Question 1. (2 points)

Consider a version-space agent whose initial hypothesis class \mathcal{H}_1 contains all non-contradictory conjunctions on 3 propositional variables.

- 1. Determine $|\mathcal{H}_1|$.
- 2. Give an upper bound on $|\mathcal{H}_2|$ given that $r_2 = -1$.

Question 2. (2 points)

Let $r_{\leq K}$ be a reward sequence of a standard agent and $h_{\leq K}$ be its sequence of hypotheses. Denote $M = \sum_{k=1}^{K} |r_k|$. Show that there is a hypothesis h retained for at least $\frac{K}{M+1}$ consecutive steps in $h_{\leq K}$, i.e.

$$h_{\leq K} = h_1, h_2, \dots$$
 $\underbrace{h, h, \dots h}_{\text{at least } \frac{K}{M+1} \text{ times}}, \dots h_K$

Question 3. (5 points)

Let an agent PAC-learn C from X. Show that for any target concept from C on X, an arbitrary distribution P(x) on Xand arbitrary numbers $0 < \epsilon, \delta < 1$ and $K \in \mathbb{N}$, the condition $\operatorname{err}(h_K) \leq \epsilon$ with probability at least $1 - \delta$ implies that h_K is consistent with all observations in $x_{\leq K}$.

Question 4. (5 points)

Let X contain all real numbers from [0; 1] which can be represented using 256 bits. Let $\mathcal{H} = X$, and the decision policy given by a $h \in \mathcal{H}$ is

$$h(x) = 1$$
 iff $x > h$

Determine a k such that with probability at least 0.9, err(h) < 0.1, where h is an arbitrary hypothesis from \mathcal{H} consistent with k i.i.d. examples from X. Estimate it using:

1. $\ln |\mathcal{H}|$

2. $VC(\mathcal{H})$