3D Computer Vision

Radim Šára Martin Matoušek
Center for Machine Perception
Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz mailto:sara@cmp.felk.cvut.cz phone ext. 7203

rev. October 27, 2020

Open Informatics Master's Course

-7-Point Algorithm for Estimating Fundamental Matrix

Problem: Given a set $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{k}$ of $k=7$ correspondences, estimate f. m. F.

$$
\underline{\mathbf{y}}_{i}^{\top} \mathbf{F} \underline{\mathbf{x}}_{i}=0, \quad i=1, \ldots, k, \quad \underline{\text { known: }} \quad \underline{\mathbf{x}}_{i}=\left(u_{i}^{1}, v_{i}^{1}, 1\right), \quad \underline{\mathbf{y}}_{i}=\left(u_{i}^{2}, v_{i}^{2}, 1\right)
$$

terminology: correspondence $=$ truth, later: match $=$ algorithm's result; hypothesized corresp.

Solution:

$$
\begin{gathered}
\underline{\mathbf{y}}_{i}^{\top} \mathbf{F} \underline{\mathbf{x}}_{i}=\left(\underline{\mathbf{y}}_{i} \underline{\mathbf{x}}_{i}^{\top}\right): \mathbf{F}=\left(\operatorname{vec}\left(\underline{\mathbf{y}}_{i} \underline{\mathbf{x}}_{i}^{\top}\right)\right)^{\top} \operatorname{vec}(\mathbf{F}), \\
\\
\operatorname{vec}(\mathbf{F})=\left[\begin{array}{lllllllll}
f_{11} & f_{21} & f_{31} & \ldots & f_{33}
\end{array}\right]^{\top} \in \mathbb{R}^{9} \\
\mathbf{D}=\left[\begin{array}{c}
\left(\operatorname{vec}\left(\mathbf{y}_{1} \mathbf{x}_{1}^{\top}\right)\right)^{\top} \\
\left(\operatorname{vec}\left(\mathbf{y}_{2} \mathbf{x}_{2}^{\top}\right)\right)^{\top} \\
\left(\operatorname{vec}\left(\mathbf{y}_{3} \mathbf{x}_{3}^{\top}\right)\right)^{\top} \\
\vdots \\
\left(\operatorname{vec}\left(\mathbf{y}_{k} \mathbf{x}_{k}^{\top}\right)\right)^{\top}
\end{array}\right]=\left[\begin{array}{ccccccccc}
u_{1}^{1} u_{1}^{2} & u_{1}^{1} v_{1}^{2} & u_{1}^{1} & u_{1}^{2} v_{1}^{1} & v_{1}^{1} v_{1}^{2} & v_{1}^{1} & u_{1}^{2} & v_{1}^{2} & 1 \\
u_{2}^{1} u_{2}^{2} & u_{2}^{1} v_{2}^{2} & u_{2}^{1} & u_{2}^{2} v_{2}^{1} & v_{2}^{1} v_{2}^{2} & v_{2}^{1} & u_{2}^{2} & v_{2}^{2} & 1 \\
u_{3}^{1} u_{3}^{2} & u_{3}^{1} v_{3}^{2} & u_{3}^{1} & u_{3}^{2} v_{3}^{1} & v_{3}^{1} v_{3}^{2} & v_{3}^{1} & u_{3}^{2} & v_{3}^{2} & 1 \\
\vdots & & & & & & & & \vdots \\
u_{k}^{1} u_{k}^{2} & u_{k}^{1} v_{k}^{2} & u_{k}^{1} & u_{k}^{2} v_{k}^{1} & v_{k}^{1} v_{k}^{2} & v_{k}^{1} & u_{k}^{2} & v_{k}^{2} & 1
\end{array}\right] \in \mathbb{R}^{k, 9} \\
\end{gathered}
$$

$$
\mathbf{D} \operatorname{vec}(\mathbf{F})=\mathbf{0}
$$

7-Point Algorithm Continued

$$
\mathbf{D} \operatorname{vec}(\mathbf{F})=\mathbf{0}, \quad \mathbf{D} \in \mathbb{R}^{k, 9}
$$

- for $k=7$ we have a rank-deficient system, the null-space of \mathbf{D} is 2-dimensional
- but we know that $\operatorname{det} \mathbf{F}=0$, hence

1. find a basis of the null space of $\mathbf{D}: \mathbf{F}_{1}, \mathbf{F}_{2}$
2. get up to 3 real solutions for α from

$$
\operatorname{det}\left(\alpha \mathbf{F}_{1}+(1-\alpha) \mathbf{F}_{2}\right)=0 \quad \text { cubic equation in } \alpha
$$

3. get up to 3 fundamental matrices $\mathbf{F}=\alpha_{i} \mathbf{F}_{1}+\left(1-\alpha_{i}\right) \mathbf{F}_{2}$
4. if $\operatorname{rank} \mathbf{F}<2$ then fail

- the result may depend on image (domain) transformations
- normalization improves conditioning
- this gives a good starting point for the full algorithm
- dealing with mismatches need not be a part of the 7-point algorithm

Degenerate Configurations for Fundamental Matrix Estimation

When is \mathbf{F} not uniquely determined from any number of correspondences? [H\&Z, Sec. 11.9]

1. when images are related by homography
a) camera centers coincide $\mathbf{t}_{21}=0: \quad \mathbf{H}=\mathbf{K}_{2} \mathbf{R}_{21} \mathbf{K}_{1}^{-1}$
\mathbf{H} - as in epipolar homography
b) camera moves but all 3D points lie in a plane (\mathbf{n}, d) : $\quad \mathbf{H}=\mathbf{K}_{2}\left(\mathbf{R}_{21}-\mathbf{t}_{21} \mathbf{n}^{\top} / d\right) \mathbf{K}_{1}^{-1}$

- in both cases: epipolar geometry is not defined
- we get an arbitrary solution from the 7-point algorithm in the form of $\mathbf{F}=[\mathrm{s}]_{\times} \mathbf{H}$ note that $[\underline{\mathbf{s}}]_{\times} \mathbf{H} \simeq \mathbf{H}^{\prime}\left[\underline{\mathbf{s}}^{\prime}\right]_{\times} \rightarrow 76$
- given (arbitrary, fixed) s

- and correspondence $x_{i} \leftrightarrow y_{i}$
- y_{i} is the image of $x_{i}: \underline{\mathbf{y}}_{i} \simeq \mathbf{H} \underline{\mathbf{x}}_{i}$
- a necessary condition: $y_{i} \in l_{i}, \quad \underline{\mathbf{l}}_{i} \simeq \underline{\mathbf{s}} \times \mathbf{H} \underline{\mathbf{x}}_{i}$

$$
0=\underline{\mathbf{y}}_{i}^{\top}\left(\underline{\mathbf{s}} \times \mathbf{H} \underline{\mathbf{x}}_{i}\right)=\underline{\mathbf{y}}_{i}^{\top}[\underline{\mathbf{s}}]_{\times} \mathbf{H} \underline{\mathbf{x}}_{i} \quad \text { for any } \underline{\mathbf{x}}_{i}, \underline{\mathbf{y}}_{i}, \underline{\mathbf{s}}(!)
$$

2. both camera centers and all 3D points lie on a ruled quadric
hyperboloid of one sheet, cones, cylinders, two planes

- there are 3 solutions for \mathbf{F}
notes
- estimation of $\mathbf{E} \underline{\text { can }}$ deal with planes: $[\underline{s}]_{\times} \mathbf{H}$ is essential, then $\mathbf{H}=\mathbf{R}-\mathbf{t n}^{\top} / d$, and $\underline{\mathbf{s}} \simeq \mathbf{t}$ not arbitrary
- a complete treatment with additional degenerate configurations in [H\&Z, sec. 22.2]
- a stronger epipolar constraint could reject some configurations

A Note on Oriented Epipolar Constraint

- a tighter epipolar constraint preserves orientations
- requires all points and cameras be on the same side of the plane at infinity

$$
\left(\underline{\mathbf{e}}_{2} \times \underline{\mathbf{m}}_{2}\right) \stackrel{\mathbf{F}}{\sim} \underline{\mathbf{m}}_{1}
$$

notation: $\underline{\mathbf{m}} \underset{\sim}{\perp} \underline{\mathbf{n}}$ means $\underline{\mathbf{m}}=\lambda \underline{\mathbf{n}}, \lambda>0$

- we can read the constraint as $\left(\mathbf{e}_{2} \times \underline{\mathbf{m}}_{2}\right) \underset{\sim}{\underset{e}{-\top}}\left(\mathbf{e}_{1} \times \underline{\mathbf{m}}_{1}\right)$
- note that the constraint is not invariant to the change of either sign of $\underline{\underline{m}}_{i}$
- all 7 correspondence in 7 -point alg. must have the same sign
see later
- this may help reject some wrong matches, see $\rightarrow 110$
[Chum et al. 2004]
- an even more tight constraint: scene points in front of both cameras
expensive
this is called chirality constraint

5-Point Algorithm for Relative Camera Orientation

Problem: Given $\left\{m_{i}, m_{i}^{\prime}\right\}_{i=1}^{5}$ corresponding image points and calibration matrix \mathbf{K}, recover the camera motion \mathbf{R}, t .
Obs:

1. E-9 numbers but 7 DOF rank-deficient 3×3 homogeneous matrix with two equal singular numbers
2. $\mathbf{R}-3$ DOF, $\mathrm{t}-2$ DOF only, in total $5 \mathrm{DOF} \rightarrow$ we need $8-5=3$ constraints on \mathbf{E}
3. E essential iff it has two equal singular values and the third is zero $\rightarrow 81$

This gives an equation system:

$$
\begin{array}{rlr}
\underline{\mathbf{v}}_{i}^{\top} \mathbf{E} \underline{\mathbf{v}}_{i}^{\prime} & =0 & 5 \text { linear constraints }\left(\underline{\mathbf{v}} \simeq \mathbf{K}^{-1} \underline{\mathbf{m}}\right) \\
\operatorname{det} \mathbf{E} & =0 & 1 \text { cubic constraint } \\
\mathbf{E} \mathbf{E}^{\top} \mathbf{E}-\frac{1}{2} \operatorname{tr}\left(\mathbf{E} \mathbf{E}^{\top}\right) \mathbf{E} & =\mathbf{0} & 9 \text { cubic constraints, } 2 \text { independent }
\end{array}
$$

\circledast P1; 1pt: verify this equation from $\mathbf{E}=\mathbf{U D V}^{\top}, \mathbf{D}=\lambda \operatorname{diag}(1,1,0)$

1. estimate \mathbf{E} by SVD from $\underline{\mathbf{v}}_{i}^{\top} \mathbf{E} \underline{\mathbf{v}}_{i}^{\prime}=0$ by the null-space method

4D null space
2. this gives $\mathbf{E} \simeq x \mathbf{E}_{1}+y \mathbf{E}_{2}+z \mathbf{E}_{3}+\mathbf{E}_{4}$
3. at most 10 (complex) solutions for x, y, z from the cubic constraints

- when all 3D points lie on a plane: at most 2 real solutions (twisted-pair)
can be disambiguated in 3 views or by chirality constraint $(\rightarrow 83)$ unless all 3D points are closer to one camera
- 6-point problem for unknown f
[Kukelova et al. BMVC 2008]
- resources at http://cmp.felk.cvut.cz/minimal/5_pt_relative.php

- The Triangulation Problem

Problem: Given cameras $\mathbf{P}_{1}, \mathbf{P}_{2}$ and a correspondence $x \leftrightarrow y$ compute a 3D point \mathbf{X} projecting to x and y

$$
\lambda_{1} \underline{\mathbf{x}}=\mathbf{P}_{1} \underline{\mathbf{X}}, \quad \lambda_{2} \underline{\mathbf{y}}=\mathbf{P}_{2} \underline{\mathbf{X}}, \quad \underline{\mathbf{x}}=\left[\begin{array}{c}
u^{1} \\
v^{1} \\
1
\end{array}\right], \quad \underline{\mathbf{y}}=\left[\begin{array}{c}
u^{2} \\
v^{2} \\
1
\end{array}\right], \quad \mathbf{P}_{i}=\left[\begin{array}{c}
\left(\mathbf{p}_{1}^{i}\right)^{\top} \\
\left(\mathbf{p}_{2}^{i}\right)^{\top} \\
\left(\mathbf{p}_{3}^{i}\right)^{\top}
\end{array}\right]
$$

Linear triangulation method

$$
\begin{array}{rlrl}
u^{1}\left(\mathbf{p}_{3}^{1}\right)^{\top} \underline{\mathbf{X}} & =\left(\mathbf{p}_{1}^{1}\right)^{\top} \underline{\mathbf{X}}, & u^{2}\left(\mathbf{p}_{3}^{2}\right)^{\top} \underline{\mathbf{X}}=\left(\mathbf{p}_{1}^{2}\right)^{\top} \underline{\mathbf{X}}, \\
v^{1}\left(\mathbf{p}_{3}^{1}\right)^{\top} \underline{\mathbf{X}}=\left(\mathbf{p}_{2}^{1}\right)^{\top} \underline{\mathbf{X}}, & v^{2}\left(\mathbf{p}_{3}^{2}\right)^{\top} \underline{\mathbf{X}}=\left(\mathbf{p}_{2}^{2}\right)^{\top} \underline{\mathbf{X}},
\end{array}
$$

Gives

$$
\mathbf{D} \underline{\mathbf{X}}=\mathbf{0}, \quad \mathbf{D}=\left[\begin{array}{c}
u^{1}\left(\mathbf{p}_{3}^{1}\right)^{\top}-\left(\mathbf{p}_{1}^{1}\right)^{\top} \tag{14}\\
v^{1}\left(\mathbf{p}_{3}^{1}\right)^{\top}-\left(\mathbf{p}_{2}^{1}\right)^{\top} \\
u^{2}\left(\mathbf{p}_{3}^{2}\right)^{\top}-\left(\mathbf{p}_{1}^{2}\right)^{\top} \\
v^{2}\left(\mathbf{p}_{3}^{2}\right)^{\top}-\left(\mathbf{p}_{2}^{2}\right)^{\top}
\end{array}\right], \quad \mathbf{D} \in \mathbb{R}^{4,4}, \quad \underline{\mathbf{X}} \in \mathbb{R}^{4}
$$

- back-projected rays will generally not intersect due to image error, see next
- using Jack-knife $(\rightarrow 63)$ not recommended
- we will use SVD ($\rightarrow 90$)
- but the result will not be invariant to projective frame
replacing $\mathbf{P}_{1} \mapsto \mathbf{P}_{1} \mathbf{H}, \mathbf{P}_{2} \mapsto \mathbf{P}_{2} \mathbf{H}$ does not always result in $\underline{\mathbf{X}} \mapsto \mathbf{H}^{-1} \underline{\mathbf{X}}$
- note the homogeneous form in (14) can represent points $\underline{\mathbf{X}}$ at infinity

- The Least-Squares Triangulation by SVD

- if \mathbf{D} is full-rank we may minimize the algebraic least-squares error

$$
\varepsilon^{2}(\underline{\mathbf{X}})=\|\mathbf{D} \underline{\mathbf{X}}\|^{2} \quad \text { s.t. } \quad\|\underline{\mathbf{X}}\|=1, \quad \underline{\mathbf{X}} \in \mathbb{R}^{4}
$$

- let \mathbf{D}_{i} be the i-th row of \mathbf{D}, then
$\|\mathbf{D} \underline{\mathbf{X}}\|^{2}=\sum_{i=1}^{4}\left(\mathbf{D}_{i} \underline{\mathbf{X}}\right)^{2}=\sum_{i=1}^{4} \underline{\mathbf{X}}^{\top} \mathbf{D}_{i}^{\top} \mathbf{D}_{i} \underline{\mathbf{X}}=\underline{\mathbf{X}}^{\top} \mathbf{Q} \underline{\mathbf{X}}$, where $\mathbf{Q}=\sum_{i=1}^{4} \mathbf{D}_{i}^{\top} \mathbf{D}_{i}=\mathbf{D}^{\top} \mathbf{D} \in \mathbb{R}^{4,4}$
- we write the SVD of \mathbf{Q} as $\mathbf{Q}=\sum_{j=1}^{4} \sigma_{j}^{2} \mathbf{u}_{j} \mathbf{u}_{j}^{\top}$, in which [Golub \& van Loan 2013, Sec. 2.5]

$$
\sigma_{1}^{2} \geq \cdots \geq \sigma_{4}^{2} \geq 0 \quad \text { and } \quad \mathbf{u}_{l}^{\top} \mathbf{u}_{m}= \begin{cases}0 & \text { if } l \neq m \\ 1 & \text { otherwise }\end{cases}
$$

- then $\underline{\mathbf{X}}=\arg \min _{\mathbf{q},\|\mathbf{q}\|=1} \mathbf{q}^{\top} \mathbf{Q} \mathbf{q}=\mathbf{u}_{4}$

Proof (by contradiction).
Let $\overline{\mathbf{q}}=\sum_{i=1}^{4} a_{i} \mathbf{u}_{i}$ s.t. $\sum_{i=1}^{4} a_{i}^{2}=1$, then $\|\overline{\mathbf{q}}\|=1$, as desired, and

$$
\overline{\mathbf{q}}^{\top} \mathbf{Q} \overline{\mathbf{q}}=\sum_{j=1}^{4} \sigma_{j}^{2} \overline{\mathbf{q}}^{\top} \mathbf{u}_{j} \mathbf{u}_{j}^{\top} \overline{\mathbf{q}}=\sum_{j=1}^{4} \sigma_{j}^{2}\left(\mathbf{u}_{j}^{\top} \overline{\mathbf{q}}\right)^{2}=\cdots=\sum_{j=1}^{4} a_{j}^{2} \sigma_{j}^{2} \geq \sum_{j=1}^{4} a_{j}^{2} \sigma_{4}^{2}=\sigma_{4}^{2}
$$

cont'd

- if $\sigma_{4} \ll \sigma_{3}$, there is a unique solution $\underline{\mathbf{X}}=\mathbf{u}_{4}$ with residual error $(\mathbf{D} \underline{\mathbf{X}})^{2}=\sigma_{4}^{2}$
the quality (conditioning) of the solution may be expressed as $q=\sigma_{3} / \sigma_{4}$ (greater is better)

Matlab code for the least-squares solver:

```
[U,O,V] = svd(D);
X = V (:,end);
q = sqrt(O(end-1,end-1)/O(end,end));
```

\circledast P1; 1pt: Why did we decompose \mathbf{D} and not $\mathbf{Q}=\mathbf{D}^{\top} \mathbf{D}$?

－Numerical Conditioning

－The equation $\mathbf{D} \underline{\mathbf{X}}=\mathbf{0}$ in（14）may be ill－conditioned for numerical computation，which results in a poor estimate for $\underline{\mathbf{X}}$ ．

Why：on a row of \mathbf{D} there are big entries together with small entries，e．g．of orders projection centers in mm ，image points in px

$$
\left[\begin{array}{cccc}
10^{3} & 0 & 10^{3} & 10^{6} \\
0 & 10^{3} & 10^{3} & 10^{6} \\
10^{3} & 0 & 10^{3} & 10^{6} \\
0 & 10^{3} & 10^{3} & 10^{6}
\end{array}\right]
$$

Quick fix：

1．re－scale the problem by a regular diagonal conditioning matrix $\mathbf{S} \in \mathbb{R}^{4,4}$

$$
\mathbf{0}=\mathbf{D} \underline{\mathbf{X}}=\mathbf{D S S}^{-1} \underline{\mathbf{X}}=\overline{\mathbf{D}} \underline{\overline{\mathbf{X}}}
$$

choose \mathbf{S} to make the entries in $\hat{\mathbf{D}}$ all smaller than unity in absolute value：

$$
\mathbf{S}=\operatorname{diag}\left(10^{-3}, 10^{-3}, 10^{-3}, 10^{-6}\right) \quad \mathrm{S}=\operatorname{diag}(1 . / \max (\operatorname{abs}(\mathrm{D}), 1))
$$

2．solve for $\overline{\mathbf{X}}$ as before
3．get the final solution as $\underline{\mathbf{X}}=\mathbf{S} \underline{\mathbf{X}}$
－when SVD is used in camera resection，conditioning is essential for success

Algebraic Error vs Reprojection Error

－algebraic error（ c－camera index，$\left(u^{c}, v^{c}\right)$－image coordinates）
from SVD $\rightarrow 91$

$$
\varepsilon^{2}(\underline{\mathbf{X}})=\sigma_{4}^{2}=\sum_{c=1}^{2}\left[\left(u^{c}\left(\mathbf{p}_{3}^{c}\right)^{\top} \underline{\mathbf{X}}-\left(\mathbf{p}_{1}^{c}\right)^{\top} \underline{\mathbf{X}}\right)^{2}+\left(v^{c}\left(\mathbf{p}_{3}^{c}\right)^{\top} \underline{\mathbf{X}}-\left(\mathbf{p}_{2}^{c}\right)^{\top} \underline{\mathbf{X}}\right)^{2}\right]
$$

－reprojection error

$$
e^{2}(\underline{\mathbf{X}})=\sum_{c=1}^{2}\left[\left(u^{c}-\frac{\left(\mathbf{p}_{1}^{c}\right)^{\top} \underline{\mathbf{X}}}{\left(\mathbf{p}_{3}^{c}\right)^{\top} \underline{\underline{\mathbf{X}}}}\right)^{2}+\left(v^{c}-\frac{\left(\mathbf{p}_{2}^{c}\right)^{\top} \underline{\mathbf{X}}}{\left(\mathbf{p}_{3}^{c}\right)^{\top} \underline{\mathbf{X}}}\right)^{2}\right]
$$

－algebraic error zero \Leftrightarrow reprojection error zero
－epipolar constraint satisfied \Rightarrow equivalent results
－in general：minimizing algebraic error is cheap but it gives inferior results
－minimizing reprojection error is expensive but it gives good results
－the midpoint of the common perpendicular to both optical rays gives about 50% greater error in 3D
－the golden standard method－deferred to $\rightarrow 104$

Ex：

$C_{1} C_{1}^{C_{2}}{ }_{c}$

－forward camera motion
－error $f / 50$ in image 2，orthogonal to epipolar plane
X_{T}－noiseless ground truth position
X_{r}－reprojection error minimizer
X_{a}－algebraic error minimizer
m－measurement（ m_{T} with noise in v^{2} ）
-We Have Added to The ZOO (cont'd from $\rightarrow 69$)

problem	given	unknown	slide				
camera resection	6 world-img correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{6}$	\mathbf{P}	62				
exterior orientation	$\mathbf{K}, 3$ world-img correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{3}$			$\mathbf{R}, \mathrm{t}^{66}$	relative pointcloud orientation	3 world-world correspondences $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{3}$	\mathbf{R}, t
:---	:---	:---					
fundamental matrix	7 img-img correspondences $\left\{\left(m_{i}, m_{i}^{\prime}\right)\right\}_{i=1}^{7}$	\mathbf{F}					
relative camera orientation	$\mathbf{K}, 5$ img-img correspondences $\left\{\left(m_{i}, m_{i}^{\prime}\right)\right\}_{i=1}^{5}$	\mathbf{R}, \mathbf{t}					
triangulation	$\mathbf{P}_{1}, \mathbf{P}_{2}, 1$ img-img correspondence $\left(m_{i}, m_{i}^{\prime}\right)$	X					

A bigger ZOO at http://cmp.felk.cvut.cz/minimal/

calibrated problems

- have fewer degenerate configurations
- can do with fewer points (good for geometry proposal generators $\rightarrow 117$)
- algebraic error optimization (SVD) makes sense in camera resection and triangulation only
- but it is not the best method; we will now focus on 'optimizing optimally'

Thank You

