Question 1. (10 points)

Let h, b’ be two propositional clauses or conjunctions. Show that lgg(h, h’) = Lits(h) NLits(h’) is a least general generalization
of h, 1.

Answer:

For shorter notation, we apply set operations on clauses or conjunctions as if they were sets of literals, so for example £ € h
means L € Lits(h). The question assumes that g = Ilgg(h,h’) = hN K, ie.,

VL:Leg— LeEhNLEN (1)
from which we deduce

FVL:Leg—LehANLeER
FVL:LeEg—LEhand FVL:LEeEg— LEN (2)

The two formulas we deduced in define the respective subset relations g C h and g C k' which we were to prove according
to the definition of least general generalization. In addition, we are supposed to prove that there is no ¢’ such that g C ¢/,
g C h, g Ch'. Assume for contradiction, that such a ¢’ exists, i.e.,

VL:Lcg—LeE]
dL:Leg N-(L€g)
Ve:Leg —LeEh
Ve:Leg —LeEN

S O
N NSNS

We rewrite formulas [3] - [f] as clauses, Skolemizing formula

Leg—Led (7)
acy (8)
“acg))

Leg —-Leh (10)

Leg —>Lel (11)

We also rewrite assumption as a clause set

Leg—Leh (12)
Leg—Lel (13)
LeEhRNLEN —LEeEyg (14)

We are supposed to find a contradiction in the clause set [7] - We proceed by resolution:

e Resolve (|10) (£ + a) with (8) obtaining

ach (15)
e Resolve (L — a) with (8) obtaining

aeh (16)
e Resolve (14) (£ + a) with (|15]) obtaining

aceh’' —acey (17)

e Resolve with obtaining

aey (18)

Resolve (|18) with (ED obtaining the contradiction 0.

Question 2. (15 points)

Determine if

1. hCo K
2. M Eh
for
h =p(z,y) Ap(y,2) A =p(z,2)
h' = p(a,b) Ap(b,c) Ap(c,d) A —p(a,d)
Answer:

1. h Cp K does not hold because for no substitution 0, Lits(hf) C Lits(h’). Indeed, for —p(z,z)0 to be in Lits(h’),
necessarily {z — a,z+—d} C 6 as —p(a,d) is the only negative literal in h'. In turn, p(x,y)d = p(a,y) can be in
Lits(h') only if (y — b) € 6. But then, p(y, 2)0 = p(b,d) is not in Lits(h').

2. ' = h is true. This is due to the soundness theorem| and the fact that A’ = h. To prove the latter, we prove the
equivalent relation A’ A =h F O, i.e., iff the clause set

—p(x,y) V =p(y, 2) V p(z, 2)
p(a, b)
{-h}ULits(h') = p(b,c)
p(c,d)
—\p(a,d)

is contradictory. We show the contradiction as follows
(a) Resolve =hf, 0 = {x — a,z — d } with —p(a,d) obtaining the resolvent clause
c1 =-p(a,y) v -p(y,d)
(b) Resolve ¢16, § = {y — b} with p(a,b) obtaining
¢z = —p(b,d)
(¢) Resolve —=h#, 0 = {x + b,z + d} with co obtaining
cs = =p(b,y) V —p(y,d)
(d) Resolve 36, § = {y +— c} with p(b, c) obtaining
cs = —p(c,d)
(e) Finally, resolve ¢4 with p(c,d) obtaining the empty clause O.
Note that there is a simple intuition behind the formal proof: —h can be written also as p(z,y) A p(y,z) — p(x,z) expressing the

transitivity property of p/2. That property is in turn in obvious contradiction with all of p(a,b),p(b,c),p(c,d) being true while p(a,d)
being false.

Question 3. (5 points)

Consider the following statements

https://en.wikipedia.org/wiki/Soundness

1. X = non-self-resolving FOL clauses
2. X = contingent FOL clauses

3. There is no k € N, € X such that hy | = and hy, €y x, where hy (k € N) are the hypotheses of the generalization
algorithm.

Decide for each of the implications [I] — 2} [I[] = B whether it is true. Change the relation hy, = x in (3) so that all
the implications you decided true are true when (| and b assume conjunctions instead of clauses.

Answer:

1. [1If = |2]is not true because an empty clause is not self-resolving but it is not contingent. The implication is however true
for non-empty clauses. Assume for contradiction that a non-empty « € X is not self-resolving but not contingent, i.e.
it is tautologically false or true. First assume the former case, i.e. = —2. This means that for any formula z’, it holds
2’ | —x, ie. x = 2. Since x is not self-resolving, this means x Cy -z’ for any clause —a’. This can only happen if
Lits(x) is empty but then x is an empty clause, which contradicts the assumption. The case for = x is analogical (use
the fact that the negation of a non-self-resolving clause is a non-self-resolving conjunction).

2. 1] = Bl is true. hy E x and hy Zp x can happen simultaneously only if Ay is self-resolving and we will prove the
implication by showing that for all £ € N, Ay, is not self-resolving.

By the generalization algorithm, hy is the first positive example, which is from X so it is not self-resolving by the
assumption of the implication. Assume for contradiction that for some k € N,

hit1 = lgg(he, x), v € X (19)

is self-resolving, i.e., contains both a positive literal and a negative literal with the same predicate P. By definition of
the lgg operator, Igg(hy, x) contains a predicate only if it occurs in both of hy, 2 with the same sign. Thus x must also
contain both a positive literal and a negative literal with the predicate P. Thus z is self-resolving, which contradicts
the assumption.

3. [2] — [3]is not true. Let the first positive example and thus also hy be p(z) — p(f(x)), i.e., =p(x) V p(f(x)). Clearly, it
is contingent: it is false e.g. with Herbrand interpretation { p(a) } and true with Herbrand the (infinite) interpretation
{p(a),p(f(a)),p(f(f(a)),... }. But it is also self-resolving because it contains the predicate p/1 in both a negative and
positive literal. Thus it can happen that hy = 2 and hy Zy 2. Indeed, this happens e.g. with the contingent observation
z = p(x) = p(f(f(2))))-

However, the implication is true in the special case of propositional clauses because a propositional self-resolving clause
is necessarily non-contingent.

To make l l true for conjunctions, change hy =« to = = hy in 1teml of the question and in item [2| of the answer.

Question 4. (1 points)

Find two different least general generalizations of p(a) and p(b) V p(c), prove that they are indeed generalizations of the two
clauses and prove that they are mutually f-equivalent. Explain why two least general generalizations of the same pair of
clauses or conjunctions must be #-equivalent.

Answer:

p(z) and p(y) V p(2)

p(2)9 C ply) V p(2) for = {z >y }

(p(y) Vp(2)0 Cp(x) for 0 ={y—>z,z—x}

So unlike in the propositional case, a least general generalization of FOL clauses (or conjunctions) is not unique!

Consider for contradiction two least general generalizations g, ¢’ of the same pair of clauses or conjunctions such that g Cy ¢’.
Then by the definition of least general generalization, g is not a least general generalization.

Question 5. (10 points)

Explain why the proof of the mistake bound n of the generalization algorithm is no longer valid when the assumption on X
is changed to X = non-self-resolving FOL conjunctions or non-self-resolving FOL conjunctions clauses, the relations C, C are
changed to Cy, Cy (respectively), and we set n = |P|. Show that the proof cannot be rectified, in particular that no finite
mistake bound exists under said assumption even if F = (.

Answer:

The proof uses the following argument

Since examples are contingent, they have at most n literals (each of the n atoms is included either as a positive
or negative literal but not both) and since hy is the first positive example, it also has at most n literals

which is only true for propositional clauses or conjunctions. The number of different atoms using n = |P| predicates may be
larger than n since there may be multiple atoms with the same predicate, each one using different terms as arguments.

Also the inference
at least one literal is removed on each mistake, so the maximum number of mistakes is n

is not true in FOL. While a strict generalization (hg+1 Cp hg) is still made after each mistake, this does not mean that
|Lits(hg41)| < |Lits(hi)| (consider e.g. hgy1 = p(z), hy = p(a).)

We can even show that no mistake bound can be provided under the assumption above. Let us assume for contradiction that
the bound is M.

Let the target hypothesis be h= p(z1, z2) and let the environment present the following positive examples zj, for 1 <k < M

T = \/ p(zi, ;) (20)

1<i,j <M —k+2,i#j
and

Tar41 = P21, 22) (21)
so e.g. for M =2

x1 = p(21,22) VD(22,21) VD(21,23) VD23, 21) V p(22, 23) V (23, 22)

and since x3 Cy T2 Cy x1 and the agent makes least generalizations, it will make 3 > M mistakes. In general, for any M € N,
the sequence (20)-(21)) is a chain of M + 1 strict generalizations forcing the agent to make M + 1 mistakes.

Note that for any M € N and k € [1; M + 1], xx Co p(z,2). Therefore, there is an infinite chain of generalizations between two finite
elements p(z1,22) and p(z, z) in the @-subsumption lattice!

