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IThe Nine Elements of a Data-Driven MH Sampler

data-driven = proposals are derived from data

Then
1. primitives = elementary measurements

• points in line fitting
• matches in epipolar geometry or homography estimation

2. configuration = s-tuple of primitives minimal subsets necessary for parameter estimate

S

the minimization will be over a discrete set:

• of point pairs in line fitting (left)

• of match 7-tuples in epipolar geometry estimation

3. a map from configuration C to parameters θ = θ(C) by solving the minimal problem
• line parameters n from two points
• fundamental matrix F from seven matches
• homography H from four matches, etc

4. target likelihood p(E,D | θ(C)) is represented by π(C)
• can use log-likelihood: then it is the sum of robust errors V̂ (eij) given F (26)

• robustified point distance from the line θ = n
• robustified Sampson error for θ = F, etc

• posterior likelihood p(E,D | θ)p(θ) can be used MAPSAC (π(S) includes the prior)
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Icont’d

5. parameter distribution follows the empirical distribution of s-tuples. Since the
proposal is done via the minimal problem solver, it is ‘data-driven’,

• pairs of points define line distribution p(n | X) (left)

• random correspondence 7-tuples define epipolar geometry
distribution q(F |M)

6. proposal distribution q(·) is just a constant(!) distribution of the s-tuples:

a) q uniform, independent q(S | Ct) = q(S) =
(mn
s

)−1
, then a = min

{
1,

p(S)
p(Ct)

}
b) q dependent on descriptor similarity PROSAC (similar pairs are proposed more often)

c) q dependent on the current configuration Ct e.g. ‘not far from Ct’

7. (optional) hard inlier/outlier discrimination by the threshold (27)

V̂ (eij) < eT , eT = σ1

√
− log t2

8. local optimization from promising proposals

• can use the hard inliers or just the robust error (26) (more expensive but more stable)
• cannot be used to replace Ct (it would violate ‘detailed balance’ required for the MH scheme)

9. stopping based on the probability of proposing an all-inlier configuration →123
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IData-Driven Sampler Stopping

• The number of proposals N needed to hit the “true parameters” = an all-inlier config?
this will tell us nothing about the accuracy of the result

P . . . probability that at least one proposal is all-inlier 1− P . . . all previous N proposals were bad

ε . . . the fraction of inliers among primitives, ε ≤ 1
s . . . minimal configuration size 2 in line fitting, 7 in 7-point algorithm, 4 in homography fitting,. . .

N ≥ log(1− P )

log(1− εs)

• εs . . . proposal does not contain an outlier

• 1− εs . . . proposal contains at least one outlier

• (1− εs)N . . .N previous proposals contained an outlier = 1− P

N for s = 7
P
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• N can be re-estimated using the current estimate for ε (if there is LO, then after LO)
the quasi-posterior estimate for ε is the average over all samples generated so far

• this shows we have a good reason to limit all possible matches to tentative matches only

• for ε→ 0 we gain nothing over the standard MH-sampler stopping rule
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IStripping MH Down To Get RANSAC [Fischler & Bolles 1981]

• when we are interested in the best config only. . . and we need fast data exploration. . .

Simplified sampling procedure
1. given Ct, draw a random sample S from q(S | Ct) q(S) independent sampling

no use of information from Ct

2. compute acceptance probability

a = min

{
1,

π(S)

π(Ct)
· q(Ct | S)
q(S | Ct)

}
3. draw a random number u from unit-interval uniform distribution U0,1

4. if u ≤ a then Ct+1 := S else Ct+1 := Ct
5. if π(S) > π(Cbest) then remember Cbest := S

Steps 2–4 make no difference when waiting for the best sample configuration

• . . . but getting a good accuracy configuration might take very long this way

• good overall exploration but slow convergence in the vicinity of a mode where Ct could serve
as an attractor

• cannot use the past generated configurations to estimate any parameters

• we will fix these problems by (possibly robust) ‘local optimization’

3D Computer Vision: V. Optimization for 3D Vision (p. 124/189) R. Šára, CMP; rev. 24–Nov–2020



IRANSAC with Local Optimization and Early Stopping

1. initialize the best configuration as empty Cbest := ∅ and time t := 0

2. estimate the number of needed proposals as N :=
(n
s

)
n – No. of primitives, s – minimal config size

3. while t ≤ N :

a) propose a minimal random config S of size s from q(S)
S

b) if π(S) > π(Cbest) then

i) update the best config Cbest := S π(S) marginalized as in (26); π(S) includes a prior⇒ MAP

ii) threshold-out inliers using eT from (27)

2eT
S

iii) start local optimization from the inliers of Cbest LM optimization with robustified (→114) Sampson error

possibly weighted by posterior π(mij) [Chum et al. 2003]

LO(Cbest)

iv) update Cbest, update inliers using (27), re-estimate N from inlier counts →123 for derivation

N =
log(1− P )

log(1− εs)
, ε =

| inliers(Cbest)|
mn

,

c) t := t+ 1

4. output Cbest

• see MPV course for RANSAC details see also [Fischler & Bolles 1981], [25 years of RANSAC]
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Example Matching Results for the 7-point Algorithm with RANSAC

input images interest points (ca. 3600) tentative corresp. (416) matching (340)

• notice some wrong matches (they have wrong depth, even negative)

• they cannot be rejected without additional constraints or scene knowledge

• without local optimization the minimization is over a discrete set of epipolar geometries
proposable from 7-tuples
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Beyond RANSAC

By marginalization in (23) we have lost constraints on M (e.g. uniqueness). One can choose a
better model when not marginalizing:

π(M,F, E,D) = p(E |M,F)︸ ︷︷ ︸
reprojection error

· p(D |M)︸ ︷︷ ︸
similarity

· p(F)︸ ︷︷ ︸
prior

· P (M)︸ ︷︷ ︸
constraints

this is a global model: decisions on mij are no longer independent!

In the MH scheme

• one can work with full p(M,F | E,D), then configuration C = M F computable from M

• explicit labeling mij can be done by, e.g. sampling from

q(mij | F) ∼
(
(1− P0) p1(eij | F), P0 p0(eij | F)

)
when P (M) uniform then always accepted, a = 1 ~ derive

• we can compute the posterior probability of each match p(mij) by histogramming mij
from {Ci}

• local optimization can then use explicit inliers and p(mij)

• error can be estimated for elements of F from {Ci} does not work in RANSAC!

• large error indicates problem degeneracy this is not directly available in RANSAC

• good conditioning is not a requirement we work with the entire distribution p(F)

• one can find the most probable number of epipolar geometries by reversible jump MCMC

(homographies or other models) and Bayesian model selection

if there are multiple models explaning data, RANSAC will return one of them randomly
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Example: MH Sampling for a More Complex Problem

Task: Find two vanishing points from line segments detected in input image. Principal point is
known, square pixel.

video

simplifications

• vanishing points restricted to the set of all
pairwise segment intersections

• mother lines fixed by segment centroid, then θL
uniquely given by λi, and the configuration is

C = {v1, v2,Λ}

• primitives = line segments

• latent variables

1. each line has a vanishing point label
λi ∈ {∅, 1, 2}, ∅ represents an outlier

2. ‘mother line’ parameters θL (they pass
through their vanishing points)

• explicit variables

1. two unknown vanishing points v1, v2

• marginal proposals (vi fixed, vj proposed)

• minimal configuration s = 2

� = 1
� = 2 � = ;v2

v1
arg min

v1,v2,Λ,θL
V (v1, v2,Λ, θL)
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