)—

—0.22817 sin(6.9282 0y + 1.1995 sin(uy.) ) (cos (i )* + cos(ay ) —
— 1.0)+0.00163 ¢y sin(oy) (6 — 1.0) +0.01791




Fitting V and Policy function

Task: Finding a symbolic model from a set of discrete samples of known numerical
approximation of the V and policy functions.

Numerical approximator Symbolic V function




Learning V function
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EAs for Agents Clustering

Problem: Static agents clustering within multi-agent system from messages sent and
received between every pair of agents.
Goal: To find a partitioning of agents into N clusters such that
communication within clusters is maximized and inter-cluster communication
is minimized and
the clusters are of similar size in order to efficiently distribute agents across
multiple execution units.

B10(4.0) Storage! B22(3.0)

n
BA1E.0)
+1 Boga)

B12¢5.0) 58

f

Storage?

Example: MAS, where agents are used for control
of the transportation of products or discrete
materials on the factory’s shop floor using a
network of conveyor belts.
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[ﬁj
34.0) —
RS
Robot?
Ral
i BE5.0)

Robot2

partitioning of 67 agents into 4 clusters
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+ B3(4.0)
= 0 B30(28.0) B28(3.0
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oammsrel il (] | ) <
sz e — 15

Copyright © 2007 Rockwell Automation, Inc. All rights reserved




EAs for Agents Clustering

Example: MAS, where agents are used for control of the transportation of products or
discrete materials on the factory’s shop floor using a network of conveyor belts.

Goal is to find an optimal partitioning of 67 agents into 4 clusters.

MAS: The material-handling application
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MPOEMS: Initialization of SB

clusters sizing
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MPOEMS: After 1st iteration

clusters sizing
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MPOEMS: After 2nd iteration

clusters sizing
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MPOEMS: After 5th iteration

clusters sizing
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MPOEMS: After 10th iteration

clusters sizing
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MPOEMS: After 20th iteration

clusters sizing
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MPOEMS: Final SB after 100 iterations

clusters sizing

o
=
1

b
o

e
L=

Loy
o
1

Ll
L=
I

[
n

]
=
1

—i
4 |
1

=k
L)
1

on
1

L)

=
[ap]

0.7

08
internal communication




MmPOEMS: Final SB

clusters sizing
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Facility Layout
Design Support Tool
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Facility Layout Optimization

Goal - find a layout optimal w.r.t. the given objective function
minimize a size of the hall partition occupied by production lines

minimize overall length of communications among connected production lines

Floorplanning — generally an NP-complete problem
very hard solve to optimality

computational complexity grows exponentially with the size of the problem

(meta)heurististics needed
Local search
Evolutionary algorithms
Hybrid approaches = EA + LS
NSGA-II



Floorplanning

Problem: Floorplanning also known as 2D rectangle packing problem.

Given: A set of N unoriented blocks (rectangles) with fixed dimensions.

Goal: To place all blocks on a plane so that there is no overlap between any pair
of rectangles and the bounding rectangular area is minimal (or the dead space is

minimal).

Ex.: Blocks {a, b, ¢, d, e, f} should be placed in a rectangular
area so that the bounding rectangular area is minimal

(or the dead space, shown in gray, is minimal).

Prototype solution (floorplan)
is encoded by B*-Tree non-slicing
representation.

Each tree is expressed by a linear
string of symbols in a prefix not.

Optimization works on linear structs.

Om O
©

L)

floorplan

B*-tree representation




VIDEO

Floorplanning

Visualization of a POEMS run on data with 300 blocks.

By V. Hordéjcuk.



Input: Hall

B Unavailable space

- Handling space

Hall gate




Input: Workstations

- Working area

Handling area

O Input point
® Output point
® Pivot

Mobility
Free — position and rotation randomly initialized, both the position and rotation
can change during the optimization process
Limited — optimization starts from recommended position, rotation allowed
Pinned - fixed position, rotation allowed

Fixed — both the position and rotation are fixed for the whole optimization
process



Indirect Representation

Indirect representation — a priority list as a sequence of triples <id, r, h>
id — workstation identifier
r — workstation rotation
h — constructive heuristic

expresses the order in which workstations will be inserted into the developed layout
and the heuristic used to process each workstation.

Rotation
0°, £90°, 180°, horizontal/vertical mirroring

Constructive heuristics
h1, h2

Example: [<ws6, 90°, h1>, <ws6, 0°, h2>, <ws6, -90°, h1>, ..., <ws3, 180°, h2>]




Placement Heuristics

heuristic 1
1. Inside the bounding box.
2. To the right of the bounding box while minimizing the width of the bounding box.

heuristic 2
1. Inside the bounding box.
2. Below the bounding box while minimizing the height of the bounding box.




Objective: Minimize Space Used

Minimize a portion of the hall occupied by production lines (maximize available space).
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Objective: Minimize Connections

Minimize sum of the communication links among connected production lines (Euclidean
distance, Hamming distance, ...).




Multi-Objective Optimization

Optimize both criteria simultaneously.




Evolution of Modular Robot Gaits



Evolution of Modular Robot Gaits

Design of an effective and efficient evolutionary-based system for automated
generating of modular robot gaits:
1 robots composed of a number of simple cubic-shaped robotic blocks,

1 each block is endowed with slots (three of them on the main body and one is on the movable
arm) that enable them to connect to each other and form more complex robots

module modular robot simulation

Approaches:

1 Co-evolution of a single leg motion pattern and a coordination strategy
1 HyperGP — HyperNEAT with CPPN replaced with GP
01 GP with automatically defined functions



Evolution of Modular Robot Gaits




Surprising Creativity of Digital
Evolution



Surprising Creativity of Digital
Evolution

Elbow Walking, Cully et al. (2015)
an algorithm that enables damaged robots to successfully adapt to the damage

the evolution solves the case where all six feet touch the ground 0% of the time

Some behaviors
are quite creative!

Source: Lehman, J. atall.: The Surprising Creativity of Digital Evolution: A Collection of Anecdotes from the Evolutionary
Computation and Artificial Life Research Communities. 2018



Surprising Creativity of Digital
Evolution

Evolution of Muscles and Bones, Cheney et al. [68]

evolution to discover from scratch the benefit of complementary (opposing) muscle groups,
similar to such muscle pairs in humans, e.g. biceps and triceps — and also to place them in a
functional way

Ever wonder what it would be like
to see evolution happening
right before your eyes?

Source: Lehman, J. atall.: The Surprising Creativity of Digital Evolution: A Collection of Anecdotes from the Evolutionary
Computation and Artificial Life Research Communities. 2018



Surprising Creativity of Digital
Evolution

Re-enabling Disabled Appendenges, Ecarlat and colleagues [85]

The goal was to accumulate a wide variety of controllers, to move the cube onto the table, to grasp
the cube, to launch it into a basket in front of the robot, ...

Then the robot’s gripper was crippled, preventing it from opening and closing, ...
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