Question 1. (3 points)

Determine the least general generalization of the following two assertions

- 1. Superman is mortal or he is not a human.
- 2. Every human who smokes is mortal.

by representing them as first-order logic clauses and computing their least general generalization with respect to the θ -subsumption order, and express the result in natural language.

Answer:

The first clause is $mortal(superman) \lor \neg human(superman)$ The second clause is $human(x) \land smokes(x) \rightarrow mortal(x)$ which can be written as $\neg human(x) \lor \neg smokes(x) \lor mortal(x)$

The LGG is

 $\neg \text{human}(\text{lgg}(\text{superman}, x)) \lor \text{mortal}(\text{lgg}(\text{superman}, x))$ (1)

$$\neg \operatorname{human}(v_1) \lor \operatorname{mortal}(v_1)$$
 (3)

$$\operatorname{human}(v_1) \to \operatorname{mortal}(v_1) \tag{5}$$

(4)

i.e., every human is mortal.

Question 2. (2 points)

Let h, h' be FOL clauses and B a ground FOL conjunction. Show that if $h \subseteq_{\theta} h'$ then $h \subseteq_{\theta}^{B} h'$.

Answer:

 $h \subseteq_{\theta} h'$ means that

$$\exists \theta : \mathsf{Lits}(h\theta) \subseteq \mathsf{Lits}(h') \tag{6}$$

 $h \subseteq_{\theta}^{B} h'$ is defined as $h \subseteq_{\theta} B \to h'$, i.e.,

$\exists \theta : Lits(h\theta) \subseteq Lits(B \to h')$	
$\exists \theta: Lits(h\theta) \subseteq Lits(\neg B \lor h')$	
$\exists \theta: Lits(h\theta) \subseteq Lits(\neg B) \cup Lits(h')$	(7)

where (7) is clearly implied by (6).

Question 3. (5 points)

Show that

$$h = \operatorname{parent}(v_2, v_1) \land \operatorname{male}(v_1) \to \operatorname{son}(v_1, v_2)$$

and

 $g = \operatorname{son}(v_1, v_2) \lor \neg \operatorname{female}(\mathsf{a}) \lor \neg \operatorname{parent}(\mathsf{a}, \mathsf{b}) \lor \neg \operatorname{parent}(v_2, v_1) \lor \neg \operatorname{male}(\mathsf{b}) \lor \neg \operatorname{male}(v_1) \lor \neg \operatorname{parent}(v_3, v_4) \lor \neg \operatorname{parent}(\mathsf{b}, \mathsf{c}) \lor \neg \operatorname{male}(v_4) \lor \neg \operatorname{male}(\mathsf{c})$

are equivalent relative to

$$B = \text{female}(\mathsf{a}) \land \text{parent}(\mathsf{a}, \mathsf{b}) \land \text{male}(\mathsf{b}) \land \text{parent}(\mathsf{b}, \mathsf{c}) \land \text{male}(\mathsf{c})$$

Answer:

 $h \approx^B_{\theta} g$ iff $h \subseteq^B_{\theta} g$ and $g \subseteq^B_{\theta} h$.

 $h \approx^B_{\theta} g$ because $h \subseteq_{\theta} g$, which is because $\mathsf{Lits}(h\theta) \subseteq \mathsf{Lits}(g)$ with $\theta = \emptyset$.

 $g \approx_{\theta}^{B} h$ because $g \subseteq_{\theta} B \to h$, which is because $\mathsf{Lits}((B \to g)\theta) \subseteq \mathsf{Lits}(h)$ with $\theta = \{v_3 \mapsto v_2, v_4 \mapsto v_1\}$.

Question 4. (10 points)

Let

$$B = \text{half}(4, 2) \land \text{half}(2, 1) \land \text{int}(2) \land \text{int}(1)$$

$$x_1 = \text{even}(4)$$

$$x_2 = \text{even}(2)$$

- 1. Compute a least general generalization of x_1, x_2 observations relative to B.
- 2. Determine the reduction of the resulting clause relative to B and justify why it is indeed a reduction of it relative to B.

Answer:

1. $\operatorname{rlgg}_B(x_1, x_2) = \operatorname{lgg}(B \to x_1, B \to x_2)$ where $B \to x_1 = \operatorname{even}(4) \lor \neg \operatorname{half}(4, 2) \lor \neg \operatorname{half}(2, 1) \lor \neg \operatorname{int}(2) \lor \neg \operatorname{int}(1)$ $B \to x_2 = \operatorname{even}(2) \lor \neg \operatorname{half}(4, 2) \lor \neg \operatorname{half}(2, 1) \lor \neg \operatorname{int}(2) \lor \neg \operatorname{int}(1)$

	even(4)	$\neg \mathrm{half}(4,2)$	$\neg \mathrm{half}(2,1)$	$\neg int(2)$	$\neg int(1)$	A	σ	new variable
even(2)	$\operatorname{even}(v_1)$					$-\frac{0}{2}$	$\frac{0}{4}$	
$\neg half(4, 2)$		$\neg half(4, 2)$	\neg half (v_3, v_4)				2	. 1
$\neg half(2, 1)$		\neg half (v_1, v_2)	$\neg half(2, 1)$			1	$\frac{2}{2}$	v_2
$\neg int(2)$				$\neg int(2)$	$\neg \operatorname{int}(v_4)$. 4 ภ	2 1	v_3
$\neg int(1)$				$\neg \operatorname{int}(v_2)$	$\neg int(1)$	2	T	$ v_4 $

 $\mathsf{lgg} = \mathsf{even}(v_1) \lor \neg \mathsf{half}(4,2) \lor \neg \mathsf{half}(v_3,v_4) \lor \neg \mathsf{half}(v_1,v_2) \lor \neg \mathsf{half}(2,1) \lor \neg \mathsf{int}(2) \lor \neg \mathsf{int}(v_4) \lor \neg \mathsf{int}(v_2) \lor \neg \mathsf{int}(1)$

or

$$\operatorname{even}(v_1) \leftarrow \operatorname{half}(4,2) \land \operatorname{half}(v_3,v_4) \land \operatorname{half}(v_1,v_2) \land \operatorname{half}(2,1) \land \operatorname{int}(2) \land \operatorname{int}(v_4) \land \operatorname{int}(v_2) \land \operatorname{int}(1) \land \operatorname{int}(2) \land \operatorname{int}(v_4) \land \operatorname{int}(v_2) \land \operatorname{int}(1) \land \operatorname{int}(2) \land \operatorname{int}(2)$$

2. Remove ground literals present in B obtaining a clause which is subsume-equivalent (relative to B) to the lgg.

$$\operatorname{even}(v_1) \leftarrow \operatorname{half}(v_3, v_4) \land \operatorname{half}(v_1, v_2) \land \operatorname{int}(v_4) \land \operatorname{int}(v_2)$$

This is equivalent to

$$\operatorname{even}(v_1) \leftarrow \operatorname{half}(v_1, v_2) \land \operatorname{int}(v_2)$$

The latter subsumes the former evidently as its is a subset of the former's literals. The former subsumes the latter under substitution $\theta = \{v_3 \mapsto v_1, v_4 \mapsto v_2\}$. The last clause is a reduction of the LGG as it is subsume-equivalent to it relative to *B* as shown above, and it cannot be reduced further.

Question 5. (10 points)

Let X contain Herbrand interpretations for a finite set of \mathcal{P} predicates and a finite set \mathcal{F} of functions, and the observation complexity n_X be the tuple $(|\mathcal{P}|, |\mathcal{F}|)$. Show that the hypothesis class *st*-CNF (i.e., conjunctions of FOL clauses with at most *s* literals and at most *t* term occurrences in each literal) is learnable online from *X*.

Answer:

We reduce online st-CNF learning from X to learning a propositional monotone conjunction from truth assignments. More precisely, let $c_1, c_2, \ldots, c_{n'}$ be all st clauses made using \mathcal{P} and \mathcal{F} . We learn a monotone propositional conjunction on n' variables from $\{0, 1\}^{n'}$; for each observation $x \in X$ we present the learner examples $x'(x) \in \{0, 1\}^{n'}$ such that

$$x^{\prime i}(x) = 1$$
 iff $x \models c_i$

We know that the monotone propositional conjunction can be learned online from $\{0,1\}^{n'}$ with mistake bound poly(n'). To show online learnability *st*-CNF from X, we only need to show $n' \leq poly(n_X) = poly(|\mathcal{P}|, |\mathcal{F}|)$.

An st-clause has no more that st different variables. So the maximum number of different terms in an st-clause is $|\mathcal{F}| + st$. An atom consists of a single predicate $(|\mathcal{P}|$ different choices) and at most t terms (each from from $|\mathcal{F}| + st$ choices). So there are $|\mathcal{P}|(|\mathcal{F}| + st)^t$ different atoms, i.e. $2|\mathcal{P}|(|\mathcal{F}| + st)^t$ different literals.

An st-clause combines at most s literals so there are at most

$$\mathcal{O}\binom{2|\mathcal{P}|(|\mathcal{F}|+st)^t}{s} = poly(|\mathcal{P}|,|\mathcal{F}|)$$

different st-clauses.