3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/tdv/start

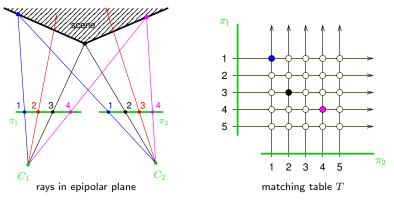
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz
phone ext. 7203

rev. January 5, 2021

Open Informatics Master's Course

► Matching Table

Based on scene opacity and the observation on mutual exclusion we expect each pixel to match at most once.



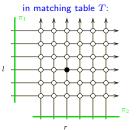
matching table

- rows and columns represent optical rays
- nodes: possible correspondence pairs
- full nodes: matches
- numerical values associated with nodes: descriptor similarities

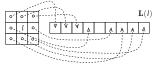
see next

► Constructing An Image Similarity Cost

• let $p_i = (l,r)$ and L(l), R(r) be (left, right) image descriptors (vectors) constructed from local image neighborhood windows



'block' in the left image \mapsto 'signal sample':



- a simple block similarity is $SAD(l,r) = \|\mathbf{L}(l) \mathbf{R}(r)\|_1$ L_1 metric (sum of absolute differences)
- a scaled-descriptor similarity is $\sin(l,r) = \frac{\|\mathbf{L}(l) \mathbf{R}(r)\|^2}{\sigma_I^2(l,r)}$ smaller is better

• σ_I^2 – the difference <u>scale</u>; a suitable (plug-in) estimate is $\frac{1}{2} \left[\operatorname{var}(\mathbf{L}(l)) + \operatorname{var}(\mathbf{R}(r)) \right]$, giving

$$\sin(l,r) = 1 - \underbrace{\frac{2 \operatorname{cov}(\mathbf{L}(l), \mathbf{R}(r))}{\operatorname{var}(\mathbf{L}(l)) + \operatorname{var}(\mathbf{R}(r))}}_{\rho(\mathbf{L}(l), \mathbf{R}(r))}$$

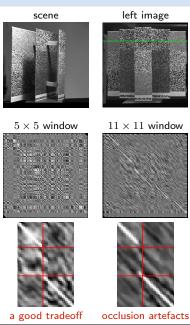
 $var(\cdot), cov(\cdot)$ is sample (co-)variance, not invariant to scale difference (34)

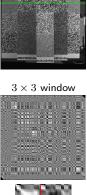
• ρ – MNCC – Moravec's Normalized Cross-Correlation statistic bigger is better [Moravec 1977] $\rho^2 \in [0, 1], \qquad \text{sign } \rho \sim \text{'phase'}$

3D Computer Vision: VII. Stereovision (p. 168/190) つへや

R. Šára, CMP; rev. 5–Jan–2021

How A Scene Looks in The Filled-In Matching Table





right image

undiscriminable

3D Computer Vision: VII. Stereovision (p. 169/190) つへや

- MNCC ρ used ($\alpha = 1.5, \beta = 1$) \rightarrow 175
- high-correlation structures correspond to scene objects

constant disparity

- a diagonal in matching table
- zero disparity is the main diagonal nonstd rectification

depth discontinuity

• horizontal or vertical jump in matching table

large image window

- better correlation
- worse occlusion localization

repeated texture

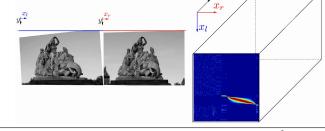
 horizontal and vertical block repetition

Image Point Descriptors And Their Similarity

Descriptors: Image points are tagged by their (viewpoint-invariant) physical properties:

- texture window
- a descriptor like DAISY
- learned descriptors
- reflectance profile under a moving illuminant
- photometric ratios
- dual photometric stereo
- polarization signature
- . . .
- similar points are more likely to match

• image similarity values for all 'match candidates' give the 3D matching table



3D Computer Vision: VII. Stereovision (p. 170/190) つへや

[Wolff & Angelopoulou 93-94] [Ikeuchi 87]

[Moravec 77]

[Tola et al. 2010]

video

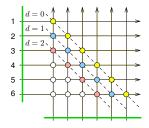
Marroquin's Winner Take All (WTA) Matching Algorithm

Alg: Per left-image pixel: The most SAD-similar pixel along the right epipolar line \rightarrow 168

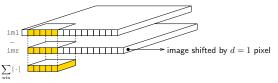
1. select disparity range

this is a critical weak point

2. represent the matching table diagonals in a compact form



3. use an 'image sliding & cost aggregation algorithm'



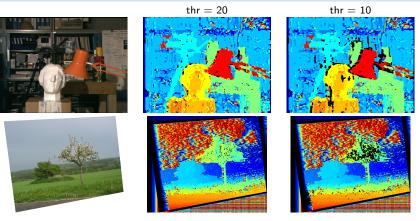
- 4. take the maximum over disparities d
- 5. threshold results by maximal allowed SAD dissimilarity

A Matlab Code for WTA

```
function dmap = marroquin(iml, imr, disparityRange)
%
        iml, imr - rectified gray-scale images
% disparityRange - non-negative disparity range
% (c) Radim Sara (sara@cmp.felk.cvut.cz) FEE CTU Prague, 10 Dec 12
 thr = 20:
                                                 % bad match rejection threshold
 r = 2:
 winsize = 2*r+[1 \ 1]:
                                                 % 5x5 window (neighborhood) for r=2
 N = boxing(ones(size(iml)), winsize):
                                                 % the size of each local patch is
                                                 % N = (2r+1)^2 except for boundary pixels
 % --- compute dissimilarity per pixel and disparity --->
 for d = 0:disparityRange
                                                 % cycle over all disparities
  slice = abs(imr(:,1:end-d) - iml(:,d+1:end)); % pixelwise dissimilarity (unscaled SAD)
 V(:,d+1:end,d+1) = boxing(slice, winsize)./N; % window aggregation
 end
 % --- collect winners, threshold, output disparity map --->
 [cmap,dmap] = min(V,[],3);
                                                 % collect winners and their dissimilarities
 dmap(cmap > thr) = NaN;
                                                 % mask-out high dissimilarity pixels
end % of marroquin
function c = boxing(im, wsz)
 % if the mex is not found, run this slow version:
 c = conv2(ones(1,wsz(1)), ones(wsz(2),1), im, 'same');
end % of boxing
```

3D Computer Vision: VII. Stereovision (p. 172/190) つへや

WTA: Some Results



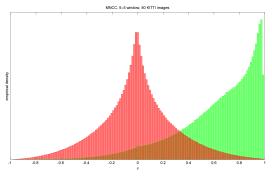
- results are fairly bad
- false matches in textureless image regions and on repetitive structures (book shelf)
- a more restrictive threshold (thr = 10) does not work as expected
- we searched the true disparity range, results get worse if the range is set wider
- chief failure reasons:
 - unnormalized image dissimilarity does not work well
 - no occlusion model (it just ignores the occlusion structure we have discussed ightarrow 166)

3D Computer Vision: VII. Stereovision (p. 173/190) つへや

R. Šára, CMP; rev. 5–Jan–2021 🖭

► A Principled Approach to Similarity

Empirical Distribution of MNCC ρ for Matches (green) and Non-Matches (red)



• histograms of ρ computed from 5×5 correlation window

 $\rho :$ bigger is better

- KITTI dataset
 - $4.2 \cdot 10^6$ ground-truth (LiDAR) matches for $p_1(\rho)$ (green),
 - $4.2\cdot 10^6$ random non-matches for $p_0(
 ho)$ (red)

Obs:

- non-matches (red) may have arbitrarily large ho
- matches (green) may have arbitrarily low ho
- $\rho = 1$ is improbable for matches

Match Likelihood

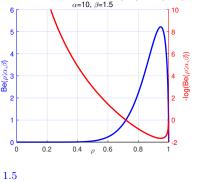
- ρ is just a normalized measurement
- we need a probability distribution on [0, 1], e.g. Beta distribution

$$p_1(\rho) = \frac{1}{B(\alpha,\beta)} |\rho|^{\alpha-1} (1-|\rho|)^{\beta-1}$$

- note that uniform distribution is obtained for $\alpha = \beta = 1$
- when $\alpha = 2$ and $\beta = 1$ then $p_1(\cdot) = 2|\rho|$
- the mode is at $\sqrt{rac{lpha-1}{lpha+eta-2}}pprox 0.9733$ for $lpha=10,\ \beta=1.5$
- if we chose $\beta = 1$ then the mode was at $\rho = 1$
- perfect similarity is 'suspicious' (depends on expected camera noise level)
- from now on we will work with <u>negative log-likelihood</u> cost

$$V_1ig(
ho(l,r)ig) = -\log p_1ig(
ho(l,r)ig)$$
 smaller is better

• we should also define similarity (and negative log-likelihood $V_0(
ho(l,r)))$ for non-matches



negative log-likelihoods V_0 (red), V_1 (blue)

(35)

► A Principled Approach to Matching

- given matching M what is the likelihood of observed data D?
- data all cost pairs (V_0, V_1) in the matching table T
- matches pairs $p_i = (l_i, r_i)$, $i = 1, \dots, n$
- matching: partitioning matching table T to matched M and excluded E pairs

$$T = M \cup E, \quad M \cap E = \emptyset$$

matching cost (negative log-likelihood, smaller is better)

$$V(D \mid M) = \sum_{p \in M} V_1(D \mid p) + \sum_{p \in E} V_0(D \mid p)$$

 $V_1(D \mid p)$ - negative log-probability of data D at <u>matched</u> pixel p (35) $V_0(D \mid p)$ - ditto at <u>unmatched</u> pixel p \rightarrow 174 and \rightarrow 175

• matching problem

$$M^* = \arg\min_{M \in \mathcal{M}(T)} V(D \mid M)$$

 $\mathcal{M}(T)$ – the set of all matchings in table T

• symmetric: formulated over pairs, invariant to left \leftrightarrow right image swap unlike in WTA

►(cont'd) Log-Likelihood Ratio

- · we need to reduce matching to a standard polynomial-complexity problem
- convert the matching cost to an 'easier' sum

$$V(D \mid M) = \sum_{p \in M} V_1(D \mid p) + \sum_{p \in E} V_0(D \mid p) + \sum_{p \in M} V_0(D \mid p) - \sum_{p \in M} V_0(D \mid p)$$
$$= \sum_{p \in M} \underbrace{\left(V_1(D \mid p) - V_0(D \mid p)\right)}_{-L(D \mid p)} + \underbrace{\sum_{p \in E} V_0(D \mid p) + \sum_{p \in M} V_0(D \mid p)}_{\sum_{p \in T} V_0(D \mid p) = \text{const}}$$

hence

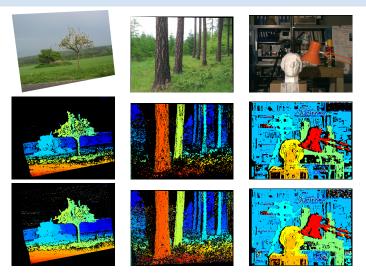
$$\arg\min_{M\in\mathcal{M}(T)}V(D\mid M) = \arg\max_{M\in\mathcal{M}(T)}\sum_{p\in M}L(D\mid p)$$
(36)

 $L(D \mid p)$ – logarithm of matched-to-unmatched likelihood ratio (bigger is better)

why this way: we want to use maximum-likelihood but our measurement is all data D

- (36) is max-cost matching (maximum assignment) for the maximum-likelihood (ML) matching problem
 - use Hungarian (Munkres) algorithm and threshold the result with T: $L(D \mid p) > T \ge 0$
 - · or step back: sacrifice symmetry to speed and use dynamic programming

Some Results for the Maximum-Likelihood (ML) Matching



- unlike the WTA we can efficiently control the density/accuracy tradeoff
 black = no match
- middle row: threshold T for $L(D \mid p)$ set to achieve error rate of 3% (and 61% density results)
- bottom row: threshold T set to achieve density of 76% (and 4.3% error rate results)

3D Computer Vision: VII. Stereovision (p. 178/190) のへや

R. Šára, CMP; rev. 5-Jan-2021 🗺

► Basic Stereoscopic Matching Models

- notice many small isolated errors in the ML matching
- Q: how to reduce the noisiness? A: a stronger model

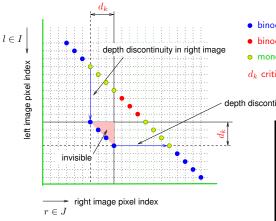
Potential models for M (from weaker to stronger)

- 1. Uniqueness: Every image point matches at most once
 - excludes semi-transparent objects
 - used in the ML matching algorithm (but not by the WTA algorithm)
- 2. <u>Monotonicity</u>: Matched pixel ordering is preserved \rightarrow 180
 - for all $(i, j) \in M, (k, l) \in M, \quad k > i \Rightarrow l > j$

Notation: $(i, j) \in M$ or j = M(i) – left-image pixel i matches right-image pixel j

- excludes thin objects close to the cameras
- used in 3-Label Dynamic Programming (3LDP) [SP]
- 3. Coherence: Objects occupy well-defined 3D volumes
 - concept by [Prazdny 85]
 - algorithms are based on image/disparity map segmentation
 - a popular model (segment-based, bilateral filtering and their successors)
 - used in Stable Segmented 3LDP [Aksoy et al. PRRS 2008]
- 4. (Piecewise) binocular continuity: The scene images continuously w/o self-occlusions
 - disparities do not differ much in neighboring pixels (except at object boundaries)
 - full binocular continuity too strong, except in some applications
 - piecewise binocular continuity is combined with monotonicity in 3LDP

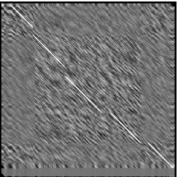
Binocular Discontinuities in Matching Table



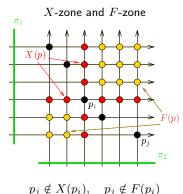
• this leads to the concept of 'forbidden zone'

- binocularly visible foreground points
- binocularly visible background pts violating ordering
- monocularly visible points
- d_k critical disparity

depth discontinuity in left image



► Formally: Uniqueness and Ordering in Matching Table T



• Uniqueness Constraint:

A set of pairs $M = \{p_i\}_{i=1}^n$, $p_i \in T$ is a matching iff $\forall p_i, p_j \in M : p_j \notin X(p_i).$

X-zone, $p_i \not\in X(p_i)$

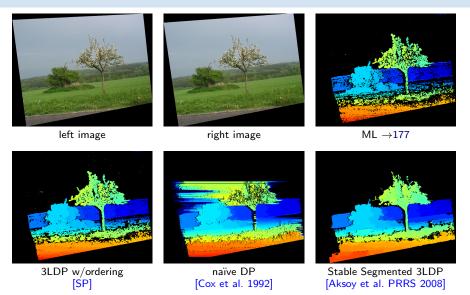
• Ordering Constraint:

Matching M is monotonic iff $\forall p_i, p_i \in M : p_i \notin F(p_i).$

F-zone, $p_i \not\in F(p_i)$

- ordering constraint: matched points form a monotonic set in both images
- ordering is a powerful constraint: in $n\times n$ table we have monotonic matchings $O(4^n)\ll O(n!)$ all matchings
- \circledast 2: how many are there <u>maximal</u> monotonic matchings? (e.g. 27 for n = 4; hard!)
- uniqueness constraint is a basic occlusion model
- ordering constraint is a weak continuity model and partly also an occlusion model
- monotonic matching can be found by dynamic programming

Some Results: AppleTree

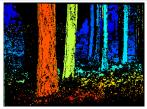


• 3LDP parameters $lpha_i$, $V_{
m e}$ learned on Middlebury stereo data http://vision.middlebury.edu/stereo/

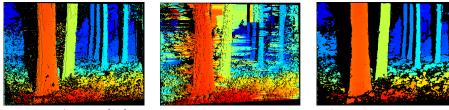
Some Results: Larch

left image

right image



 $ML \rightarrow 177$



3LDP w/ordering [SP]

naïve DP

Stable Segmented 3LDP

- naïve DP: no mutual occlusion model, ignores symmetry, has no similarity distribution model
- but even 3LDP has errors in mutually occluded region
- Stable Segmented 3LDP: few errors in mutually occluded region since it uses a coherence model

3D Computer Vision: VII. Stereovision (p. 183/190) つへや

Marroquin's Winner-Take-All (WTA \rightarrow 171)

• the ur-algorithm

very weak model

- dense disparity map
- $O(N^3)$ algorithm, simple but it rarely works

Maximum Likelihood Matching (ML \rightarrow 177)

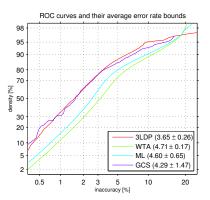
- semi-dense disparity map
- many small isolated errors
- models basic occlusion
- $O(N^3 \log(NV))$ algorithm max-flow by cost scaling

MAP with Min-Cost Labeled Path (3LDP)

- semi-dense disparity map
- models occlusion in flat, piecewise binocularly continuous scenes
- has 'illusions' if ordering does not hold
- $O(N^3)$ algorithm

Stable Segmented 3LDP

- better than 3LDP fewer errors at any given density
- O(N³ log N) algorithm
- requires image segmentation itself a difficult task



- ROC-like curve captures the density/accuracy tradeoff
- numbers: AUC (smaller is better)
- GCS is the one used in the exercises
- more algorithms at http://vision.middlebury.edu/ stereo/ (good luck!)

Thank You

