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IMatching Table

Based on scene opacity and the observation on mutual exclusion we expect each pixel to
match at most once.
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rays in epipolar plane matching table T

matching table
• rows and columns represent optical rays
• nodes: possible correspondence pairs
• full nodes: matches
• numerical values associated with nodes: descriptor similarities see next
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IConstructing An Image Similarity Cost

• let pi = (l, r) and L(l), R(r) be (left, right) image descriptors (vectors) constructed from
local image neighborhood windows

in matching table T :

�2l
r

�1
‘block’ in the left image 7→ ‘signal sample’:L(l)l

• a simple block similarity is SAD(l, r) = ‖L(l)−R(r)‖1 L1 metric (sum of absolute differences)

• a scaled-descriptor similarity is sim(l, r) =
‖L(l)−R(r)‖2

σ2
I (l, r)

smaller is better

• σ2
I – the difference scale; a suitable (plug-in) estimate is 1

2
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, giving

sim(l, r) = 1−
2 cov
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L(l),R(r)

)
var
(
L(l)

)
+ var
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R(r)

)︸ ︷︷ ︸
ρ
(
L(l),R(r)

)
var(·), cov(·) is sample (co-)variance,
not invariant to scale difference

(34)

• ρ – MNCC – Moravec’s Normalized Cross-Correlation statistic bigger is better [Moravec 1977]

ρ2 ∈ [0, 1], sign ρ ∼ ‘phase’
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How A Scene Looks in The Filled-In Matching Table

scene left image right image

5× 5 window 11× 11 window 3× 3 window

a good tradeoff occlusion artefacts undiscriminable

• MNCC ρ used
(α = 1.5, β = 1) →175

• high-correlation structures
correspond to scene objects

constant disparity

• a diagonal in matching
table

• zero disparity is the main
diagonal nonstd rectification

depth discontinuity

• horizontal or vertical jump
in matching table

large image window

• better correlation

• worse occlusion localization

repeated texture

• horizontal and vertical
block repetition
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Image Point Descriptors And Their Similarity

Descriptors: Image points are tagged by their (viewpoint-invariant) physical properties:
• texture window [Moravec 77]
• a descriptor like DAISY [Tola et al. 2010]
• learned descriptors
• reflectance profile under a moving illuminant
• photometric ratios [Wolff & Angelopoulou 93-94]
• dual photometric stereo [Ikeuchi 87]
• polarization signature
• . . .

• similar points are more likely to match
• image similarity values for all ‘match candidates’ give the 3D matching table

video
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IMarroquin’s Winner Take All (WTA) Matching Algorithm

Alg: Per left-image pixel: The most SAD-similar pixel along the right epipolar line →168

1. select disparity range this is a critical weak point

2. represent the matching table diagonals in a compact form
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3. use an ‘image sliding & cost aggregation algorithm’

image shifted by d = 1 pixel
−

∑

win

| · |

imr

iml

4. take the maximum over disparities d

5. threshold results by maximal allowed SAD dissimilarity
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A Matlab Code for WTA

function dmap = marroquin(iml, imr, disparityRange)
% iml, imr - rectified gray-scale images
% disparityRange - non-negative disparity range

% (c) Radim Sara (sara@cmp.felk.cvut.cz) FEE CTU Prague, 10 Dec 12

thr = 20; % bad match rejection threshold
r = 2;
winsize = 2*r+[1 1]; % 5x5 window (neighborhood) for r=2
N = boxing(ones(size(iml)), winsize); % the size of each local patch is

% N = (2r+1)^2 except for boundary pixels

% --- compute dissimilarity per pixel and disparity --->

for d = 0:disparityRange % cycle over all disparities
slice = abs(imr(:,1:end-d) - iml(:,d+1:end)); % pixelwise dissimilarity (unscaled SAD)
V(:,d+1:end,d+1) = boxing(slice, winsize)./N; % window aggregation

end

% --- collect winners, threshold, output disparity map --->

[cmap,dmap] = min(V,[],3); % collect winners and their dissimilarities
dmap(cmap > thr) = NaN; % mask-out high dissimilarity pixels

end % of marroquin

function c = boxing(im, wsz)
% if the mex is not found, run this slow version:
c = conv2(ones(1,wsz(1)), ones(wsz(2),1), im, ’same’);

end % of boxing
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WTA: Some Results

thr = 20 thr = 10

• results are fairly bad

• false matches in textureless image regions and on repetitive structures (book shelf)

• a more restrictive threshold (thr = 10) does not work as expected

• we searched the true disparity range, results get worse if the range is set wider

• chief failure reasons:
• unnormalized image dissimilarity does not work well
• no occlusion model (it just ignores the occlusion structure we have discussed →166)
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IA Principled Approach to Similarity

Empirical Distribution of MNCC ρ for Matches (green) and Non-Matches (red)

• histograms of ρ computed from 5× 5 correlation window ρ: bigger is better

• KITTI dataset

• 4.2 · 106 ground-truth (LiDAR) matches for p1(ρ) (green),
• 4.2 · 106 random non-matches for p0(ρ) (red)

Obs:
• non-matches (red) may have arbitrarily large ρ
• matches (green) may have arbitrarily low ρ
• ρ = 1 is improbable for matches
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Match Likelihood

• ρ is just a normalized measurement

• we need a probability distribution on [0, 1],
e.g. Beta distribution

p1(ρ) =
1

B(α, β)
|ρ|α−1(1− |ρ|)β−1

• note that uniform distribution is obtained for
α = β = 1

• when α = 2 and β = 1 then p1(·) = 2|ρ|

negative log-likelihoods V0 (red), V1 (blue)
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• the mode is at
√

α−1
α+β−2

≈ 0.9733 for α = 10, β = 1.5

• if we chose β = 1 then the mode was at ρ = 1

• perfect similarity is ‘suspicious’ (depends on expected camera noise level)

• from now on we will work with negative log-likelihood cost

V1

(
ρ(l, r)

)
= − log p1

(
ρ(l, r)

)
smaller is better (35)

• we should also define similarity (and negative log-likelihood V0(ρ(l, r))) for non-matches
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IA Principled Approach to Matching

• given matching M what is the likelihood of observed data D?

• data – all cost pairs (V0, V1) in the matching table T

• matches – pairs pi = (li, ri), i = 1, . . . , n

• matching: partitioning matching table T to matched M and excluded E pairs

T = M ∪ E, M ∩ E = ∅

• matching cost (negative log-likelihood, smaller is better)

V (D |M) =
∑
p∈M

V1(D | p) +
∑
p∈E

V0(D | p)

V1(D | p) – negative log-probability of data D at matched pixel p (35)
V0(D | p) – ditto at unmatched pixel p →174 and →175

• matching problem
M∗ = arg min

M∈M(T )
V (D |M)

M(T ) – the set of all matchings in table T

• symmetric: formulated over pairs, invariant to left ↔ right image swap unlike in WTA
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I(cont’d) Log-Likelihood Ratio

• we need to reduce matching to a standard polynomial-complexity problem

• convert the matching cost to an ‘easier’ sum

V (D |M) =
∑
p∈M

V1(D | p) +
∑
p∈E

V0(D | p) +

0︷ ︸︸ ︷∑
p∈M

V0(D | p)−
∑
p∈M

V0(D | p)

=
∑
p∈M

(
V1(D | p)− V0(D | p)

)
︸ ︷︷ ︸

−L(D | p)

+
∑
p∈E

V0(D | p) +
∑
p∈M

V0(D | p)︸ ︷︷ ︸∑
p∈T

V0(D | p) = const

• hence

arg min
M∈M(T )

V (D |M) = arg max
M∈M(T )

∑
p∈M

L(D | p) (36)

L(D | p) – logarithm of matched-to-unmatched likelihood ratio (bigger is better)

why this way: we want to use maximum-likelihood but our measurement is all data D

• (36) is max-cost matching (maximum assignment) for the maximum-likelihood (ML)
matching problem
• use Hungarian (Munkres) algorithm and threshold the result with T : L(D | p) > T ≥ 0
• or step back: sacrifice symmetry to speed and use dynamic programming
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Some Results for the Maximum-Likelihood (ML) Matching

• unlike the WTA we can efficiently control the density/accuracy tradeoff black = no match

• middle row: threshold T for L(D | p) set to achieve error rate of 3% (and 61% density results)

• bottom row: threshold T set to achieve density of 76% (and 4.3% error rate results)
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IBasic Stereoscopic Matching Models

• notice many small isolated errors in the ML matching

• Q: how to reduce the noisiness? A: a stronger model

Potential models for M (from weaker to stronger)
1. Uniqueness: Every image point matches at most once

• excludes semi-transparent objects
• used in the ML matching algorithm (but not by the WTA algorithm)

2. Monotonicity: Matched pixel ordering is preserved →180
• for all (i, j) ∈M, (k, l) ∈M, k > i⇒ l > j

Notation: (i, j) ∈ M or j = M(i) – left-image pixel i matches right-image pixel j

• excludes thin objects close to the cameras
• used in 3-Label Dynamic Programming (3LDP) [SP]

3. Coherence: Objects occupy well-defined 3D volumes
• concept by [Prazdny 85]
• algorithms are based on image/disparity map segmentation
• a popular model (segment-based, bilateral filtering and their successors)
• used in Stable Segmented 3LDP [Aksoy et al. PRRS 2008]

4. (Piecewise) binocular continuity: The scene images continuously w/o self-occlusions
• disparities do not differ much in neighboring pixels (except at object boundaries)
• full binocular continuity too strong, except in some applications
• piecewise binocular continuity is combined with monotonicity in 3LDP
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Binocular Discontinuities in Matching Table

right image pixel index
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depth discontinuity in left image

depth discontinuity in right image

invisible

dk critical disparity

monocularly visible points

binocularly visible background pts violating ordering

binocularly visible foreground points

l ∈ I

r ∈ J

d
k

dk

• this leads to the concept of ‘forbidden zone’
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IFormally: Uniqueness and Ordering in Matching Table T

X-zone and F -zone

�2
�1X(p)

F (p)pi pj
pj /∈ X(pi), pj /∈ F (pi)

• Uniqueness Constraint:

A set of pairs M = {pi}ni=1, pi ∈ T is a matching iff

∀pi, pj ∈M : pj /∈ X(pi).

X-zone, pi 6∈ X(pi)

• Ordering Constraint:

Matching M is monotonic iff

∀pi, pj ∈M : pj /∈ F (pi).

F -zone, pi 6∈ F (pi)

• ordering constraint: matched points form a monotonic set
in both images

• ordering is a powerful constraint: in n× n table we have
monotonic matchings O(4n)� O(n!) all matchings

~ 2: how many are there maximal monotonic matchings? (e.g. 27 for n = 4; hard!)

• uniqueness constraint is a basic occlusion model

• ordering constraint is a weak continuity model and partly also an occlusion model

• monotonic matching can be found by dynamic programming
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Some Results: AppleTree

left image right image ML →177

3LDP w/ordering näıve DP Stable Segmented 3LDP
[SP] [Cox et al. 1992] [Aksoy et al. PRRS 2008]

• 3LDP parameters αi, Ve learned on Middlebury stereo data http://vision.middlebury.edu/stereo/
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Some Results: Larch

left image right image ML →177

3LDP w/ordering [SP] näıve DP Stable Segmented 3LDP

• näıve DP: no mutual occlusion model, ignores symmetry, has no similarity distribution model

• but even 3LDP has errors in mutually occluded region

• Stable Segmented 3LDP: few errors in mutually occluded region since it uses a coherence
model
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Algorithm Comparison

Marroquin’s Winner-Take-All (WTA →171)

• the ur-algorithm very weak model

• dense disparity map

• O(N3) algorithm, simple but it rarely works

Maximum Likelihood Matching (ML →177)

• semi-dense disparity map

• many small isolated errors

• models basic occlusion

• O(N3 log(NV )) algorithm max-flow by cost scaling

MAP with Min-Cost Labeled Path (3LDP)

• semi-dense disparity map

• models occlusion in flat, piecewise binocularly
continuous scenes

• has ‘illusions’ if ordering does not hold

• O(N3) algorithm

Stable Segmented 3LDP

• better than 3LDP fewer errors at any given density

• O(N3 logN) algorithm

• requires image segmentation itself a difficult task

0.5 1 2 3 5 10 20

2

5

10

20

30

50

70

80

90

95

98

inaccuracy [%]

d
e
n

s
it
y
 [
%

]

ROC curves and their average error rate bounds

 

 

3LDP (3.65 ± 0.26)

WTA (4.71 ± 0.17)

ML (4.60 ± 0.65)

GCS (4.29 ± 1.47)

• ROC-like curve captures the
density/accuracy tradeoff

• numbers: AUC (smaller is better)

• GCS is the one used in the exercises

• more algorithms at
http://vision.middlebury.edu/
stereo/ (good luck!)
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A Summary of This Course Highlights

• homography as a two-image model

• epipolar geometry as a two-image model
• core algorithms for 3D vision:

• simple intrinsic calibration methods
• 6-pt alg for camera resection and 3-pt alg for exterior orientation (calibrated resection)
• 7-pt alg for fundamental matrix, 5-pt alg for essential matrix
• essential matrix decomposition to rotation and translation
• efficient accurate triangulation
• robust matching by RANSAC sampling
• camera system reconstruction
• efficient bundle adjustment
• stereoscopic matching

• statistical robustness as a way to work with partially unknown information

What can we do with these tools?

• 3D scene reconstruction
• visual odometry
• motion capture
• self-localization and mapping (not covered: 3D aggregation in scene maps)
• 3D scene measurement for robot motion planning
• automatic extrinsic calibration from motion (hand-eye calibration)
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Thank You
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