3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/tdv/start

http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz
phone ext. 7203

rev. October 13, 2020

Open Informatics Master's Course

Module III

Computing with a Single Camera

Ocalibration: Internal Camera Parameters from Vanishing Points and Lines

Ocamera Resection: Projection Matrix from 6 Known Points

BExterior Orientation: Camera Rotation and Translation from 3 Known Points

Relative Orientation Problem: Rotation and Translation between Two Point Sets

covered by

- [1] [H&Z] Secs: 8.6, 7.1, 22.1
- [2] Fischler, M.A. and Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. *Communications of the ACM* 24(6):381–395, 1981
- [3] [Golub & van Loan 2013, Sec. 2.5]

Obtaining Manishing Points and Lines

• orthogonal direction pairs can be collected from more images by camera rotation

• vanishing line can be obtained from vanishing points and/or regularities $(\rightarrow 49)$

3D Computer Vision: III. Computing with a Single Camera (p. 54/189) つくや R. Šára, CMP; rev. 13-Oct-2020 📴

► Camera Calibration from Vanishing Points and Lines

Problem: Given finite vanishing points and/or vanishing lines, compute ${f K}$

$$\mathbf{d}_{i} = \lambda_{i} \mathbf{Q}^{-1} \underline{\mathbf{v}}_{i}, \quad \mathbf{\hat{\lambda}}_{i} \mathbf{Q} \mathbf{A}_{i} \stackrel{\mathsf{v}_{i}}{\approx} \stackrel{\mathsf{v}_{i}}{i} = 1, 2, 3 \quad \rightarrow 43$$
$$\mathbf{p}_{ij} = \mu_{ij} \mathbf{Q}^{\top} \underline{\mathbf{n}}_{ij}, \quad i, j = 1, 2, 3, \ i \neq j \quad \rightarrow 39$$
(2)

• simple method: solve (2) after eliminating λ_i , μ_{ij} . **Special Configurations** $(\mathcal{Q} \ \mathcal{Q} \ \mathcal{V})^{\dagger} = (\mathcal{V} \ \mathcal{K} \ \mathcal{V} \ \mathcal{V})^{\dagger}$ 1. orthogonal rays $\mathbf{d}_1 \perp \mathbf{d}_2$ in space then $0 = \mathbf{d}_1^{\mathsf{T}} \mathbf{d}_2 = \mathbf{v}_1^{\mathsf{T}} \mathbf{Q}^{-\mathsf{T}} \mathbf{Q}^{-1} \mathbf{v}_2 = (\mathbf{v}_1^{\mathsf{T}} (\mathbf{K} \mathbf{K}^{\mathsf{T}})^{-1} \mathbf{v}_2)$ 2. orthogonal planes $\mathbf{p}_{ij} \perp \mathbf{p}_{ik}$ in space

$$0 = \mathbf{p}_{ij}^{\top} \mathbf{p}_{ik} = \underline{\mathbf{n}}_{ij}^{\top} \mathbf{Q} \mathbf{Q}^{\top} \underline{\mathbf{n}}_{ik} = \underline{\mathbf{n}}_{ij}^{\top} \boldsymbol{\omega}^{-1} \underline{\mathbf{n}}_{ik}$$

3. orthogonal ray and plane $\mathbf{d}_k \parallel \mathbf{p}_{ij}, k \neq i, j$

normal parallel to optical ray

$$\mathbf{p}_{ij} \simeq \mathbf{d}_k \quad \Rightarrow \quad \mathbf{Q}^\top \underline{\mathbf{n}}_{ij} = \frac{\lambda_i}{\mu_{ij}} \mathbf{Q}^{-1} \underline{\mathbf{v}}_k \quad \Rightarrow \quad \underline{\mathbf{n}}_{ij} = \varkappa \mathbf{Q}^{-\top} \mathbf{Q}^{-1} \underline{\mathbf{v}}_k = \varkappa \boldsymbol{\omega} \, \underline{\mathbf{v}}_k, \quad \varkappa \neq 0$$

$$k \neq \quad \{ \lambda_i \} \}$$

• n_{ij} may be constructed from non-orthogonal v_i and v_j , e.g. using the cross-ratio

• $\boldsymbol{\omega}$ is a symmetric, positive definite 3×3 matrix

IAC = Image of Absolute Conic

3D Computer Vision: III. Computing with a Single Camera (p. 55/189) つくぐ R. Šára, CMP; rev. 13-Oct-2020 📴

▶cont'd

	configuration	equation	# constraints			
(3)	orthogonal v.p.	$\mathbf{\underline{v}}_i^{ op} \boldsymbol{\omega} \mathbf{\underline{v}}_j = 0$	1			
(4)	orthogonal v.l.	$\underline{\mathbf{n}}_{ij}^{ op} \boldsymbol{\omega}^{-1} \underline{\mathbf{n}}_{ik} = 0$	1			
(5)	v.p. orthogonal to v.l.	${ar{ extbf{n}}}_{ij}=arkappaoldsymbol{\omega}{f{ extbf{v}}}_k$	2			
(6)	orthogonal image raster $\theta=\pi/2$	$\omega_{12}=\omega_{21}=0$	1			
(7)	unit aspect $a=1$ when $\theta=\pi/2$	$\omega_{11} - \omega_{22} = 0$	1			
(8)	known principal point $u_0 = v_0 = 0$	$\omega_{13}=\omega_{31}=\omega_{23}=\omega_{32}=$	0 2			
we R ⁵						
• these are homogeneous linear equations for the 5 parameters in ω in the form $Dw = 0$ \approx can be eliminated from (5)						
• we need at least 5 constraints for full ω symmetric 3 $ imes$ 3						
• we get K from $\omega^{-1} = \mathbf{K}\mathbf{K}^{T}$ by <u>Choleski</u> decomposition						

the decomposition returns a positive definite upper triangular matrix one avoids solving an explicit set of quadratic equations for the parameters in ${\bf K}$

Examples

Assuming orthogonal raster, unit aspect (ORUA): $\theta = \pi/2$, a = 1

$$oldsymbol{\omega} \simeq egin{bmatrix} 1 & 0 & -u_0 \ 0 & 1 & -v_0 \ -u_0 & -v_0 & f^2 + u_0^2 + v_0^2 \end{bmatrix}$$

Assuming ORUA and known $m_0 = (u_0, v_0)$, two finite orthogonal vanishing points give f

$$\mathbf{\underline{v}}_1^{\top} \boldsymbol{\omega} \, \mathbf{\underline{v}}_2 = 0 \quad \Rightarrow \quad f^2 = \left| (\mathbf{v}_1 - \mathbf{m}_0)^{\top} (\mathbf{v}_2 - \mathbf{m}_0) \right|$$

in this formula, \mathbf{v}_i , \mathbf{m}_0 are Cartesian (not homogeneous)!

Ex 2:

Ex 1:

Ex 2: Non-orthogonal vanishing points \mathbf{v}_i , \mathbf{v}_j , known angle ϕ : $\cos \phi = \frac{\underline{\mathbf{v}}_i^\top \boldsymbol{\omega} \underline{\mathbf{v}}_j}{\sqrt{\underline{\mathbf{v}}_i^\top \boldsymbol{\omega} \underline{\mathbf{v}}_i} \sqrt{\underline{\mathbf{v}}_j^\top \boldsymbol{\omega} \underline{\mathbf{v}}_j}}$

- leads to polynomial equations
- e.g. ORUA and $u_0 = v_0 = 0$ gives

$$(\mathbf{f}^{2} + \mathbf{v}_{i}^{\top}\mathbf{v}_{j})^{2} = (\mathbf{f}^{2} + \|\mathbf{v}_{i}\|^{2}) \cdot (\mathbf{f}^{2} + \|\mathbf{v}_{j}\|^{2}) \cdot \cos^{2}\phi$$

► Camera Orientation from Two Finite Vanishing Points

Problem: Given K and two vanishing points corresponding to two known orthogonal directions d_1 , d_2 , compute camera orientation R with respect to the plane.

• 3D coordinate system choice, e.g.:

$$\mathbf{d}_1 = (1, 0, 0), \quad \mathbf{d}_2 = (0, 1, 0)$$

we know that

$$\mathbf{d}_i \simeq \mathbf{Q}^{-1} \mathbf{v}_i = (\mathbf{K} \mathbf{R})^{-1} \mathbf{v}_i = \mathbf{R}^{-1} \underbrace{\mathbf{K}^{-1} \mathbf{v}_i}_{\mathbf{w}} \underbrace{\mathbf{v}_i \mathbf{v}_i}_{\mathbf{w}}$$

 $\mathbf{Rd}_i \simeq \mathbf{w}_i$

- knowing $\mathbf{d}_{1,2}$ we conclude that $\underline{\mathbf{w}}_i / \|\underline{\mathbf{w}}_i\|$ is the *i*-th column \mathbf{r}_i of \mathbf{R}
- the third column is orthogonal: ${f r}_3\simeq {f r}_1 imes {f r}_2$

$$\mathbf{R} = \begin{bmatrix} \underline{\mathbf{w}}_1 & \underline{\mathbf{w}}_2 & \underline{\mathbf{w}}_1 \times \underline{\mathbf{w}}_2 \\ \|\underline{\mathbf{w}}_1\| & \|\underline{\mathbf{w}}_2\| & \|\underline{\mathbf{w}}_1 \times \underline{\mathbf{w}}_2\| \end{bmatrix}$$

 in general we have to care about the signs ±<u>w</u>_i (such that det **R** = 1)

some suitable scenes

 \mathbf{d}_2

 \mathbf{d}_1

Application: Planar Rectification

Principle: Rotate camera (image plane) parallel to the plane of interest.

- H is the rectifying homography
- both ${\bf K}$ and ${\bf R}$ can be calibrated from two finite vanishing points assuming ORUA ${\rightarrow} 57$
- not possible when one of them is (or both are) infinite
- without ORUA we would need 4 additional views to calibrate ${\bf K}$ as on ${\rightarrow} 54$

► Camera Resection

Camera calibration and orientation from a known set of $k\geq 6$ reference points and their images $\{\overline{(X_i,m_i)}\}_{i=1}^6.$

- X_i are considered exact
- m_i is a measurement subject to detection error

$$\mathbf{m}_i = \hat{\mathbf{m}}_i + \mathbf{e}_i$$
 Cartesian

• where
$$oldsymbol{\lambda}_{i}\,\hat{\mathbf{m}}_{i}=\mathbf{P}\mathbf{\underline{X}}_{i}$$

Resection Targets

calibration chart

automatic calibration point detection

resection target with translation stage

- target translated at least once
- by a calibrated (known) translation
- X_i point locations looked up in a table based on their code

► The Minimal Problem for Camera Resection

Problem: Given k = 6 corresponding pairs $\{(X_i, m_i)\}_{i=1}^k$, find **P**

 $\lambda_{i}\underline{\mathbf{m}}_{i} = \mathbf{P}\underline{\mathbf{X}}_{i}, \qquad \mathbf{P} = \begin{bmatrix} \mathbf{q}_{1}^{\mathsf{T}} \\ \mathbf{q}_{2}^{\mathsf{T}} \\ \mathbf{q}_{3}^{\mathsf{T}} \end{bmatrix} \begin{pmatrix} q_{14} \\ q_{24} \\ q_{34} \end{bmatrix} \qquad \underbrace{\mathbf{X}}_{i} = (x_{i}, y_{i}, z_{i}, 1), \quad i = 1, 2, \dots, k, \ k = 6 \\ \underline{\mathbf{m}}_{i} = (u_{i}, v_{i}, 1), \quad \lambda_{i} \in \mathbb{R}, \ \lambda_{i} \neq 0, \ |\lambda_{i}| < \infty$ sily modifiable for infinite points X_i but be aware of \rightarrow 64

expanded:

$$\lambda_i u_i = \mathbf{q}_1^\top \mathbf{X}_i + q_{14}, \quad \lambda_i v_i = \mathbf{q}_2^\top \mathbf{X}_i + q_{24}, \quad \lambda_i = \mathbf{q}_3^\top \mathbf{X}_i + q_{34}$$

after elimination of λ_i : $(\mathbf{q}_3^\top \mathbf{X}_i + q_{34})u_i = \mathbf{q}_1^\top \mathbf{X}_i + q_{14}, \quad (\mathbf{q}_3^\top \mathbf{X}_i + q_{34})v_i = \mathbf{q}_2^\top \mathbf{X}_i + q_{24}$

Then

$$\mathbf{A} = \left\{ \begin{array}{c} \mathbf{X}_{1}^{\top} & 1 & \mathbf{0}^{\top} & 0 & -u_{1}\mathbf{X}_{1}^{\top} & -u_{1} \\ \mathbf{0}^{\top} & 0 & \mathbf{X}_{1}^{\top} & 1 & -v_{1}\mathbf{X}_{1}^{\top} & -v_{1} \\ \vdots & & & \vdots \\ \mathbf{X}_{k}^{\top} & 1 & \mathbf{0}^{\top} & 0 & -u_{k}\mathbf{X}_{k}^{\top} & -u_{k} \\ \mathbf{0}^{\top} & 0 & \mathbf{X}_{k}^{\top} & 1 & -v_{k}\mathbf{X}_{k}^{\top} & -v_{k} \\ \end{array} \right\} \cdot \begin{bmatrix} \mathbf{q}_{1} \\ \mathbf{q}_{2} \\ \mathbf{q}_{24} \\ \mathbf{q}_{3} \\ \mathbf{q}_{34} \end{bmatrix} = \mathbf{0}$$
(9)

- we need 11 independent parameters for P
- $\mathbf{A} \in \mathbb{R}^{2k,12}$, $\mathbf{q} \in \mathbb{R}^{12}$
- 6 points in a general position give rank A = 12 and there is no (non-trivial) null space
- drop one row to get rank-11 matrix, then the basis vector of the null space of A gives q

3D Computer Vision: III. Computing with a Single Camera (p. 62/189) のへへ R. Šára, CMP; rev. 13-Oct-2020 運動

The Jack-Knife Solution for k = 6

- given the 6 correspondences, we have 12 equations for the 11 parameters
- can we use all the information present in the 6 points?

Jack-knife estimation

- **1**. n := 0
- **2**. for $i = 1, 2, \ldots, 2k$ do
 - a) delete *i*-th row from A, this gives A_i
 - b) if dim null $A_i > 1$ continue with the next i

c)
$$n \coloneqq n+1$$

- d) compute the right null-space q_i of A_i
- e) $\hat{\mathbf{q}}_i := \mathbf{q}_i$ normalized to $q_{34} = 1$ and dimension-reduced

$$\mathbf{q} = \frac{1}{n} \sum_{i=1}^{n} \hat{\mathbf{q}}_{i},$$
 var[\mathbf{q}] = $\frac{n-1}{n} \operatorname{diag} \sum_{i=1}^{n} (\hat{\mathbf{q}}_{i} - \mathbf{q}) (\hat{\mathbf{q}}_{i} - \mathbf{q})^{\top}$ regular for $n \ge 11$ variance of the sample mean

- have a solution + an error estimate, per individual elements of P (except P_{34})
- at least 5 points must be in a general position $(\rightarrow 64)$
- large error indicates near degeneracy
- computation not efficient with k > 6 points, needs $\binom{2k}{11}$ graws, e.g. $k = 7 \Rightarrow 364$ draws
- better error estimation method: decompose \mathbf{P}_i to $\mathbf{K}_i, \mathbf{K}_i, \mathbf{t}_i$ (\rightarrow 33), represent \mathbf{R}_i with 3 parameters (e.g. Euler angles, or in Cayley representation \rightarrow 141) and compute the errors for the parameters
- even better: use the SE(3) Lie group for $(\mathbf{R}_i, \mathbf{t}_i)$ and average its Lie-algebra representations

3D Computer Vision: III. Computing with a Single Camera (p. 63/189) つへへ R. Šára, CMP; rev. 13-Oct-2020 🗺

e.g. by 'economy-size' SVD

assuming finite cam. with $P_{3,4} = 1$

Degenerate (Critical) Configurations for Camera Resection

Let $\mathcal{X} = \{X_i; i = 1, ...\}$ be a set of points and $\mathbf{P}_1 \not\simeq \mathbf{P}_j$ be two regular (rank-3) cameras. Then two configurations $(\mathbf{P}_1, \mathcal{X})$ and $(\mathbf{P}_j, \mathcal{X})$ are image-equivalent if

$$\mathbf{P}_1 \underline{\mathbf{X}}_i \simeq \mathbf{P}_j \underline{\mathbf{X}}_i \quad \text{for all} \quad X_i \in \mathcal{X}$$

there is a non-trivial set of other cameras that see the same image

Results

• <u>importantly</u>: If all calibration points $X_i \in \mathcal{X}$ lie on a plane \varkappa then camera resection is non-unique and all image-equivalent camera centers lie on a spatial line \mathcal{C} with the $C_{\infty} = \varkappa \cap \mathcal{C}$ excluded

this also means we cannot resect if all X_i are infinite

•)and more: by adding points $X_i \in \mathcal{X}$ to \mathcal{C} we gain nothing

• there are additional image-equivalent configurations, see next

proof sketch in [H&Z, Sec. 22.1.2]

Note that if Q, T are suitable homographies then $P_1 \simeq QP_0T$, where P_0 is canonical and the analysis can be made with $\hat{P}_j \simeq Q^{-1}P_j$

$$\mathbf{P}_{0}\underbrace{\mathbf{T}\underline{\mathbf{X}}_{i}}_{\mathbf{Y}_{i}} \simeq \hat{\mathbf{P}}_{j}\underbrace{\mathbf{T}\underline{\mathbf{X}}_{i}}_{\mathbf{Y}_{i}} \quad \text{for all} \quad Y_{i} \in \mathcal{Y}$$

3D Computer Vision: III. Computing with a Single Camera (p. 64/189) つへへ R. Šára, CMP; rev. 13-Oct-2020 🗺

cont'd (all cases)

- cameras C_1 , C_2 co-located at point $\mathcal C$
- points on three optical rays or one optical ray and one optical plane
- Case 5: camera sees 3 isolated point images
- Case 6: cam. sees a line of points and an isolated point
- cameras lie on a line $\mathcal{C} \setminus \{C_{\infty}, C'_{\infty}\}$
- points lie on ${\mathcal C}$ and
 - 1. on two lines meeting C at C_{∞} , C'_{∞}
 - 2. or on a plane meeting C at C_{∞}
- Case 3: camera sees 2 lines of points
- Case 4: dangerous!
- cameras lie on a planar conic $\mathcal{C}\setminus\{C_\infty\}$ not necessarily an ellipse
- points lie on ${\mathcal C}$ and an additional line meeting the conic at C_∞
- Case 2: camera sees 2 lines of points
- cameras and points all lie on a twisted cubic ${\mathcal C}$
- Case 1: camera sees points on a conic dangerous but unlikely

3D Computer Vision: III. Computing with a Single Camera (p. 65/189) つへへ R. Šára, CMP; rev. 13-Oct-2020 🗓

► Three-Point Exterior Orientation Problem (P3P)

<u>Calibrated</u> camera rotation and translation from <u>Perspective images of 3</u> reference <u>Points</u>. **Problem:** Given **K** and three corresponding pairs $\{(m_i, X_i)\}_{i=1}^3$, find **R**, **C** by solving

$$\lambda_i \underline{\mathbf{m}}_i = \mathbf{K} \mathbf{R} \left(\mathbf{X}_i - \mathbf{C} \right), \quad i = 1, 2, 3 \quad \mathbf{X}_i \text{ Cartesian}$$

1. Transform $\underline{\mathbf{v}}_i \stackrel{\mathrm{def}}{=} \mathbf{K}^{-1} \underline{\mathbf{m}}_i$. Then

$$\overline{\boldsymbol{\lambda}_i \mathbf{y}_i} = \mathbf{R}(\mathbf{X}_i - \mathbf{C}).$$

(10)

2. If there was no rotation in (10), the situation would look like this

- 3. and we could shoot 3 lines from the given points X_i in given directions v_i to get C
- 4. given **C** we solve (10) for λ_i , **R**

►P3P cont'd

If there is rotation ${\bf R}$

1. Eliminate R by taking rotation preserves length: $||\mathbf{Rx}|| = ||\mathbf{x}||$

$$|\boldsymbol{\lambda}_i| \cdot \|\mathbf{\underline{v}}_i\| = \|\mathbf{X}_i - \mathbf{C}\| \stackrel{\text{def}}{=} z_i$$
 (11)

2. Consider only angles among \underline{v}_i and apply Cosine Law per triangle $(\mathbf{C}, \mathbf{X}_i, \mathbf{X}_j)$ $i, j = 1, 2, 3, i \neq j$

$$d_{ij}^2 = z_i^2 + z_j^2 - 2 \, z_i \, z_j \, c_{ij},$$

$$z_i = \|\mathbf{X}_i - \mathbf{C}\|, \ d_{ij} = \|\mathbf{X}_j - \mathbf{X}_i\|, \ c_{ij} = \cos(\angle \mathbf{v}_i \, \mathbf{v}_j)$$

Solve system of 3 quadratic eqs in 3 unknowns z_i [Fischler & Bolles, 1981] there may be no real root; there are up to 4 solutions that cannot be ignored (verify on additional points)

5. Compute C by trilateration (3-sphere intersection) from X_i and z_i ; then λ_i from (11) and R from (10)

Similar problems (P4P with unknown f) at http://cmp.felk.cvut.cz/minimal/ (with code)

Degenerate (Critical) Configurations for Exterior Orientation

unstable solution

• center of projection C located on the orthogonal circular cylinder with base circumscribing the three points X_i

unstable: a small change of X_i results in a large change of C can be detected by error propagation

degenerate

• camera *C* is coplanar with points (*X*₁, *X*₂, *X*₃) but is not on the circumscribed circle of (*X*₁, *X*₂, *X*₃)

camera sees points on a line

no solution

1. C cocyclic with (X_1, X_2, X_3) camera sees points on a line

· additional critical configurations depend on the quadratic equations solver

[Haralick et al. IJCV 1994]

3D Computer Vision: III. Computing with a Single Camera (p. 68/189) つくや R. Šára, CMP; rev. 13-Oct-2020 🗓

	problem	given	unknown	slide
$\left \right $	camera resection	6 world-img correspondences $\left\{ (X_i, m_i) ight\}_{i=1}^6$	Р	62
	exterior orientation	$\left \mathbf{K} ight $ 3 world–img correspondences $\left\{ \left(X_{i},m_{i} ight) ight\} _{i=1}^{3}$	R , C	66
	relative orientation	3 world-world correspondences $\left\{ (X_i,Y_i) ight\}_{i=1}^3$	R, t	70

- camera resection and exterior orientation are similar problems in a sense:
 - we do resectioning when our camera is uncalibrated
 - we do orientation when our camera is calibrated
- relative orientation involves no camera (see next)
- more problems to come

Thank You

