3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz
phone ext. 7203

rev. September 22, 2020

Open Informatics Master's Course

Module II

Perspective Camera

- Basic Entities: Points, Lines
- 42 Homography: Mapping Acting on Points and Lines
- 23 Canonical Perspective Camera
- Changing the Outer and Inner Reference Frames
- 25 Projection Matrix Decomposition
- 26 Anatomy of Linear Perspective Camera
- Wanishing Points and Lines

covered by

[H&Z] Secs: 2.1, 2.2, 3.1, 6.1, 6.2, 8.6, 2.5, Example: 2.19

►Basic Geometric Entities, their Representation, and Notation

- entities have names and representations
- names and their components:

entity	in 2-space	in 3-space
point	m = (u, v)	X = (x, y, z)
line	n	0
plane		π , φ

associated vector representations

$$\mathbf{m} = \begin{bmatrix} u \\ v \end{bmatrix} = [u, v]^{\top}, \quad \mathbf{X} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad \mathbf{n}$$

will also be written in an 'in-line' form as $\mathbf{m}=(u,v), \ \mathbf{X}=(x,y,z),$ etc.

- ullet vectors are always meant to be columns $\mathbf{x} \in \mathbb{R}^{n imes 1}$
- associated homogeneous representations

$$\underline{\mathbf{m}} = \left[m_1, m_2, m_3\right]^\top, \quad \underline{\mathbf{X}} = \left[x_1, x_2, x_3, x_4\right]^\top, \quad \underline{\mathbf{n}}$$

'in-line' forms:
$$\underline{\mathbf{m}} = (m_1, m_2, m_3), \ \underline{\mathbf{X}} = (x_1, x_2, x_3, x_4), \ \text{etc.}$$

- matrices are $\mathbf{Q} \in \mathbb{R}^{m \times n}$, linear map of a $\mathbb{R}^{n \times 1}$ vector is $\mathbf{y} = \mathbf{Q} \mathbf{x}$
- j-th element of vector \mathbf{m}_i is $(\mathbf{m}_i)_i$; element i, j of matrix \mathbf{P} is \mathbf{P}_{ij}

►Image Line (in 2D)

a finite line in the 2D (u, v) plane

$$a\,u + b\,v + c = 0$$

has a parameter (homogeneous) vector

$$\underline{\mathbf{n}} \simeq (a, b, c)$$
, $\|\underline{\mathbf{n}}\| \neq 0$

and there is an equivalence class for $\lambda \in \mathbb{R}, \, \lambda \neq 0$ $(\lambda a, \, \lambda b, \, \lambda c) \simeq (a, \, b, \, c)$

'Finite' lines

• standard representative for $\underline{\text{finite}} \ \underline{\mathbf{n}} = (n_1, n_2, n_3)$ is $\lambda \underline{\mathbf{n}}$, where $\lambda = \frac{1}{\sqrt{n_1^2 + n_2^2}}$ assuming $n_1^2 + n_2^2 \neq 0$; $\mathbf{1}$ is the unit, usually $\mathbf{1} = 1$

'Infinite' line

• we augment the set of lines for a special entity called the line at infinity (ideal line)

$$\underline{\mathbf{n}}_{\infty} \simeq (0,0,1)$$
 (standard representative)

- the set of equivalence classes of vectors in $\mathbb{R}^3 \setminus (0,0,0)$ forms the projective space \mathbb{P}^2 a set of rays \to 21
- ullet line at infinity is a proper member of \mathbb{P}^2
- I may sometimes wrongly use = instead of \simeq , if you are in doubt, ask me

▶Image Point

Finite point $\mathbf{m}=(u,v)$ is incident on a finite line $\underline{\mathbf{n}}=(a,b,c)$ iff $\underline{}$ iff $\underline{}$ works either way!

$$a u + b v + c = 0$$

can be rewritten as (with scalar product): $(u, v, \mathbf{1}) \cdot (a, b, c) = \underline{\mathbf{m}}^{\mathsf{T}} \underline{\mathbf{n}} = 0$

'Finite' points

- ullet a finite point is also represented by a homogeneous vector $\underline{\mathbf{m}} \simeq (u,v,\mathbf{1})$, $\|\underline{\mathbf{m}}\|
 eq 0$
- the equivalence class for $\lambda \in \mathbb{R}, \ \lambda \neq 0$ is $(m_1, m_2, m_3) = \lambda \, \underline{\mathbf{m}} \simeq \underline{\mathbf{m}}$
- the standard representative for finite point $\underline{\mathbf{m}}$ is $\lambda \underline{\mathbf{m}}$, where $\lambda = \frac{1}{m_2}$ assuming $m_3 \neq 0$
- ullet when ${f 1}=1$ then units are pixels and $\lambda {f m}=(u,v,1)$
- when ${\bf 1}=f$ then all elements have a similar magnitude, $f\sim$ image diagonal use ${\bf 1}=1$ unless you know what you are doing;

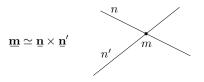
all entities participating in a formula must be expressed in the same units

'Infinite' points

- we augment for points at infinity (ideal points) $\underline{\mathbf{m}}_{\infty} \simeq (m_1, m_2, 0)$
- proper members of \mathbb{P}^2 all such points lie on the line at infinity (ideal line) $\underline{\mathbf{n}}_{\infty} \simeq (0,0,1)$, i.e. $\mathbf{m}_{\infty}^{\top} \mathbf{n}_{\infty} = 0$

▶Line Intersection and Point Join

The point of intersection m of image lines n and n', $n \not\simeq n'$ is



proof: If $\underline{\mathbf{m}} = \underline{\mathbf{n}} \times \underline{\mathbf{n}}'$ is the intersection point, it must be incident on both lines. Indeed, using known equivalences from vector algebra

$$\underline{\mathbf{n}}^{\top} \underbrace{(\underline{\mathbf{n}} \times \underline{\mathbf{n}'})}_{\underline{\mathbf{m}}} \equiv \underline{\mathbf{n}'}^{\top} \underbrace{(\underline{\mathbf{n}} \times \underline{\mathbf{n}'})}_{\underline{\mathbf{m}}} \equiv 0$$

The join n of two image points m and m', $m \not\simeq m'$ is

$$\underline{\mathbf{n}} \simeq \underline{\mathbf{m}} \times \underline{\mathbf{m}}'$$

Paralel lines intersect (somewhere) on the line at infinity $\underline{\mathbf{n}}_{\infty} \simeq (0,0,1)$:

$$a u + b v + c = 0,$$

 $a u + b v + d = 0,$ $d \neq c$
 $(a, b, c) \times (a, b, d) \simeq (b, -a, 0)$

- ullet all such intersections lie on \mathbf{n}_{∞}
- line at infinity therefore represents the set of (unoriented) directions in the plane
- Matlab: m = cross(n, n_prime);

