Question 1. (3 points)
Determine the least general generalization of the following two assertions

1. Superman is mortal or he is not a human.
2. Every human who smokes is mortal.
by representing them as first-order logic clauses and computing their least general generalization with respect to the θ subsumption order, and express the result in natural language.

Answer:

The first clause is

$$
\text { mortal(superman) } \vee \neg \text { human(superman) }
$$

The second clause is

$$
\operatorname{human}(x) \wedge \operatorname{smokes}(x) \rightarrow \operatorname{mortal}(x)
$$

which can be written as

$$
\neg \operatorname{human}(x) \vee \neg \operatorname{smokes}(x) \vee \operatorname{mortal}(x)
$$

The LGG is

$$
\begin{gather*}
\neg \operatorname{human}(\operatorname{lgg}(\operatorname{superman}, x)) \vee \operatorname{mortal}(\operatorname{lgg}(\text { superman}, x)) \tag{1}\\
\text { i.e., } \tag{2}\\
\neg \operatorname{human}\left(v_{1}\right) \vee \operatorname{mortal}\left(v_{1}\right) \tag{3}\\
\text { i.e., } \tag{4}\\
\operatorname{human}\left(v_{1}\right) \rightarrow \operatorname{mortal}\left(v_{1}\right) \tag{5}
\end{gather*}
$$

i.e., every human is mortal.

Question 2. (2 points)
Let h, h^{\prime} be FOL clauses and B a ground FOL conjunction. Show that if $h \subseteq_{\theta} h^{\prime}$ then $h \subseteq_{\theta}^{B} h^{\prime}$.

Answer:
$h \subseteq_{\theta} h^{\prime}$ means that

$$
\begin{equation*}
\exists \theta: \operatorname{Lits}(h \theta) \subseteq \operatorname{Lits}\left(h^{\prime}\right) \tag{6}
\end{equation*}
$$

$h \subseteq_{\theta}^{B} h^{\prime}$ is defined as $h \subseteq_{\theta} B \rightarrow h^{\prime}$, i.e.,

$$
\begin{align*}
& \exists \theta: \operatorname{Lits}(h \theta) \subseteq \operatorname{Lits}\left(B \rightarrow h^{\prime}\right) \\
& \exists \theta: \operatorname{Lits}(h \theta) \subseteq \operatorname{Lits}\left(\neg B \vee h^{\prime}\right) \\
& \exists \theta: \operatorname{Lits}(h \theta) \subseteq \operatorname{Lits}(\neg B) \cup \operatorname{Lits}\left(h^{\prime}\right) \tag{7}
\end{align*}
$$

where $\sqrt{7}$ is clearly implied by (6).

Question 3. (5 points)
Show that

$$
h=\operatorname{parent}\left(v_{2}, v_{1}\right) \wedge \operatorname{male}\left(v_{1}\right) \rightarrow \operatorname{son}\left(v_{1}, v_{2}\right)
$$

and

$$
\begin{aligned}
g= & \operatorname{son}\left(v_{1}, v_{2}\right) \vee \neg \operatorname{female}(\mathrm{a}) \vee \neg \operatorname{parent}(\mathrm{a}, \mathrm{~b}) \vee \neg \operatorname{parent}\left(v_{2}, v_{1}\right) \vee \neg \operatorname{male}(\mathrm{b}) \vee \\
& \neg \operatorname{male}\left(v_{1}\right) \vee \neg \operatorname{parent}\left(v_{3}, v_{4}\right) \vee \neg \operatorname{parent}(\mathrm{b}, \mathrm{c}) \vee \neg \operatorname{male}\left(v_{4}\right) \vee \neg \operatorname{male}(\mathrm{c})
\end{aligned}
$$

are equivalent relative to

$$
B=\text { female }(\mathrm{a}) \wedge \operatorname{parent}(\mathrm{a}, \mathrm{~b}) \wedge \operatorname{male}(\mathrm{b}) \wedge \operatorname{parent}(\mathrm{b}, \mathrm{c}) \wedge \operatorname{male}(\mathrm{c})
$$

Answer:

$h \approx_{\theta}^{B} g$ iff $h \subseteq_{\theta}^{B} g$ and $g \subseteq_{\theta}^{B} h$.
$h \approx_{\theta}^{B} g$ because $h \subseteq_{\theta} g$, which is because $\operatorname{Lits}(h \theta) \subseteq \operatorname{Lits}(g)$ with $\theta=\emptyset$.
$g \approx_{\theta}^{B} h$ because $g \subseteq_{\theta} B \rightarrow h$, which is because $\operatorname{Lits}((B \rightarrow g) \theta) \subseteq \operatorname{Lits}(h)$ with $\theta=\left\{v_{3} \mapsto v_{2}, v_{4} \mapsto v_{1}\right\}$.

Question 4. (10 points)

Let

$$
\begin{aligned}
B & =\operatorname{half}(4,2) \wedge \operatorname{half}(2,1) \wedge \operatorname{int}(2) \wedge \operatorname{int}(1) \\
x_{1} & =\operatorname{even}(4) \\
x_{2} & =\operatorname{even}(2)
\end{aligned}
$$

1. Compute a least general generalization of x_{1}, x_{2} observations relative to B.
2. Determine the reduction of the resulting clause relative to B and justify why it is indeed a reduction of it relative to B.

Answer:

1. $\operatorname{rlgg}_{B}\left(x_{1}, x_{2}\right)=\operatorname{lgg}\left(B \rightarrow x_{1}, B \rightarrow x_{2}\right)$ where

$$
\begin{aligned}
& B \rightarrow x_{1}=\operatorname{even}(4) \vee \neg \text { half }(4,2) \vee \neg \operatorname{half}(2,1) \vee \neg \operatorname{int}(2) \vee \neg \operatorname{int}(1) \\
& B \rightarrow x_{2}=\operatorname{even}(2) \vee \neg \text { half }(4,2) \vee \neg \text { half }(2,1) \vee \neg \operatorname{int}(2) \vee \neg \operatorname{int}(1)
\end{aligned}
$$

	even(4)	\neg half (4, 2)	$\neg \operatorname{half}(2,1)$	$\neg \operatorname{int}(2)$	$\neg \operatorname{int}(1)$	θ	σ		w variable
even(2)	$\operatorname{even}\left(v_{1}\right)$	$\begin{aligned} & \neg \operatorname{half}(4,2) \\ & \neg \operatorname{half}\left(v_{1}, v_{2}\right) \end{aligned}$	$\begin{aligned} & \neg \operatorname{half}\left(v_{3}, v_{4}\right) \\ & \neg \text { half }(2,1) \end{aligned}$			2	σ		W
\neg half (4, 2)						2	4	v_{1}	
\neg half (2, 1)							2	v_{2} v_{3}	
$\neg \operatorname{int}(2)$				$\neg \operatorname{int}(2)$	$\neg \operatorname{int}\left(v_{4}\right)$		1	v_{3}	
$\neg \mathrm{int}(1)$				$\neg \operatorname{int}\left(v_{2}\right)$	$\neg \operatorname{int}(1)$			v_{4}	

$$
\operatorname{lgg}=\operatorname{even}\left(v_{1}\right) \vee \neg \operatorname{half}(4,2) \vee \neg \operatorname{half}\left(v_{3}, v_{4}\right) \vee \neg \operatorname{half}\left(v_{1}, v_{2}\right) \vee \neg \operatorname{half}(2,1) \vee \neg \operatorname{int}(2) \vee \neg \operatorname{int}\left(v_{4}\right) \vee \neg \operatorname{int}\left(v_{2}\right) \vee \neg \operatorname{int}(1)
$$

or

$$
\operatorname{even}\left(v_{1}\right) \leftarrow \operatorname{half}(4,2) \wedge \operatorname{half}\left(v_{3}, v_{4}\right) \wedge \operatorname{half}\left(v_{1}, v_{2}\right) \wedge \operatorname{half}(2,1) \wedge \operatorname{int}(2) \wedge \operatorname{int}\left(v_{4}\right) \wedge \operatorname{int}\left(v_{2}\right) \wedge \operatorname{int}(1)
$$

2. Remove ground literals present in B obtaining a clause which is subsume-equivalent (relative to B) to the \lg.

$$
\operatorname{even}\left(v_{1}\right) \leftarrow \operatorname{half}\left(v_{3}, v_{4}\right) \wedge \operatorname{half}\left(v_{1}, v_{2}\right) \wedge \operatorname{int}\left(v_{4}\right) \wedge \operatorname{int}\left(v_{2}\right)
$$

This is equivalent to

$$
\operatorname{even}\left(v_{1}\right) \leftarrow \operatorname{half}\left(v_{1}, v_{2}\right) \wedge \operatorname{int}\left(v_{2}\right)
$$

The latter subsumes the former evidently as its is a subset of the former's literals. The former subsumes the latter under substitution $\theta=\left\{v_{3} \mapsto v_{1}, v_{4} \mapsto v_{2}\right\}$. The last clause is a reduction of the LGG as it is subsume-equivalent to it relative to B as shown above, and it cannot be reduced further.

Question 5. (10 points)
Let X contain Herbrand interpretations for a finite set of \mathcal{P} predicates and a finite set \mathcal{F} of functions, and the observation complexity n_{X} be the tuple $(|\mathcal{P}|,|\mathcal{F}|)$. Show that the hypothesis class $s t$-CNF (i.e., conjunctions of FOL clauses with at most s literals and at most t term occurrences in each literal) is learnable online from X.

Answer:

We reduce online st-CNF learning from X to learning a propositional monotone conjunction from truth assignments. More precisely, let $c_{1}, c_{2}, \ldots, c_{n^{\prime}}$ be all st clauses made using \mathcal{P} and \mathcal{F}. We learn a monotone propositional conjunction on n^{\prime} variables from $\{0,1\}^{n^{\prime}}$; for each observation $x \in X$ we present the learner examples $x^{\prime}(x) \in\{0,1\}^{n^{\prime}}$ such that

$$
x^{\prime i}(x)=1 \text { iff } x \models c_{i}
$$

We know that the monotone propositional conjunction can be learned online from $\{0,1\}^{n^{\prime}}$ with mistake bound poly $\left(n^{\prime}\right)$. To show online learnability st-CNF from X, we only need to show $n^{\prime} \leq \operatorname{poly}\left(n_{X}\right)=\operatorname{poly}(|\mathcal{P}|,|\mathcal{F}|)$.

An st-clause has no more that st different variables. So the maximum number of different terms in an st-clause is $|\mathcal{F}|+s t$. An atom consists of a single predicate ($|\mathcal{P}|$ different choices) and at most t terms (each from from $|\mathcal{F}|+s t$ choices). So there are $|\mathcal{P}|(|\mathcal{F}|+s t)^{t}$ different atoms, i.e. $2|\mathcal{P}|(|\mathcal{F}|+s t)^{t}$ different literals.

An $s t$-clause combines at most s literals so there are at most

$$
\mathcal{O}\binom{2|\mathcal{P}|(|\mathcal{F}|+s t)^{t}}{s}=\operatorname{poly}(|\mathcal{P}|,|\mathcal{F}|)
$$

different $s t$-clauses.

