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I7-Point Algorithm for Estimating Fundamental Matrix

Problem: Given a set {(xi, yi)}ki=1 of k = 7 correspondences, estimate f. m. F.

y>i Fxi = 0, i = 1, . . . , k, known: xi = (u1
i , v

1
i , 1), yi = (u2

i , v
2
i , 1)

terminology: correspondence = truth, later: match = algorithm’s result; hypothesized corresp.

Solution:

y>i Fxi = (yix
>
i ) : F =
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vec(F), rotation property of matrix trace
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D vec(F) = 0
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I7-Point Algorithm Continued

D vec(F) = 0, D ∈ Rk,9

• for k = 7 we have a rank-deficient system, the null-space of D is 2-dimensional

• but we know that detF = 0, hence
1. find a basis of the null space of D: F1, F2 by SVD or QR factorization

2. get up to 3 real solutions for α from

det(αF1 + (1− α)F2) = 0 cubic equation in α

3. get up to 3 fundamental matrices F = αiF1 + (1− αi)F2

4. if rank F < 2 then fail

• the result may depend on image (domain) transformations

• normalization improves conditioning →92

• this gives a good starting point for the full algorithm →109

• dealing with mismatches need not be a part of the 7-point algorithm →110
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IDegenerate Configurations for Fundamental Matrix Estimation

When is F not uniquely determined from any number of correspondences? [H&Z, Sec. 11.9]

1. when images are related by homography
a) camera centers coincide t21 = 0: H = K2R21K−1

1 H – as in epipolar homography

b) camera moves but all 3D points lie in a plane (n, d): H = K2(R21 − t21n>/d)K−1
1

• in both cases: epipolar geometry is not defined
• we get an arbitrary solution from the 7-point algorithm in the form of F = [s]×H

note that [s]×H ' H′[s′]× →76

s

yi ≃ Hxixi
li

• given (arbitrary, fixed) s

• and correspondence xi ↔ yi
• yi is the image of xi: yi ' Hxi
• a necessary condition: yi ∈ li, li ' s×Hxi

0 = y>i (s×Hxi) = y>i [s]×Hxi for any xi,yi, s (!)

2. both camera centers and all 3D points lie on a ruled quadric
hyperboloid of one sheet, cones, cylinders, two planes

• there are 3 solutions for F

notes
• estimation of E can deal with planes: [s]×H is essential, then H = R− tn>/d, and s' t

not arbitrary

• a complete treatment with additional degenerate configurations in [H&Z, sec. 22.2]

• a stronger epipolar constraint could reject some configurations
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A Note on Oriented Epipolar Constraint

• a tighter epipolar constraint preserves orientations

• requires all points and cameras be on the same side of the plane at infinity"
b �2�1 d2d1

e2e1m1
X

C2l1 m2C1 l2 (e2 ×m2) +∼ Fm1

notation: m +∼ n means m = λn, λ > 0

• we can read the constraint as (e2 ×m2) +∼ H−>e (e1 ×m1)

• note that the constraint is not invariant to the change of either sign of mi

• all 7 correspondence in 7-point alg. must have the same sign see later

• this may help reject some wrong matches, see →110 [Chum et al. 2004]

• an even more tight constraint: scene points in front of both cameras expensive

this is called chirality constraint
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I5-Point Algorithm for Relative Camera Orientation

Problem: Given {mi, m
′
i}5i=1 corresponding image points and calibration matrix K,

recover the camera motion R, t.

Obs:
1. E – 9 numbers but 7 DOF rank-deficient 3× 3 homogeneous matrix with two equal singular numbers

2. R – 3 DOF, t – 2 DOF only, in total 5 DOF → we need 8− 5 = 3 constraints on E

3. E essential iff it has two equal singular values and the third is zero →81

This gives an equation system:

v>i Ev′i = 0 5 linear constraints (v ' K−1m)

detE = 0 1 cubic constraint

EE>E− 1

2
tr(EE>)E = 0 9 cubic constraints, 2 independent

~ P1; 1pt: verify this equation from E = UDV>, D = λ diag(1, 1, 0)

1. estimate E by SVD from v>i Ev′i = 0 by the null-space method 4D null space

2. this gives E ' xE1 + yE2 + zE3 + E4

3. at most 10 (complex) solutions for x, y, z from the cubic constraints

• when all 3D points lie on a plane: at most 2 real solutions (twisted-pair) can be disambiguated in 3 views

or by chirality constraint (→83) unless all 3D points are closer to one camera

• 6-point problem for unknown f [Kukelova et al. BMVC 2008]

• resources at http://cmp.felk.cvut.cz/minimal/5_pt_relative.php
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IThe Triangulation Problem

Problem: Given cameras P1, P2 and a correspondence x↔ y compute a 3D point X
projecting to x and y

λ1 x = P1X , λ2 y = P2X , x =

u1

v1

1

 , y =

u2

v2

1

 , Pi =

(pi1)>

(pi2)>

(pi3)>


Linear triangulation method

u1 (p1
3)>X = (p1

1)>X, u2 (p2
3)>X = (p2

1)>X,

v1 (p1
3)>X = (p1

2)>X, v2 (p2
3)>X = (p2

2)>X,

Gives

DX = 0, D =


u1 (p1

3)> − (p1
1)>

v1 (p1
3)> − (p1

2)>

u2 (p2
3)> − (p2

1)>

v2 (p2
3)> − (p2

2)>

 , D ∈ R4,4, X ∈ R4 (14)

• back-projected rays will generally not intersect due to image error, see next

• using Jack-knife (→63) not recommended sensitive to small error

• we will use SVD (→90)

• but the result will not be invariant to projective frame
replacing P1 7→ P1H, P2 7→ P2H does not always result in X 7→ H−1X

• note the homogeneous form in (14) can represent points X at infinity
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IThe Least-Squares Triangulation by SVD

• if D is full-rank we may minimize the algebraic least-squares error

ε2(X) = ‖DX‖2 s.t. ‖X‖ = 1, X ∈ R4

• let Di be the i-th row of D, then

‖DX‖2 =
4∑
i=1

(DiX)2 =
4∑
i=1

X>D>iDiX = X>QX, where Q =
4∑
i=1

D>iDi = D>D ∈ R4,4

• we write the SVD of Q as Q =
4∑
j=1

σ2
j uju

>
j , in which [Golub & van Loan 2013, Sec. 2.5]

σ2
1 ≥ · · · ≥ σ2

4 ≥ 0 and u>l um =

{
0 if l 6= m

1 otherwise

• then X = arg min
q,‖q‖=1

q>Qq = u4

Proof (by contradiction).

Let q̄ =
4∑
i=1

aiui s.t.
4∑
i=1

a2i = 1, then ‖q̄‖ = 1, as desired, and

q̄>Q q̄ =
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j (u>j q̄)2 = · · · =
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2
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2
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ut
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Icont’d

• if σ4 � σ3, there is a unique solution X = u4 with residual error (DX)2 = σ2
4

the quality (conditioning) of the solution may be expressed as q = σ3/σ4 (greater is better)

Matlab code for the least-squares solver:

[U,O,V] = svd(D);

X = V(:,end);

q = sqrt(O(end-1,end-1)/O(end,end));

~ P1; 1pt: Why did we decompose D and not Q = D>D?
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INumerical Conditioning

• The equation DX = 0 in (14) may be ill-conditioned for
numerical computation, which results in a poor estimate for X.

Why: on a row of D there are big entries together with small
entries, e.g. of orders projection centers in mm, image points in px

103 0 103 106

0 103 103 106

103 0 103 106

0 103 103 106


Quick fix:

1. re-scale the problem by a regular diagonal conditioning matrix S ∈ R4,4

0 = DX = DSS−1X = D̄ X̄

choose S to make the entries in D̂ all smaller than unity in absolute value:

S = diag(10−3, 10−3, 10−3, 10−6) S = diag(1./max(abs(D), 1))

2. solve for X̄ as before
3. get the final solution as X = S X̄

• when SVD is used in camera resection, conditioning is essential for success →62
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Algebraic Error vs Reprojection Error

• algebraic error (c – camera index, (uc, vc) – image coordinates) from SVD →91

ε
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e
2
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u
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>X

(pc
3)
>X

)2

+

(
v
c − (pc

2)
>X

(pc
3)
>X

)2]
• algebraic error zero ⇔ reprojection error zero σ4 = 0⇒ non-trivial null space

• epipolar constraint satisfied ⇒ equivalent results

• in general: minimizing algebraic error is cheap but it gives inferior results

• minimizing reprojection error is expensive but it gives good results

• the midpoint of the common perpendicular to both optical rays gives about 50% greater error in 3D

• the golden standard method – deferred to →104

Ex: • forward camera motion

• error f/50 in image 2, orthogonal to epipolar plane

XT – noiseless ground truth position
Xr – reprojection error minimizer
Xa – algebraic error minimizer
m – measurement (mT with noise in v2)
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IWe Have Added to The ZOO (cont’d from →69)

problem given unknown slide

camera resection 6 world–img correspondences
{

(Xi, mi)
}6
i=1

P 62

exterior orientation K, 3 world–img correspondences
{

(Xi, mi)
}3
i=1

R, t 66

relative pointcloud
orientation

3 world-world correspondences
{

(Xi, Yi)
}3
i=1

R, t 70

fundamental matrix 7 img–img correspondences
{

(mi, m
′
i)
}7
i=1

F 84

relative camera
orientation

K, 5 img–img correspondences
{

(mi, m
′
i)
}5
i=1

R, t 88

triangulation P1, P2, 1 img–img correspondence (mi, m
′
i) X 89

A bigger ZOO at http://cmp.felk.cvut.cz/minimal/

calibrated problems
• have fewer degenerate configurations
• can do with fewer points (good for geometry proposal generators →117)

• algebraic error optimization (SVD) makes sense in camera resection and triangulation only

• but it is not the best method; we will now focus on ‘optimizing optimally’
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Thank You
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