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» Rectification Homographies
Assumption: Cameras (P, P2) are rectified by a homography pair (Hi, Hs):
P; =H,P,=HK,R;[I -Cj],
—
mi = (uf, v*) \ mb = (ub, v*)

o the rectified location difference d ="ui—=a3-is-called disparity

corresponding epipolar lines must be:
1. parallel to image rows = epipoles become e} = e5 = (1,0,0)

i=1,2

rectified entities: F*, I, 17, etc:

2. equivalent 13241 1 If ~ef xmy :ie:z’f\]x_’m_l,) L~Fm, = F'=]lel],

_

e therefore the canonical fundamental matrix is

0 0 O
F'~|0 0 -1
01 O

A two-step rectification procedure
1. find some pair of primitive rectification homographies H;, Ho
2. upgrade to a pair of optimal rectification homographies while preserving F*
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»Geometric Interpretation of Linear Rectification

What pair of physical cameras is compatible with F*?

o we know that F = (Q; Q5 ") " [e1],, —79
e we choose Q] = K7, Q; = K5R"; then

(QIQ; ) [ei], = (KiR"TK; ) TF”
e we look for R, K7, K5 compatible with
(KiR"TK: ) TF* = \F*, R'R =1, K7, K5 upper triangular

e we also want b* from ef ~ P1C; = Kib” b* in cam. 1 frame
o result:
b kin k2 ki3 kor koo kos
R"=I, b"=10|, Ki=|0 f v |, Ki=1]0 f Vo (33)
0 0 0 1 0 0 1
o rectified cameras are in canonical relative pose not rotated, canonical baseline

o rectified calibration matrices can differ in the first row only

e when K] = K35 then the rectified pair is called the standard stereo pair and the
homographies standard rectification homographies N4 l/?/

e standard rectification homographies: points at infinity have zero disparity "\ N
PXee =K|[I —-C;| X =KX i1=1,2
7 £x00 [ 1} 00 o'} N ///\

e this does not mean that the images are not distorted after rectification ﬁ
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»Primitive Rectification

Goal: Given fundamental matrix F, derive some simple rectification homographies H,, Ho

1. Let the SVD of F be UDV ' = F, where D = diag(1, d?,0), 1>d%>>0
2. Write D as D = ATF* B for some regular A, B. For instance (F* is given —156)

0 0 1 00 1
A=|0 —-d 0|, B=|1 0 0
1 0 0 0 d 0

3. Then
F=UDV' =UA'F*BV'

and the primitive rectification homographies are
H,=AU', H,=BV'
® P1; 1pt: derive some other admissible A, B

e rectification homographies do exist —156

e there are other primitive rectification homographies, these suggested are just simple to obtain
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» The Set of All Rectification Homographies

Proposition 1 3] o are rectification-preserving if the images stay
rectified, i.e. if\A2

r2 T3
A= 2 = Sy tu|, v

where s, # 0, ty, 1 #0, l2, I3, 11 #0, 72, 73, q are 9 free parameters.

general  transformation standard

Iy, horizontal scales lh=nr
la, T2 horizontal shears D D la =12

I3, r3 horizontal shifts I3 =rs3

q common special projective w w

Sy common vertical scale

ty common vertical shift

9 DoF 9 -3 =6DoF

® g is due to a rotation about the baseline proof: find a rotation G that brings K to upper triangular form

e s, changes the focal length via RQ decomposition: A1 K] = K1 G and Ax K3 = Ko G
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The Rectification Group

Corollary for Proposition 1 Let H, and Ho be (primitive or other) rectification
homographies. Then H; = A1H;, H2 = AsH, are also rectification homographies.

Proposition 2 Pairs of rectification-preserving homographies (A1, Az) form a group with
group operation (A, Aj)o (A1, Az) = (Al A1, AL Ay).
Proof:

e closure by Proposition 1

® associativity by matrix multiplication

® identity belongs to the set

® inverse element belongs to the set by A; F*A, ~F" & F* ~ AQ_TF*A;1
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» Primitive Rectification Suffices for Calibrated Cameras

Obs: calibrated cameras: d = 1 = H;, Ho (—158) are orthonormal

1.
2.

determine primitive rectification homographies (Hi, Hz) from the essential matrix
choose a suitable common calibration matrix K, e.g.

fo0 u 1 1
K=10 [ wl|, f=s(f"+/" wo=5us+up), etc
00 1 2 2 N

. the final rectification homographies applied as P, — H; P; are \ (‘/

H, = KH,K;!, H,=KHmK;"'

we got a standard stereo pair (—157) and non-negative disparity:
let Ki_IPi =R; [I —Ci} , 1=1,2 note we started from E, not F
H,P; =KH,K;'P; =KBV'R; [T -Ci]=KR*[I -Ci]
——
R
HoPy = KILK, 'Po =KAU Ry [I —Co] =KR*[I —C3]
R

one can prove that BVTR,1 = AUTRQ with the help of essential matrix decomposition (13)
points at infinity project by KR™ in both cameras = they have zero disparity —164
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»Summary & Remarks: Linear Rectification

standard rectification homographies reproject onto
a common image plane parallel to the baseline

e rectification is done with a pair of homographies (one per image) —155
= rectified camera centers are equal to the original ones
e binocular rectification: a 9-parameter family of rectification homographies
trinocular rectification: has 9 or 6 free parameters (depending on additional constrains)
e in general, linear rectification is not possible for more than three cameras

e rectified cameras are in canonical orientation —157
= rectified image projection planes are coplanar

e equal rectified calibration matrices give standard rectification —157
= rectified image projection planes are equal

e primitive rectification is standard in calibrated cameras —161

@known F used alone does not allow standardization of rectification homographies

o for that we need either of these:

rojection matrices, or calibrated cameras, or
iﬁ few points at infinity calibrating k1, k2i, 1 = 1,2,3 in (33)
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Optimal and Non-linear Rectification

Optimal choice for the free parameters

e by minimization of residual image distortion, eg.
[Gluckman & Nayar 2001]

Al = argIrAlin // (det J(All:ng) — 1)2dx
1 JJa

e by minimization of image information loss
[Matouzek, ICIG 2004]

e non-linear rectification  suitable for forward motion
non-parametric: [Pollefeys et al. 1999]

analytic: [Geyer & Daniilidis 2003]

rectified images, Pollefeys’ method

~ forward ego Hotion
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»Binocular Disparity in Standard Stereo Pair

top view in zz plane

0

f .
Cloe  _._._ _._ o
I

y?\ 7@1} . y
mis \

side view in yz plane )

e Assumptions: single image line, standard camera pair
b= zcotay — zcot as

u1 = fcotag uz = fcotag

bzf—i—z—zcotaz
X = (z,y, 2) from dlsparltﬂd—ul—ugl
bf _buitus
Ta 2 YT

f, d, u, v in pixels, b, z, y, z in meters

Observations
@constant disparity surface is a frontoparallel plane
e distant points have small disparity

@ relative error in z is large for small disparity
1 dz 1
zdd  d

@ncreasing the baseline or the focal length

increases disparity and reduces the error
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Structural Ambiguity in Stereovision

e suppose we can recognize local matches independently but have no scene model
e lack of an occlusion model structural ambiguity in the presence of
e lack of a continuity model repetitions (or lack of texture)

interpretation 1 interpretation 2
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»Understanding Basic Occlusion Types

e, » e ' half occlusion mutual occlusion

e surface point at the intersection of rays [ and 71 occludes a world point at the intersection
(I,r3) and implies the world point (I,72) is transparent, therefore

(I,r3) and (I,7r2) are excluded by (I,71)

® in half-occlusion, every world point such as X7 or X2 is excluded by a binocularly visible
surface point such as Y7, Ya, Y3 = decisions on correspondences are not independent

® in mutual occlusion this is no longer the case: any X in the yellow zone is not excluded

& = decisions in the zone are independent on the rest
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Thank You
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