3D Computer Vision

Radim Šára Martin Matoušek
Center for Machine Perception
Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz
phone ext. 7203

rev. December 1, 2020

Open Informatics Master's Course

Module VI

3D Structure and Camera Motion

6．1Reconstructing Camera System
6．2 Bundle Adjustment
covered by
［1］［H\＆Z］Secs： $9.5 .3,10.1,10.2,10.3,12.1,12.2,12.4,12.5,18.1$
［2］Triggs，B．et al．Bundle Adjustment－A Modern Synthesis．In Proc ICCV Workshop on Vision Algorithms．Springer－Verlag．pp．298－372， 1999.
additional references
D．Martinec and T．Pajdla．Robust Rotation and Translation Estimation in Multiview Reconstruction．In Proc CVPR， 2007

囯
M．I．A．Lourakis and A．A．Argyros．SBA：A Software Package for Generic Sparse Bundle Adjustment． ACM Trans Math Software 36（1）：1－30， 2009.

－Reconstructing Camera System by Stepwise Gluing

Given：Calibration matrices \mathbf{K}_{j} and tentative correspondences per camera triples．

Initialization

1．initialize camera cluster \mathcal{C} with P_{1}, P_{2} ，
2．find essential matrix \mathbf{E}_{12} and matches M_{12} by the 5 －point algorithm $\rightarrow 88$
3．construct camera pair

$$
\mathbf{P}_{1}=\mathbf{K}_{1}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right], \mathbf{P}_{2}=\mathbf{K}_{2}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]
$$

4．triangulate $\left\{X_{i}\right\}$ per match from M_{12} $\rightarrow 105$

5．initialize point cloud \mathcal{X} with $\left\{X_{i}\right\}$ satisfying chirality constraint $z_{i}>0$ and apical angle constraint $\left|\alpha_{i}\right|>\alpha_{T}$

Attaching camera $P_{j} \notin \mathcal{C}$
1．select points \mathcal{X}_{j} from \mathcal{X} that have matches to P_{j}
2．estimate \mathbf{P}_{j} using \mathcal{X}_{j} ，RANSAC with the 3－pt alg．（P3P），projection errors $\mathbf{e}_{i j}$ in $\mathcal{X}_{j} \rightarrow 66$
3．reconstruct 3D points from all tentative matches from P_{j} to all $P_{l}, l \neq k$ that are not in \mathcal{X}
4．filter them by the chirality and apical angle constraints and add them to \mathcal{X}
5．add P_{j} to \mathcal{C}
6．perform bundle adjustment on \mathcal{X} and \mathcal{C}

- The Projective Reconstruction Theorem

Observation: Unless \mathbf{P}_{i} are constrained, then for any number of cameras $i=1, \ldots, k$

$$
\underline{\mathbf{m}}_{i} \simeq \mathbf{P}_{i} \underline{\mathbf{X}}=\underbrace{\mathbf{P}_{i} \mathbf{H}^{-1}}_{\mathbf{P}_{i}^{\prime}} \underbrace{\mathbf{H} \underline{\mathbf{X}}}_{\underline{\mathbf{x}}^{\prime}}=\mathbf{P}_{i}^{\prime} \underline{\mathbf{X}}^{\prime}
$$

- when \mathbf{P}_{i} and $\underline{\mathbf{X}}$ are both determined from correspondences (including calibrations \mathbf{K}_{i}), they are given up to a common 3D homography \mathbf{H}
(translation, rotation, scale, shear, pure perspectivity)

- when cameras are internally calibrated (\mathbf{K}_{i} known) then \mathbf{H} is restricted to a similarity since it must preserve the calibrations \mathbf{K}_{i}
[H\&Z, Secs. 10.2, 10.3], [Longuet-Higgins 1981] (translation, rotation, scale)

-Analyzing the Camera System Reconstruction Problem

Problem: Given a set of p decomposed pairwise essential matrices $\hat{\mathbf{E}}_{i j}=\left[\hat{\mathbf{t}}_{i j}\right]_{\times} \hat{\mathbf{R}}_{i j}$ and calibration matrices \mathbf{K}_{i} reconstruct the camera system $\mathbf{P}_{i}, i=1, \ldots, k$
$\rightarrow 81$ and $\rightarrow 146$ on representing \mathbf{E}

We construct calibrated camera pairs $\hat{\mathbf{P}}_{i j} \in \mathbb{R}^{6,4}$ see (17)

$$
\hat{\mathbf{P}}_{i j}=\left[\begin{array}{c}
\mathbf{K}_{i}^{-1} \hat{\mathbf{P}}_{i} \\
\mathbf{K}_{j}^{-1} \hat{\mathbf{P}}_{j}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
\hat{\mathbf{R}}_{i j} & \hat{\mathbf{t}}_{i j}
\end{array}\right] \in \mathbb{R}^{6,4}
$$

- singletons i, j correspond to graph nodes
k nodes
- pairs $i j$ correspond to graph edges
$\hat{\mathbf{P}}_{i j}$ are in different coordinate systems but these are related by similarities $\hat{\mathbf{P}}_{i j} \mathbf{H}_{i j}=\mathbf{P}_{i j}$

- (28) is a linear system of $24 p$ eqs. in $7 p+6 k$ unknowns $\quad 7 p \sim\left(\mathbf{t}_{i j}, \mathbf{R}_{i j}, s_{i j}\right), 6 k \sim\left(\mathbf{R}_{i}, \mathbf{t}_{i}\right)$
- each \mathbf{P}_{i} appears on the right side as many times as is the degree of node \mathbf{P}_{i} eg. P_{5} 3-times

-cont'd

Eq. (28) implies

$$
\left[\begin{array}{c}
\mathbf{R}_{i j} \\
\hat{\mathbf{R}}_{i j} \mathbf{R}_{i j}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{R}_{i} \\
\mathbf{R}_{j}
\end{array}\right] \quad\left[\begin{array}{c}
\mathbf{t}_{i j} \\
\hat{\mathbf{R}}_{i j} \mathbf{t}_{i j}+s_{i j} \hat{\mathbf{t}}_{i j}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{t}_{i} \\
\mathbf{t}_{j}
\end{array}\right]
$$

- $\mathbf{R}_{i j}$ and $\mathrm{t}_{i j}$ can be eliminated:

$$
\begin{equation*}
\hat{\mathbf{R}}_{i j} \mathbf{R}_{i}=\mathbf{R}_{j}, \quad \hat{\mathbf{R}}_{i j} \mathbf{t}_{i}+s_{i j} \hat{\mathbf{t}}_{i j}=\mathbf{t}_{j}, \quad s_{i j}>0 \tag{29}
\end{equation*}
$$

- note transformations that do not change these equations
assuming no error in $\hat{\mathbf{R}}_{i j}$

$$
\text { 1. } \quad \mathbf{R}_{i} \mapsto \mathbf{R}_{i} \mathbf{R}, \quad \text { 2. } \quad \mathbf{t}_{i} \mapsto \sigma \mathbf{t}_{i} \text { and } s_{i j} \mapsto \sigma s_{i j}, \quad \text { 3. } \quad \mathbf{t}_{i} \mapsto \mathbf{t}_{i}+\mathbf{R}_{i} \mathbf{t}
$$

- the global frame is fixed, e.g. by selecting

$$
\begin{equation*}
\mathbf{R}_{1}=\mathbf{I}, \quad \sum_{i=1}^{k} \mathbf{t}_{i}=\mathbf{0}, \quad \frac{1}{p} \sum_{i, j} s_{i j}=1 \tag{30}
\end{equation*}
$$

- rotation equations are decoupled from translation equations
- in principle, $s_{i j}$ could correct the sign of $\hat{\mathbf{t}}_{i j}$ from essential matrix decomposition but \mathbf{R}_{i} cannot correct the α sign in $\hat{\mathbf{R}}_{i j}$
\Rightarrow therefore make sure all points are in front of cameras and constrain $s_{i j}>0 ; \rightarrow 83$
+ pairwise correspondences are sufficient
- suitable for well-distributed cameras only (dome-like configurations)
otherwise intractable or numerically unstable

Finding The Rotation Component in Eq．（29）：A Global Algorithm

Task：Solve $\hat{\mathbf{R}}_{i j} \mathbf{R}_{i}=\mathbf{R}_{j}, i, j \in V,(i, j) \in E$ where \mathbf{R} are a 3×3 rotation matrix each． Per columns $c=1,2,3$ of \mathbf{R}_{j} ：

$$
\begin{align*}
& : \quad\{, 2,3 \tag{31}\\
& \hat{\mathbf{R}}_{i j} \mathbf{r}_{i}^{c}-\mathbf{r}_{j}^{c}=\mathbf{0}, \quad \text { for all } i, j
\end{align*}
$$

－fix c and denote $\mathbf{r}^{c}=\left[\mathbf{r}_{1}^{c}, \mathbf{r}_{2}^{c}, \ldots, \mathbf{r}_{k}^{c}\right]^{\top} \quad c$－th columns of all rotation matrices stacked； $\mathbf{r}^{c} \in \mathbb{R}^{3 k}$
－then（31）becomes $\mathbf{D r} \mathbf{r}^{c}=\mathbf{0}$
$\mathbf{D} \in \mathbb{R}^{3 p, 3 k}$
－ $3 p$ equations for $3 k$ unknowns $\rightarrow p \geq k$
in a 1－connected graph we have to fix $\mathbf{r}_{1}^{c}=[1,0,0]$
Ex：$(k=p=3)$

Idea：
1．find $\hat{\xi} \hat{b} \&$ space of all $\mathbf{r}^{c} \in \mathbb{R}^{3 k}$ that solve（31）
2．choose 3 unit orthogonal vectors in this space
［Martinec \＆Pajdla CVPR 2007］
D is sparse，use $[\mathrm{V}, \mathrm{E}]=\operatorname{eigs}\left(\mathrm{D}^{\prime} * \mathrm{D}, 3,0\right)$ ；（Matlab）
3．find closest rotation matrices per cam．using SVD
－global world rotation is arbitrary

$$
\text { because } \begin{aligned}
\left\|\mathbf{r}^{c}\right\| & =1 \text { is necessary but insufficient } \\
\mathbf{R}_{i}^{*} & =\mathbf{U} \mathbf{V}^{\top}, \text { where } \mathbf{R}_{i}=\mathbf{U D V}
\end{aligned}
$$

Finding The Translation Component in Eq. (29)

From (29) and (30): $\quad 0<d \leq 3-$ rank of camera center set, $p-$ \#pairs, $k-$ \#cameras

- in rank d : $\tilde{d \cdot p}+d+1$ indef. eqns for $d \cdot k+p$ unknowns $\rightarrow p \geq \frac{d(k-1)-1}{d-1} \stackrel{\text { def }}{=} Q(d, k)$

Ex: Chains and circuits construction from sticks of known orientation and unknown length
$p=k-1$

$$
k=p=3
$$

$k \leq 2$ for any $d \quad 3 \geq d \geq 2$: non-collinear ok

$3 \geq d \geq 3$: non-plandr ok

- equations insufficient for chains, trees, or when $d=1$
collinear cameras
- 3-connectivity implies sufficient equations for $d=3$
cams. in general pos. (in 3D
- s-connected graph has $p \geq\left\lceil\frac{s k}{2}\right\rceil$ edges for $s \geq 2$, hence $p \geq\left\lceil\frac{3 k}{2}\right\rceil \geq Q(3, k)=\frac{3 k}{2}-2$
- 4-connectivity implies sufficient eqns. for any k when $d=2$ coplanar cams
- since $p \geq\lceil 2 k\rceil \geq Q(2, k)=2 k-3$
- maximal planar tringulated graphs have $p=3 k-6$ and give a solution for $k \geq 3$
maximal planar triangulated graph example:

cont'd

Linear equations in (29) and (30) can be rewritten to

$$
\mathbf{D t}=\mathbf{0}, \quad \mathbf{t}=\left[\mathbf{t}_{1}^{\top}, \mathbf{t}_{2}^{\top}, \ldots, \mathbf{t}_{k}^{\top}, s_{12}, \ldots, s_{i j}, \ldots\right]^{\top}
$$

assuming measurement errors $\mathbf{D t}=\boldsymbol{\epsilon}$ and $d=3$, we have

$$
\mathbf{t} \in \mathbb{R}^{3 k+p}, \quad \mathbf{D} \in \mathbb{R}^{3 p, 3 k+p} \quad \text { sparse }
$$

and

$$
\mathbf{t}^{*}=\arg \min \mathbf{t}^{\top} \mathbf{D}^{\top} \mathbf{D} t
$$

- this is a quadratic prog
$z=\operatorname{zeros}(3 * \mathrm{k}+\mathrm{p}, 1) ;$
$\mathrm{t}=$ quadprog($\mathrm{D} .{ }^{\prime} * \mathrm{D}$,
- but check the rank first!

－Bundle Adjustment

Goal：Use a good（and expensive）error model and improve all estimated parameters

Given：

1．set of 3D points $\left\{\mathbf{X}_{i}\right\}_{i=1}^{p}$
2．set of cameras $\left\{\mathbf{P}_{j}\right\}_{j=1}^{c}$
3．fixed tentative projections $\mathbf{m}_{i j}$

Required：

1．corrected 3D points $\left\{\mathbf{X}_{i}^{\prime}\right\}_{i=1}^{p}$
2．corrected cameras $\left\{\mathbf{P}_{j}^{\prime}\right\}_{j=1}^{c}$

Latent：

－for simplicity， \mathbf{X}, \mathbf{m} are considered Cartesian（not homogeneous）
－we have projection error $\mathbf{e}_{i j}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)=\mathbf{x}_{i}-\mathbf{m}_{i}$ per image feature，where $\underline{\mathbf{x}}_{i}=\mathbf{P}_{j} \underline{\mathbf{X}}_{i}$
－for simplicity，we will work with scalar error $e_{i j}=\left\|\mathbf{e}_{i j}\right\|$

Robust Objective Function for Bundle Adjustment

The data model is constructed by marginalization over $v_{i j}$, as in the Robust Matching Model $\rightarrow 113$

$$
p(\{\mathbf{e}\} \mid\{\mathbf{P}, \mathbf{X}\})=\prod_{\text {pts }: i=1}^{p} \prod_{\text {cams }: j=1}^{c}\left(\left(1-P_{0}\right) p_{1}\left(e_{i j} \mid \mathbf{X}_{i}, \mathbf{P}_{j}\right)+P_{0} p_{0}\left(e_{i j} \mid \mathbf{X}_{i}, \mathbf{P}_{j}\right)\right)
$$

marginalized negative log-density is $(\rightarrow 114)$

$$
-\log p(\{\mathbf{e}\} \mid\{\mathbf{P}, \mathbf{X}\})=\sum_{i} \sum_{j} \underbrace{-\log \left(e^{-\frac{e_{i j}^{2}\left(\mathbf{x}_{i}, \mathbf{P}_{j}\right)}{2 \sigma_{1}^{2}}}+t\right)}_{\rho\left(e_{i j}^{2}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)\right)=\nu_{i j}^{2}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)} \stackrel{\text { def }}{=} \sum_{i} \sum_{j} \nu_{i j}^{2}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)
$$

- we can use LM, $e_{i j}$ is the projection error (not Sampson error)
- $\nu_{i j}$ is a 'robust' error fcn.; it is non-robust $\left(\nu_{i j}=e_{i j}\right)$ when $t=0$
- $\rho(\cdot)$ is a 'robustification function' we often find in M-estimation
- the $\mathbf{L}_{i j}$ in Levenberg-Marquardt changes to vector

but the LM method stays the same as before $\rightarrow 107-108$
- outliers (wrong $v_{i j}$): almost no impact on \mathbf{d}_{s} in normal equations because the red term in (32) scales contributions to both sums down for the particular ij

$$
-\sum_{i, j} \mathbf{L}_{i j}^{\top} \nu_{i j}\left(\theta^{s}\right)=\left(\sum_{i, j}^{k} \mathbf{L}_{i j}^{\top} \mathbf{L}_{i j}\right) \mathbf{d}_{s}
$$

－Sparsity in Bundle Adjustment

We have $q=3 p+11 k$ parameters：$\theta=\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{p} ; \mathbf{P}_{1}, \mathbf{P}_{2}, \ldots, \mathbf{P}_{k}\right)$ points，cameras We will use a multi－index $r=1, \ldots, z, z=p \cdot k$ ．Then each r corresponds to some i, j $\theta^{*}=\arg \min _{\theta} \sum_{r=1}^{z} \nu_{r}^{2}(\theta), \boldsymbol{\theta}^{s+1}:=\boldsymbol{\theta}^{s}+\mathrm{d}_{s},-\sum_{r=1}^{z} \mathbf{L}_{r}^{\top} \nu_{r}\left(\theta^{s}\right)=\left(\sum_{r=1}^{z} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}+\lambda \operatorname{diag}\left(\mathbf{L}_{r}^{\top} \mathbf{L}_{r}\right)\right) \mathbf{d}_{s}$
The block form of \mathbf{L}_{r} in Levenberg－Marquardt（ $\rightarrow 107$ ）is zero except in columns i and j ： r－th error term is $\nu_{r}^{2}=\rho\left(e_{i j}^{2}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)\right)$

－＂points first，then cameras＂parameterization scheme

Choleski Decomposition for B．A．

The most expensive computation in B ． A ．is solving the normal eqs：
find x such that

$$
-\sum_{r=1}^{z} \mathbf{L}_{r}^{\top} \nu_{r}\left(\theta^{s}\right)=\left(\sum_{r=1}^{z} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}+\lambda \operatorname{diag}\left(\mathbf{L}_{r}^{\top} \mathbf{L}_{r}\right)\right) \mathbf{x}
$$

－A is very large approx． $3 \cdot 10^{4} \times 3 \cdot 10^{4}$ for a small problem of 10000 points and 5 cameras
－ \mathbf{A} is sparse and symmetric， \mathbf{A}^{-1} is dense direct matrix inversion is prohibitive

Choleski：symmetric positive definite matrix \mathbf{A} can be decomposed to $\mathbf{A}=$ $\mathbf{L} \mathbf{L}^{\top}$ ，where \mathbf{L} is lower triangular．If \mathbf{A} is sparse then \mathbf{L} is sparse，too．

1．decompose $\mathbf{A}=\mathbf{L L}^{\top}$
transforms the problem to $\mathbf{L} \underbrace{\mathbf{L}^{\top} \mathbf{x}}_{c}=\mathbf{b}$
2．solve for x in two passes：

$$
\begin{aligned}
& \mathbf{L} \mathbf{c}=\mathbf{b} \mathbf{c}_{i}:=\mathbf{L}_{i i}^{-1}\left(\mathbf{b}_{i}-\sum_{j<i} \mathbf{L}_{i j} \mathbf{c}_{j}\right) \quad \text { forward substitution, } i=1, \ldots, q \text { (params) } \\
& \mathbf{L}^{\top} \mathbf{x}=\mathbf{c} \quad \mathbf{x}_{i}:=\mathbf{L}_{i i}^{-1}\left(\mathbf{c}_{i}-\sum_{j>i} \mathbf{L}_{j i} \mathbf{x}_{j}\right) \quad \text { back-substitution }
\end{aligned}
$$

－Choleski decomposition is fast（does not touch zero blocks）
non－zero elements are $9 p+121 k+66 p k \approx 3.4 \cdot 10^{6}$ ；ca． $250 \times$ fewer than all elements
－it can be computed on single elements or on entire blocks
－use profile Choleski for sparse A and diagonal pivoting for semi－definite A see above；［Triggs et al．1999］
－λ controls the definiteness

Profile Choleski Decomposition is Simple

```
function L = pchol(A)
%
% PCHOL profile Choleski factorization,
% L = PCHOL(A) returns lower-triangular sparse L such that A = L*L'
% for sparse square symmetric positive definite matrix A,
% especially efficient for arrowhead sparse matrices.
% (c) 2010 Radim Sara (sara@cmp.felk.cvut.cz)
    [p,q] = size(A);
if p ~= q, error 'Matrix A is not square'; end
L = sparse(q,q);
F = ones(q,1);
for i=1:q
    F(i) = find(A(i,:),1); % 1st non-zero on row i; we are building F gradually
    for j = F(i):i-1
        k = max(F(i),F(j));
        a = A(i,j) - L(i,k:(j-1))*L(j,k:(j-1))';
        L(i,j) = a/L(j,j);
    end
    a = A(i,i) - sum(full(L(i,F(i):(i-1))).^2);
    if a < O, error 'Matrix A is not positive definite'; end
    L(i,i) = sqrt(a);
end
end
```


Gauge Freedom

1. The external frame is not fixed: See Projective Reconstruction Theorem $\rightarrow 131$

$$
\underline{\mathbf{m}}_{i j} \simeq \mathbf{P}_{j} \underline{\mathbf{X}}_{i}=\mathbf{P}_{j} \mathbf{H}^{-1} \mathbf{H} \underline{\mathbf{X}}_{i}=\mathbf{P}_{j}^{\prime} \underline{\mathbf{X}}_{i}^{\prime}
$$

2. Some representations are not minimal, e.g.

$$
P_{34}=1
$$

- \mathbf{P} is 12 numbers for 11 parameters
- we may represent \mathbf{P} in decomposed form $\mathbf{K}, \mathbf{R}, \mathbf{t}$
- but \mathbf{R} is 9 numbers representing the 3 parameters of rotation

As a result

- there is no unique solution
- matrix $\sum_{r} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}$ is singular

Solutions

1. fixing the external frame (e.g. a selected camera frame) explicitly or by constraints
2. fixing the scale (e.g. $s_{12}=1$)

3a. either imposing constraints on projective entities

- cameras, e.g. $\mathbf{P}_{3,4}=1$
this excludes affine cameras
- points, e.g. $\left\|\underline{\mathbf{X}}_{i}\right\|^{2}=1 \quad$ this way we can represent points at infinity
$3 b$. or using minimal representations
- points in their Euclidean representation $\mathbf{X}_{i} \quad$ but finite points may be an unrealistic model
- rotation matrix can be represented by axis-angle or the Cayley transform see next

Thank You

