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IRectification Homographies

Assumption: Cameras (P1,P2) are rectified by a homography pair (H1,H2):

P∗i = HiPi = HiKiRi

[
I −Ci

]
, i = 1, 2

rectified entities: F∗, l∗2, l∗1, etc:
m∗

2 = (u∗
2, v

∗)v

u

m∗
1 = (u∗

1, v
∗)

l∗1 e∗2l∗2

• the rectified location difference d = u∗1 − u∗2 is called disparity

corresponding epipolar lines must be:
1. parallel to image rows ⇒ epipoles become e∗1 = e∗2 = (1, 0, 0)

2. equivalent l∗2 = l∗1 : l∗1 ' e∗1 ×m1 = [e∗1]×m1, l∗2 ' F∗m1 ⇒ F∗ = [e∗1]×

• therefore the canonical fundamental matrix is

F∗ '

0 0 0
0 0 −1
0 1 0


A two-step rectification procedure

1. find some pair of primitive rectification homographies Ĥ1, Ĥ2

2. upgrade to a pair of optimal rectification homographies while preserving F∗

3D Computer Vision: VII. Stereovision (p. 156/189) R. Šára, CMP; rev. 15–Dec–2020



IGeometric Interpretation of Linear Rectification

What pair of physical cameras is compatible with F∗?

• we know that F = (Q1Q
−1
2 )>[e1]× →79

• we choose Q∗1 = K∗1, Q∗2 = K∗2R
∗; then

(Q∗1Q
∗
2
−1

)>[e∗1]× = (K∗1R
∗>K∗2

−1)>F∗

• we look for R∗, K∗1, K∗2 compatible with

(K∗1R
∗>K∗2

−1)>F∗ = λF∗, R∗R∗> = I, K∗1,K
∗
2 upper triangular

• we also want b∗ from e∗1 ' P∗1C
∗
2 = K∗1b

∗ b∗ in cam. 1 frame

• result:

R∗ = I, b∗ =

b0
0

, K∗1 =

k11 k12 k13

0 f v0

0 0 1

, K∗2 =

k21 k22 k23

0 f v0

0 0 1

 (33)

• rectified cameras are in canonical relative pose not rotated, canonical baseline

• rectified calibration matrices can differ in the first row only

• when K∗1 = K∗2 then the rectified pair is called the standard stereo pair and the
homographies standard rectification homographies

• standard rectification homographies: points at infinity have zero disparity

P∗iX∞ = K
[
I −Ci

]
X∞ = KX∞ i = 1, 2

• this does not mean that the images are not distorted after rectification
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IPrimitive Rectification

Goal: Given fundamental matrix F, derive some simple rectification homographies H1, H2

1. Let the SVD of F be UDV> = F, where D = diag(1, d2, 0), 1 ≥ d2 > 0

2. Write D as D = A>F∗B for some regular A, B. For instance (F∗ is given →156)

A =

0 0 1
0 −d 0
1 0 0

, B =

0 0 1
1 0 0
0 d 0


3. Then

F = UDV> = UA>︸ ︷︷ ︸
Ĥ
>
2

F∗ BV>︸ ︷︷ ︸
Ĥ1

and the primitive rectification homographies are

Ĥ2 = AU>, Ĥ1 = BV>

~ P1; 1pt: derive some other admissible A, B

• rectification homographies do exist →156

• there are other primitive rectification homographies, these suggested are just simple to obtain
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IThe Set of All Rectification Homographies

Proposition 1 Homographies A1 and A2 are rectification-preserving if the images stay
rectified, i.e. if A2

−> F∗A1
−1 ' F∗, which gives

A1 =

l1 l2 l3
0 sv tv
0 q 1

 , A2 =

r1 r2 r3

0 sv tv
0 q 1

 ,
uv

where sv 6= 0, tv, l1 6= 0, l2, l3, r1 6= 0, r2, r3, q are 9 free parameters.

general transformation standard

l1, r1 horizontal scales l1 = r1

l2, r2 horizontal shears l2 = r2

l3, r3 horizontal shifts l3 = r3

q common special projective

sv common vertical scale

tv common vertical shift

9 DoF 9− 3 = 6 DoF

• q is due to a rotation about the baseline proof: find a rotation G that brings K to upper triangular form

via RQ decomposition: A1K
∗
1 = K̂1G and A2K

∗
2 = K̂2G• sv changes the focal length
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The Rectification Group

Corollary for Proposition 1 Let H̄1 and H̄2 be (primitive or other) rectification
homographies. Then H1 = A1H̄1, H2 = A2H̄2 are also rectification homographies.

Proposition 2 Pairs of rectification-preserving homographies (A1, A2) form a group with
group operation (A′1, A

′
2) ◦ (A1, A2) = (A′1 A1, A

′
2 A2).

Proof:

• closure by Proposition 1

• associativity by matrix multiplication

• identity belongs to the set

• inverse element belongs to the set by A>2 F∗A1 ' F∗ ⇔ F∗ ' A−>2 F∗A−1
1
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IPrimitive Rectification Suffices for Calibrated Cameras

Obs: calibrated cameras: d = 1 ⇒ Ĥ1, Ĥ2 (→158) are orthonormal

1. determine primitive rectification homographies (Ĥ1, Ĥ2) from the essential matrix
2. choose a suitable common calibration matrix K, e.g.

K =

f 0 u0

0 f v0

0 0 1

, f =
1

2
(f1 + f2), u0 =

1

2
(u1

0 + u2
0), etc.

3. the final rectification homographies applied as Pi 7→ HiPi are

H1 = KĤ1K
−1
1 , H2 = KĤ2K

−1
2

• we got a standard stereo pair (→157) and non-negative disparity:
let K−1

i Pi = Ri

[
I −Ci

]
, i = 1, 2 note we started from E, not F

H1P1 = KĤ1K−1
1 P1 = K BV>R1︸ ︷︷ ︸

R∗

[
I −C1

]
= KR∗

[
I −C1

]
H2P2 = KĤ2K−1

2 P2 = K AU>R2︸ ︷︷ ︸
R∗

[
I −C2

]
= KR∗

[
I −C2

]
• one can prove that BV>R1 = AU>R2 with the help of essential matrix decomposition (13)

• points at infinity project by KR∗ in both cameras ⇒ they have zero disparity →164

3D Computer Vision: VII. Stereovision (p. 161/189) R. Šára, CMP; rev. 15–Dec–2020



ISummary & Remarks: Linear Rectification

standard rectification homographies reproject onto
a common image plane parallel to the baseline

X

C1 C2

f

• rectification is done with a pair of homographies (one per image) →155
⇒ rectified camera centers are equal to the original ones
• binocular rectification: a 9-parameter family of rectification homographies
• trinocular rectification: has 9 or 6 free parameters (depending on additional constrains)
• in general, linear rectification is not possible for more than three cameras

• rectified cameras are in canonical orientation →157
⇒ rectified image projection planes are coplanar

• equal rectified calibration matrices give standard rectification →157
⇒ rectified image projection planes are equal

• primitive rectification is standard in calibrated cameras →161

• known F used alone does not allow standardization of rectification homographies

• for that we need either of these:

1. projection matrices, or calibrated cameras, or
2. a few points at infinity calibrating k1i, k2i, i = 1, 2, 3 in (33)
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Optimal and Non-linear Rectification

Optimal choice for the free parameters

• by minimization of residual image distortion, eg.
[Gluckman & Nayar 2001]

A∗1 = arg min
A1

∫∫
Ω

(
det J(A1Ĥ1x)− 1

)2
dx

• by minimization of image information loss
[Matoušek, ICIG 2004]

• non-linear rectification suitable for forward motion
non-parametric: [Pollefeys et al. 1999]

analytic: [Geyer & Daniilidis 2003]

forward egomotion rectified images, Pollefeys’ method
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IBinocular Disparity in Standard Stereo Pair

top view in xz plane

m2
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side view in yz plane

• Assumptions: single image line, standard camera pair

b = z cotα1 − z cotα2

u1 = f cotα1 u2 = f cotα2

b =
b

2
+ x− z cotα2

X = (x, y, z) from disparity d = u1 − u2:

z =
b f

d
, x =

b

d

u1 + u2

2
, y =

b v

d

f , d, u, v in pixels, b, x, y, z in meters

Observations

• constant disparity surface is a frontoparallel plane

• distant points have small disparity

• relative error in z is large for small disparity

1

z

dz

dd
= −

1

d

• increasing the baseline or the focal length
increases disparity and reduces the error
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Structural Ambiguity in Stereovision

• suppose we can recognize local matches independently but have no scene model

• lack of an occlusion model
• lack of a continuity model

⇒ structural ambiguity in the presence of
repetitions (or lack of texture)

left image right image

C 1

2

3

B−2

A−1

C−3
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interpretation 1 interpretation 2
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IUnderstanding Basic Occlusion Types

surface pt.

r3occluded

transparent

r1

r2

l

X1

Y2 Y3
X2

Y1 X
half occlusion mutual occlusion

• surface point at the intersection of rays l and r1 occludes a world point at the intersection
(l, r3) and implies the world point (l, r2) is transparent, therefore

(l, r3) and (l, r2) are excluded by (l, r1)

• in half-occlusion, every world point such as X1 or X2 is excluded by a binocularly visible
surface point such as Y1, Y2, Y3 ⇒ decisions on correspondences are not independent

• in mutual occlusion this is no longer the case: any X in the yellow zone is not excluded
⇒ decisions in the zone are independent on the rest
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Thank You
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