Question 1. (2 points)
Consider a version-space agent whose initial hypothesis class \mathcal{H}_{1} contains all non-contradictory conjunctions on 3 propositional variables.

1. Determine $\left|\mathcal{H}_{1}\right|$.

Answer:
$3^{3}=27$ (Each of the 3 variables may be absent, positive, or negative in the conjunction.)
2. Give an upper bound on $\left|\mathcal{H}_{2}\right|$ given that $r_{2}=-1$.

Answer:
A version-space agent decides by majority vote so at least 14 hypotheses in \mathcal{H} were inconsistent with x_{1}; these get deleted and at most 13 remain.

Question 2. (2 points)

Let $r_{\leq K}$ be a reward sequence of a standard agent and $h_{\leq K}$ be its sequence of hypotheses. Denote $M=\sum_{k=1}^{K}\left|r_{k}\right|$. Show that there is a hypothesis h retained for at least $\frac{K}{M+1}$ consecutive steps in $h_{\leq K}$, i.e.

$$
h_{\leq K}=h_{1}, h_{2}, \ldots \underbrace{h, h, \ldots h}_{\text {at least } \frac{K}{M+1} \text { times }}, \ldots h_{K}
$$

Answer:

A standard agent changes its hypothesis $\left(h_{k+1} \neq h_{k}\right)$ if and only if a mistake is made $\left(r_{k}=-1\right)$. The number of mistakes up to time K is M so there are at most $M+1$ interleaving subsequences of unchanged hypotheses in $h_{\leq K}$ (there are exactly M of them if the M 's mistake is made at time K, otherwise $M+1$). If each of the at most $M+1$ subsequences is shorter than $\frac{K}{M+1}$ then the length of the sequence is K less than $\frac{K}{M+1} \cdot(M+1)=K$, which is a contradiction.

Question 3. (5 points)

Let an agent PAC-learn \mathcal{C} from X. Show that for any target concept from \mathcal{C} on X, an arbitrary distribution $P(x)$ on X and arbitrary numbers $0<\epsilon, \delta<1$ and $K \in \mathbb{N}$, the condition $\operatorname{err}\left(h_{K}\right) \leq \epsilon$ with probability at least $1-\delta$ implies that h_{K} is consistent with all observations in $x_{<K}$.

Answer:
Assume for contradiction that h_{K} is not consistent with some $x_{k}, 1 \leq k \leq K$. The distribution $P(x)$ and the number $\delta<1$ are arbitrary, so set them so that $\prod_{i=1}^{K} P\left(x_{i}\right)>\delta$ (which can evidently be done). This implies that $P\left(x_{k}\right)>0$. The number $\epsilon>0$ is also arbitrary so set it so that $\epsilon<P\left(x_{k}\right)$. Since h_{K} is inconsistent with $x_{k}, \operatorname{err}\left(h_{K}\right) \geq P\left(x_{k}\right)>\epsilon$. This happens with probability $\prod_{i=1}^{K} P\left(x_{i}\right)>\delta$ which contradicts the assumption of the implication.

Question 4. (5 points)

Let X contain all real numbers from $[0 ; 1]$ which can be represented using 256 bits. Let $\mathcal{H}=X$, and the decision policy given by a $h \in \mathcal{H}$ is

$$
h(x)=1 \text { iff } x>h
$$

Determine a k such that with probability at least 0.9 , $\operatorname{err}(h)<0.1$, where h is an arbitrary hypothesis from \mathcal{H} consistent with k i.i.d. examples from X. Estimate it using:

1. $\ln |\mathcal{H}|$
2. $\mathrm{VC}(\mathcal{H})$

Answer:

1. The probability that some of the 2^{256} hypotheses is $\operatorname{bad}(\operatorname{err}(h)>0.1)$ and still consistent with k i.i.d. observations is at most $2^{256}(1-0.1)^{k}=2^{256}(0.9)^{k}$. We want this probability to be smaller than $1-0.9=0.1$:

$$
2^{256}(0.9)^{k}<0.1
$$

i.e.

$$
\begin{equation*}
k>\log _{0.9} \frac{0.1}{2^{256}} \approx 1707 \text { examples (smalllest such } k \text {) } \tag{1}
\end{equation*}
$$

We can also use the general formula (see Lectures)

$$
k>\frac{1}{\epsilon} \ln \frac{|\mathcal{H}|}{\delta}=\frac{1}{0.1} \ln \frac{2^{256}}{0.1} \approx 1798 \text { examples (smallest such } k \text {) }
$$

which is slightly larger than (1) because the upper bound $(1-\epsilon)^{k}<e^{-\epsilon k}(\epsilon>0)$ is used in the derivation of the formula.
2. Using $\operatorname{VC}(\mathcal{H}) . \operatorname{VC}(\mathcal{H})=1$ because a single number from X can evidently be shattered (classified positively or negatively by hypotheses from \mathcal{H}) but two different numbers from X cannot be shattered: the smaller cannot be made positive while the larger is negative.

$$
k>\max \left\{\frac{4}{\epsilon} \lg \frac{2}{\delta}, \frac{8 \cdot \mathrm{VC}(\mathcal{H})}{\epsilon} \lg \frac{13}{\epsilon}\right\} \approx \max \{173,562\}=562 \text { examples }
$$

