Question 1. (10 points)

Let h, h' be two propositional clauses or conjunctions. Show that $lgg(h, h') = Lits(h) \cap Lits(h')$ is a least general generalization of h, h'.

Question 2. (15 points)

Determine if

1. $h \subseteq_{\theta} h'$ 2. $h' \models h$

for

```
\begin{split} h &= \mathrm{p}(x,y) \wedge \mathrm{p}(y,z) \wedge \neg \mathrm{p}(x,z) \\ h' &= \mathrm{p}(\mathsf{a},\mathsf{b}) \wedge \mathrm{p}(\mathsf{b},\mathsf{c}) \wedge \mathrm{p}(\mathsf{c},\mathsf{d}) \wedge \neg \mathrm{p}(\mathsf{a},\mathsf{d}) \end{split}
```

Question 3. (5 points)

Consider the following statements

- 1. X = non-self-resolving FOL clauses
- 2. X = contingent FOL clauses
- 3. There is no $k \in \mathbb{N}$, $x \in X$ such that $h_k \models x$ and $h_k \not\subseteq_{\theta} x$, where h_k $(k \in \mathbb{N})$ are the hypotheses of the generalization algorithm.

Decide for each of the implications $1 \to 2, 1 \to 3, 2 \to 3$, whether it is true. Change the relation $h_k \models x$ in (3) so that all the implications you decided true are true when (1) and (2) assume conjunctions instead of clauses.

Question 4. (1 points)

Find two different least general generalizations of p(a) and $p(b) \vee p(c)$, prove that they are indeed generalizations of the two clauses and prove that they are mutually θ -equivalent. Explain why two least general generalizations of the same pair of clauses or conjunctions must be θ -equivalent.

Question 5. (10 points)

Explain why the proof of the mistake bound n of the generalization algorithm is no longer valid when the assumption on X is changed to X = non-self-resolving FOL conjunctions or non-self-resolving FOL conjunctions clauses, the relations \subseteq, \subset are changed to $\subseteq_{\theta}, \subset_{\theta}$ (respectively), and we set $n = |\mathcal{P}|$. Show that the proof cannot be rectified, in particular that no finite mistake bound exists under said assumption even if $\mathcal{F} = \emptyset$.