Question 1. (5 points)
Agent receives rewards as follows:

$$
r_{k}=\left\{\begin{array}{l}
0 ; \text { if } y_{k}=0 \tag{1}\\
1 ; \text { if } y_{k}=1 \text { and } k=1 \\
2 r_{k-1} \text { with probability } \frac{1}{2} ; \text { if } y_{k}=1 \text { and } k>1 \\
\frac{1}{2} r_{k-1} \text { with probability } \frac{1}{2} ; \text { if } y_{k}=1 \text { and } k>1
\end{array}\right.
$$

Determine $U^{y_{\leq 3}}$ of $y_{1}=y_{2}=y_{3}=1$.

Answer:

There are four possible reward sequences $r_{\leq 3}$ each with probability $\frac{1}{4}$:

$$
\begin{aligned}
& 1, \frac{1}{2}, \frac{1}{4} \\
& 1, \frac{1}{2}, 1 \\
& 1,2,1 \\
& 1,2,4
\end{aligned}
$$

Their respective sums are $\frac{7}{4}, \frac{10}{4}, \frac{16}{4}, \frac{28}{4}$. The mean value is thus $\frac{1}{4}\left(\frac{7}{4}+\frac{10}{4}+\frac{16}{4}+\frac{28}{4}\right)=\frac{61}{16}$

Question 2. (10 points)

Agent receives rewards as follows:

$$
r_{k}=\left\{\begin{array}{l}
0 ; \text { if } y_{k}=0 \tag{2}\\
1 ; \text { if } y_{k}=1 \text { and } k=1 \\
r_{k-1}+1 \text { with probability } \frac{1}{2} ; \text { if } y_{k}=1 \text { and } k>1 \\
r_{k-1}-1 \text { with probability } \frac{1}{2} ; \text { if } y_{k}=1 \text { and } k>1
\end{array}\right.
$$

Determine $U^{y \leq \infty}$ of $y_{\leq \infty}=1,1, \ldots$ for $\gamma=\frac{1}{2}$.

Answer:

Consider the conditional expected value of reward r_{k} in a reward sequence $r_{\leq m}$ of length $m \geq k$

$$
\mathbb{E}\left(r_{k} \mid y_{\leq \infty}=1,1, \ldots\right)=\sum_{r_{\leq m}} P\left(r_{\leq m} \mid y_{\leq \infty}=1,1, \ldots\right) r_{k}
$$

Since the condition $y_{<\infty}=1,1, \ldots$ is fixed by assumption, we drop it from the probability and expectation expressions. Due to the second case in $\overline{22}$, we have $\mathbb{E}\left(r_{1}\right)=1$, and from the last two cases we have $\mathbb{E}\left(r_{k}\right)=\mathbb{E}\left(r_{k-1}\right)$ for $k \geq 2$. So by induction

$$
\begin{equation*}
\mathbb{E}\left(r_{k}\right)=\sum_{r_{\leq m}} P\left(r_{\leq m}\right) r_{k}=1 \tag{3}
\end{equation*}
$$

for all $k \in \mathbb{N}$. The utility can now be computed as follows:

$$
U^{y \leq \infty}=\lim _{m \rightarrow \infty} \sum_{r_{\leq m}}\left(P\left(r_{\leq m}\right) \sum_{k=1}^{m} r_{k} \gamma^{k}\right)=\lim _{m \rightarrow \infty} \sum_{k=1}^{m} \gamma^{k} \underbrace{\sum_{r \leq m} P\left(r_{\leq m}\right) r_{k}}_{=1 \text { from 3}}=\lim _{m \rightarrow \infty} \sum_{k=1}^{m}\left(\frac{1}{2}\right)^{k}=1
$$

