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Module II

Perspective Camera

2.1 Basic Entities: Points, Lines

2.2 Homography: Mapping Acting on Points and Lines

2.3 Canonical Perspective Camera

2.4 Changing the Outer and Inner Reference Frames

2.5 Projection Matrix Decomposition

2.6 Anatomy of Linear Perspective Camera

2.7 Vanishing Points and Lines

covered by

[H&Z] Secs: 2.1, 2.2, 3.1, 6.1, 6.2, 8.6, 2.5, Example: 2.19
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IBasic Geometric Entities, their Representation, and Notation

• entities have names and representations

• names and their components:

entity in 2-space in 3-space

point m = (u, v) X = (x, y, z)

line n O

plane π, ϕ

• associated vector representations

m =

[
u
v

]
= [u, v]>, X =

xy
z

 , n

will also be written in an ‘in-line’ form as m = (u, v), X = (x, y, z), etc.

• vectors are always meant to be columns x ∈ Rn×1

• associated homogeneous representations

m= [m1,m2,m3]
>, X= [x1, x2, x3, x4]

>, n

‘in-line’ forms: m= (m1,m2,m3), X= (x1, x2, x3, x4), etc.

• matrices are Q ∈ Rm×n, linear map of a Rn×1 vector is y = Qx

• j-th element of vector mi is (mi)j ; element i, j of matrix P is Pij
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IImage Line (in 2D)

a finite line in the 2D (u, v) plane a u+ b v + c = 0

has a parameter (homogeneous) vector n ' (a, b, c) , ‖n‖ 6= 0

and there is an equivalence class for λ ∈ R, λ 6= 0 (λa, λb, λc) ' (a, b, c)

‘Finite’ lines
• standard representative for finite n= (n1, n2, n3) is λn, where λ = 111√

n2
1+n

2
2

assuming n2
1 + n2

2 6= 0; 111 is the unit, usually 111 = 1

‘Infinite’ line
• we augment the set of lines for a special entity called the line at infinity (ideal line)

n∞ ' (0, 0, 1) (standard representative)

• the set of equivalence classes of vectors in R3 \ (0, 0, 0) forms the projective space P2

a set of rays →21

• line at infinity is a proper member of P2

• I may sometimes wrongly use = instead of ', if you are in doubt, ask me
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IImage Point

Finite point m = (u, v) is incident on a finite line n= (a, b, c) iff iff = works either way!

a u+ b v + c = 0

can be rewritten as (with scalar product): (u, v,111) · (a, b, c) = m>n= 0

’Finite’ points

• a finite point is also represented by a homogeneous vector m' (u, v,111) , ‖m‖ 6= 0

• the equivalence class for λ ∈ R, λ 6= 0 is (m1, m2, m3) = λm'm

• the standard representative for finite point m is λm, where λ = 111
m3

assuming m3 6= 0

• when 111 = 1 then units are pixels and λm= (u, v, 1)

• when 111 = f then all elements have a similar magnitude, f ∼ image diagonal
use 111 = 1 unless you know what you are doing;

all entities participating in a formula must be expressed in the same units

’Infinite’ points

• we augment for points at infinity (ideal points) m∞ ' (m1,m2, 0)
proper members of P2

• all such points lie on the line at infinity (ideal line) n∞ ' (0, 0, 1), i.e. m>∞ n∞ = 0
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ILine Intersection and Point Join

The point of intersection m of image lines n and n′, n 6' n′ is

m' n× n′

n′

n

m

proof: If m= n× n′ is the intersection point, it
must be incident on both lines. Indeed, using
known equivalences from vector algebra

n> (n× n′)︸ ︷︷ ︸
m

≡ n′> (n× n′)︸ ︷︷ ︸
m

≡ 0

The join n of two image points m and m′, m 6' m′ is

n'm×m′
m

n

m′

Paralel lines intersect (somewhere) on the line at infinity n∞ ' (0, 0, 1):

a u+ b v + c = 0,

a u+ b v + d = 0, d 6= c

(a, b, c)× (a, b, d) ' (b,−a, 0)

• all such intersections lie on n∞

• line at infinity therefore represents the set of (unoriented) directions in the plane

• Matlab: m = cross(n, n prime);
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IHomography in P2

λx2

x1

x2
(0, 0, 0)

x3

the representatives

elements of P2

a plane selecting

R3 Projective plane P2: Vector space of dimension 3
excluding the zero vector, R3 \ (0, 0, 0), factorized to
linear equivalence classes (‘rays’), x' λx, λ 6= 0

including ‘points at infinity’

we call x ∈ P2 ‘points’

Homography in P2: Non-singular linear mapping in P2 an analogic definition for P3

x′ ' Hx, H ∈ R3,3 non-singular

Defining properties
• collinear points are mapped to collinear points

lines of points are mapped to lines of points

• concurrent lines are mapped to concurrent lines
concurrent = intersecting at a point

• and point-line incidence is preserved
e.g. line intersection points mapped to line intersection points

• H is a 3× 3 non-singular matrix, λH ' H equivalence class, 8 degrees of freedom

• homogeneous matrix representant: detH = 1

• what we call homography here is often called ‘projective collineation’ in mathematics
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IMapping 2D Points and Lines by Homography

H−⊤

H

m′ ' Hm (image) point

n′ ' H−>n (image) line H−> = (H−1)> = (H>)−1

• incidence is preserved: (m′)>n′ 'm>H>H−>n= m>n= 0

Mapping a finite 2D point m = (u, v) to m= (u′, v′)

1. extend the Cartesian (pixel) coordinates to homogeneous coordinates, m= (u, v,111)

2. map by homography, m′ = Hm

3. if m′3 6= 0 convert the result m′ = (m′1,m
′
2,m

′
3) back to Cartesian coordinates (pixels),

u′ =
m′1
m′3

111, v′ =
m′2
m′3

111

• note that, typically, m′3 6= 1 m′3 = 1 when H is affine

• an infinite point m= (u, v, 0) maps the same way
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Some Homographic Tasters

Rectification of camera rotation: →59 (geometry), →127 (homography estimation)

H ' KR>K−1
maps from image plane to facade plane

Homographic Mouse for Visual Odometry: [Mallis 2007]

illustrations courtesy of AMSL Racing Team, Meiji University and LIBVISO: Library for VISual Odometry

H ' K

(
R− tn>

d

)
K−1

[H&Z, p. 327]
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IHomography Subgroups: Euclidean Mapping (aka Rigid Motion)

• Euclidean mapping (EM): rotation,
translation and their combination

H =

cosφ − sinφ tx
sinφ cosφ ty
0 0 1


• eigenvalues

(
1, e−iφ, eiφ

)

−2 −1 0 1 2 3 4 5 6 7 8 9 10

−1

0

1

2

3

4

5

u

v

rotation by 30◦, then translation by (7, 2)EM = The most general homography preserving
1. areas: detH = 1 ⇒ unit Jacobian

2. lengths: Let x′i = Hxi (check we can use = instead of '). Let (xi)3 = 1, Then

‖x′2 − x′1‖ = ‖Hx2 −Hx1‖ = ‖H(x2 − x1)‖ = · · · = ‖x2 − x1‖
3. angles check the dot-product of normalized differences from a point (x− z)>(y − z) (Cartesian(!))

• eigenvectors when φ 6= kπ, k = 0, 1, . . . (columnwise)

e1 '

tx + ty cot
φ
2

ty − tx cot φ2
2

 , e2 '

i1
0

 , e3 '

−i1
0

 e2, e3 – circular points, i – imaginary unit

4. circular points: points at infinity (i, 1, 0), (−i, 1, 0) (preserved even by similarity)

• similarity: scaled Euclidean mapping (does not preserve lengths, areas)
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IHomography Subgroups: Affine Mapping

H =

a11 a12 tx
a21 a22 ty
0 0 1



−2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

−1

0

1

2

3

4

5

u

v

rotation by 30◦

then scaling by diag(1, 1.5, 1)

then translation by (7, 2)

AM = The most general homography preserving
• parallelism
• ratio of areas
• ratio of lengths on parallel lines
• linear combinations of vectors (e.g. midpoints)
• convex hull
• line at infinity n∞ (not pointwise)

does not preserve
• lengths
• angles
• areas
• circular points

Euclidean mappings preserve all properties affine mappings preserve, of course
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observe H
>
n∞ '

a11 a21 0
a12 a22 0
tx ty 1

0
0
1

 =

0
0
1

 = n∞ ⇒ n∞ ' H
−>

n∞



IHomography Subgroups: General Homography

H =

h11 h12 h13

h21 h22 h23

h31 h32 h33


preserves only

• incidence and concurrency
• collinearity
• cross-ratio on the line →46

does not preserve

• lengths
• areas
• parallelism
• ratio of areas
• ratio of lengths
• linear combinations of vectors

(midpoints, etc.)
• convex hull
• line at infinity n∞

−2 −1 0 1 2 3 4 5 6 7 8 9

−1

0

1

2

3

4

5

u

v

H =

7 −0.5 6
3 1 3
1 0 1


line n = (1, 0, 1) is mapped to n∞: H−>n' n∞

(where in the picture is the line n?)
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ICanonical Perspective Camera (Pinhole Camera, Camera Obscura)

Oex

X = (x, y, z)

π

xp

(x′, y′, 1)

ezC

ey

1. in this picture we are looking ‘down the street’

2. right-handed canonical coordinate system
(x, y, z) with unit vectors ex, ey , ez

3. origin = center of projection C

4. image plane π at unit distance from C

5. optical axis O is perpendicular to π

6. principal point xp: intersection of O and π

7. perspective camera is given by C and π

z − 11

X

y
ey

y′

π

C
O

y–z plane

projected point in the natural image
coordinate system:

y′

1
= y′ =

y

1 + z − 1
=
y

z
, x′ =

x

z
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INatural and Canonical Image Coordinate Systems

projected point in canonical camera (z 6= 0)

(x′, y′, 1) =
(x
z
,
y

z
, 1
)
=

1

z
(x, y, z) '

1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸

P0=
[
I 0

]
·


x
y
z
1

 = P0 X

projected point in scanned image scale by f and translate by (−u0, −v0)

xp = (u0, v0)

(u, v)

(0, 0) eu

ev

Oex

X = (x, y, z)

π

xp

(x′, y′, 1)

ezC

ey

u = f
x

z
+ u0

v = f
y

z
+ v0

1

z

f x+ z u0

f y + z v0
z

 '
f 0 u0

0 f v0
0 0 1

·
1 0 0 0
0 1 0 0
0 0 1 0

·

x
y
z
1

 = KP0 X= PX

• ‘calibration’ matrix K transforms canonical P0 to standard perspective camera P
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IComputing with Perspective Camera Projection Matrix

f 0 u0 0
0 f v0 0
0 0 1 0


︸ ︷︷ ︸

P


x
y
z
1

 =

fx+ u0z
fy + v0z

z

 '
x+ z

f
u0

y + z
f
v0

z
f


︸ ︷︷ ︸

(a)

'

m1

m2

m3

 = m

m1

m3
=
f x

z
+ u0 = u,

m2

m3
=
f y

z
+ v0 = v when m3 6= 0

f – ‘focal length’ – converts length ratios to pixels, [f ] = px, f > 0

(u0, v0) – principal point in pixels

Perspective Camera:

1. dimension reduction since P ∈ R3,4

2. nonlinear unit change 111 7→ 111 · z/f , see (a)
for convenience we use P11 = P22 = f rather than P33 = 1/f and the u0, v0 in relative units

3. m3 = 0 represents points at infinity in image plane π i.e. points with z = 0
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IChanging The Outer (World) Reference Frame

A transformation of a point from the world to camera
coordinate system:

Xc = RXw + t

R; tFw F
world

cam

R – camera rotation matrix world orientation in the camera coordinate frame Fc
t – camera translation vector world origin in the camera coordinate frame Fc

PXc= KP0

[
Xc

1

]
= KP0

[
RXw + t

1

]
= K

[
I 0

][R t

0> 1

]
︸ ︷︷ ︸

T

[
Xw

1

]
= K

[
R t

]
Xw

P0 (a 3× 4 mtx) discards the last row of T

• R is rotation, R>R = I, detR = +1 I ∈ R3,3 identity matrix

• 6 extrinsic parameters: 3 rotation angles (Euler theorem), 3 translation components

• alternative, often used, camera representations

P = K
[
R t

]
= KR

[
I −C

]
C – camera position in the world reference frame Fw t = −RC
r>3 – optical axis in the world reference frame Fw third row of R: r3 = R−1[0, 0, 1]>

• we can save some conversion and computation by noting that KR
[
I −C

]
X= KR(X−C)
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IChanging the Inner (Image) Reference Frame

The general form of calibration matrix K includes
• skew angle θ of the digitization raster
• pixel aspect ratio a

a

e

0

v

1

e

?

v

e

0

u

= e

?

u

(0; 0)

�

K =

a f −a f cot θ u0

0 f/ sin θ v0
0 0 1


units: [f ] = px, [u0] = px, [v0] = px, [a] = 1

~ H1; 2pt: Verify this K; deadline LD+2 wk

Hints:

1. image projects to orthogonal system F⊥, then it maps by skew to F ′, then by scale f , a f to
F ′′, then by translation by u0, v0 to F ′′′

2. Skew: Express point x as

x = u′eu′ + v′ev′ = u⊥e⊥u + v⊥e⊥v
e: are unit basis vectors

3. K maps from F⊥ to F ′′′ as

w′′′ [u′′′, v′′′, 1]> = K[u⊥, v⊥, 1]>
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ISummary: Projection Matrix of a General Finite Perspective Camera

m' PX, P =
[
Q q

]
' K

[
R t

]
= KR

[
I −C

]
a recipe for filling P

general finite perspective camera has 11 parameters:

• 5 intrinsic parameters: f , u0, v0, a, θ finite camera: detK 6= 0

• 6 extrinsic parameters: t, R(α, β, γ)

Representation Theorem: The set of projection matrices P of finite perspective cameras is
isomorphic to the set of homogeneous 3× 4 matrices with the left 3× 3 submatrix Q non-singular.

random finite camera: Q = rand(3,3); while det(Q)==0, Q = rand(3,3); end, P = [Q, rand(3,1)];
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IProjection Matrix Decomposition

P =
[
Q q

]
−→ K

[
R t

]
Q ∈ R3,3 full rank (if finite perspective camera; see [H&Z, Sec. 6.3] for cameras at infinity)

K ∈ R3,3 upper triangular with positive diagonal elements
R ∈ R3,3 rotation: R

>
R = I and detR = +1

1.
[
Q q

]
= K

[
R t

]
=
[
KR Kt

]
also →35

2. RQ decomposition of Q = KR using three Givens rotations [H&Z, p. 579]

K = Q R32R31R21︸ ︷︷ ︸
R−1

QR32 =
[ · · ·
· · ·
· 0 ·

]
, QR32R31 =

[ · · ·
· · ·
0 0 ·

]
, QR32R31R21 =

[ · · ·
0 · ·
0 0 ·

]

Rij zeroes element ij in Q affecting only columns i and j and the sequence preserves previously
zeroed elements, e.g. (see next slide for derivation details)

R32 =

1 0 0
0 c −s
0 s c

 gives
c2 + s2 = 1

0 = k32 = c q32 + s q33
⇒ c =

q33√
q232 + q233

s =
−q32√
q232 + q233

~ P1; 1pt: Multiply known matrices K, R and then decompose back; discuss numerical errors

• RQ decomposition nonuniqueness: KR = KT−1TR, where T = diag(−1,−1, 1) is also a
rotation, we must correct the result so that the diagonal elements of K are all positive

‘thin’ RQ decomposition

• care must be taken to avoid overflow, see [Golub & van Loan 2013, sec. 5.2]
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RQ Decomposition Step

Q = Array [ q #1 ,#2 & , { 3 , 3 } ] ;

R32 = { { 1 , 0 , 0 } , { 0 , c , - s } , { 0 , s , c } } ; R32 // MatrixForm

1 0 0

0 c - s

0 s c

Q1 = Q . R32 ; Q1 // MatrixForm

q 1,1 c q 1,2 + s q 1,3 - s q 1,2 + c q 1,3

q 2,1 c q 2,2 + s q 2,3 - s q 2,2 + c q 2,3

q 3,1 c q 3,2 + s q 3,3 - s q 3,2 + c q 3,3

s1 = Solve [ { Q1 [ [ 3 ] ] [ [ 2 ] ] ⩵ 0 , c ^ 2 + s ^ 2 ⩵ 1 } , { c , s } ] [ [ 2 ] ]

 c →

q 3,3

q 3,2
2

+ q 3,3
2

, s → -

q 3,2

q 3,2
2

+ q 3,3
2



Q1 /. s1 // Simplify // MatrixForm

q 1,1

-q1,3 q3,2 +q1,2 q3,3

q3,2
2

+q3,3
2

q1,2 q3,2 +q1,3 q3,3

q3,2
2

+q3,3
2

q 2,1

-q2,3 q3,2 +q2,2 q3,3

q3,2
2

+q3,3
2

q2,2 q3,2 +q2,3 q3,3

q3,2
2

+q3,3
2

q 3,1 0 q 3,2
2

+ q 3,3
2
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ICenter of Projection (Optical Center)

Observation: finite P has a non-trivial right null-space rank 3 but 4 columns

Theorem
Let P be a camera and let there be B 6= 0 s.t. PB= 0. Then B is equivalent to the
projection center C (homogeneous, in world coordinate frame).

Proof.

1. Consider spatial line AB (B is given, A 6= B). We can write

X(λ) ' λA+ (1− λ)B, λ ∈ R B?

B = C?

A X(λ)

2. it projects to
PX(λ) ' λPA+ (1− λ)PB' PA

• the entire line projects to a single point ⇒ it must pass through the projection center of P

• this holds for any choice of A 6= B ⇒ the only common point of the lines is the C, i.e. B' C ut
Hence

0 = PC=
[
Q q

] [C
1

]
= QC+ q ⇒ C = −Q−1q

C= (cj), where cj = (−1)j detP(j), in which P(j) is P with column j dropped

Matlab: C_homo = null(P); or C = -Q\q;
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IOptical Ray

Optical ray: Spatial line that projects to a single image point.

1. consider the following line
d unit line direction vector, ‖d‖ = 1, λ ∈ R, Cartesian representation

X(λ) = C+ λd

2. the projection of the (finite) point X(λ) is

m'
[
Q q

] [X(λ)
1

]
= Q(C+ λd) + q = λQd =

= λ
[
Q q

] [d
0

]
. . . which is also the image of a point at infinity in P3

• optical ray line corresponding to image point m is the set

X(λ) = C+ µQ−1m, µ ∈ R

X(λ)

C
π

m

d

• optical ray direction may be represented by a point at infinity (d, 0) in P3

• optical ray is expressed in world coordinate frame
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IOptical Axis

Optical axis: Optical ray that is perpendicular to image plane π

1. points on a line parallel to π project to line at infinity in π:uv
0

 ' PX=

q>1 q14
q>2 q24
q>3 q34

[X
1

]

2. therefore the set of points X is parallel to π iff

q>3 X+ q34 = 0

3. this is a plane with ±q3 as the normal vector

o XC�
4. optical axis direction: substitution P 7→ λP must not change the direction

5. we select (assuming det(R) > 0)

o = det(Q)q3

if P 7→ λP then det(Q) 7→ λ3 det(Q) and q3 7→ λq3 [H&Z, p. 161]

• the axis is expressed in world coordinate frame
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IPrincipal Point

Principal point: The intersection of image plane and the optical axis

1. as we saw, q3 is the directional vector of optical axis

2. we take point at infinity on the optical axis that must
project to the principal point m0

3. then

m0 '
[
Q q

] [q3

0

]
= Qq3

m0�q3 C
principal point: m0 ' Qq3

• principal point is also the center of radial distortion
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IOptical Plane

A spatial plane with normal p containing the projection center C and a given image line n.

� d0 pCm0 n mX d�
optical ray given by m d ' Q−1m

optical ray given by m′ d′ ' Q−1m′

p ' d× d′ = (Q−1m)× (Q−1m′) = Q>(m×m′) = Q>n

• note the way Q factors out!

hence, 0 = p>(X−C) = n>Q(X−C)︸ ︷︷ ︸
→30

= n>PX= (P>n)>X for every X in plane ρ

optical plane is given by n: ρ' P>n ρ1 x+ ρ2 y + ρ3 z + ρ4 = 0
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Cross-Check: Optical Ray as Optical Plane Intersection

m
�n0n d p0

Cp
optical plane normal given by n p = Q>n

optical plane normal given by n′ p′ = Q>n′

d = p× p′ = (Q>n)× (Q>n′) = Q−1(n× n′) = Q−1m
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ISummary: Projection Center; Optical Ray, Axis, Plane

General (finite) camera

P =
[
Q q

]
=

q
>
1 q14

q>2 q24

q>3 q34

 = K
[
R t

]
= KR

[
I −C

]

C' rnull(P), C = −Q−1q projection center (world coords.) →35

d = Q−1 m optical ray direction (world coords.) →36

o = det(Q)q3 outward optical axis (world coords.) →37

m0 ' Qq3 principal point (in image plane) →38

ρ= P> n optical plane (world coords.) →39

K =

f −f cot θ u0

0 f/(a sin θ) v0
0 0 1

 camera (calibration) matrix (f , u0, v0 in pixels) →31

R camera rotation matrix (cam coords.) →30

t camera translation vector (cam coords.) →30
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What Can We Do with An ‘Uncalibrated’ Perspective Camera?

How far is the engine?

distance between sleepers (ties) 0.806m but we cannot count them, the image resolution is too low

We will review some life-saving theory. . .
. . . and build a bit of geometric intuition. . .

In fact

• ‘uncalibrated’ = the image contains a calibrating object that suffices for the task at hand
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IVanishing Point

Vanishing point: the limit of the projection of a point that moves along a space line
infinitely in one direction. the image of the point at infinity on the line

X0X0 + �d d Cd m m1
�

m∞ ' lim
λ→±∞

P

[
X0 + λd

1

]
= · · · ' Qd

~ P1; 1pt: Prove (use Cartesian

coordinates and L’Hôpital’s rule)

• the V.P. of a spatial line with directional vector d is m∞ ' Qd

• V.P. is independent on line position X0, it depends on its directional vector only

• all parallel lines share the same V.P., including the optical ray defined by m∞
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Some Vanishing Point “Applications”

where is the sun? what is the wind direction? fly above the lane,
(must have video) at constant altitude!
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IVanishing Line

Vanishing line: The set of vanishing points of all lines in a plane
the image of the line at infinity in the plane

and in all parallel planesv1 n | plane normal

m | line orientation vetor
v2

• any box with parallel edges

• V.L. n corresponds to spatial plane of normal vector p = Q>n
because this is the normal vector of a parallel optical plane (!) →39

• a spatial plane of normal vector p has a V.L. represented by n= Q−>p.
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ICross Ratio

Four distinct finite collinear spatial points R,S, T, U define cross-ratio

[RSTU ] =
|
−→
RT |
|
−→
SR|

|
−→
US|
|
−→
TU |

R S T U

a mnemonic (∞)

|
−→
RT | – signed distance from R to T in the arrow direction

6 cross-ratios from four points:

[SRUT ] = [RSTU], [RSUT ] =
1

[RSTU]
, [RTSU] = 1 − [RSTU], · · · �

v s tn
u

r p

S

R

N

C

U

T

v /∈ n

Obs: [RSTU ] =

∣∣r t v
∣∣∣∣s r v
∣∣ ·
∣∣u s v

∣∣∣∣t u v
∣∣ , ∣∣r t v

∣∣ = det
[
r t v

]
= (r× t)>v (1)

Corollaries:
• cross ratio is invariant under homographies x′ ' Hx plug Hx in (1): (H−>(r× t))>Hv

• cross ratio is invariant under perspective projection: [RSTU ] = [ r s t u ]

• 4 collinear points: any perspective camera will “see” the same cross-ratio of their images

• we measure the same cross-ratio in image as on the world line

• one of the points R, S, T , U may be at infinity (we take the limit, in effect ∞∞ = 1)
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I1D Projective Coordinates

The 1-D projective coordinate of a point P is defined by the following cross-ratio:

[P ] = [P0 P1 P P∞] = [p0 p1 p p∞] =
|−−→p0 p|
|−−→p1 p0|

|−−−→p∞ p1|
|−−→p p∞|

= [p]

naming convention:

P0 – the origin [P0] = 0

P1 – the unit point [P1] = 1

P∞ – the supporting point [P∞] = ±∞

[P ] = [p]

[P ] is equal to Euclidean coordinate along N
[p] is its measurement in the image plane

p∞p0 p1 p

p0

p1

p∞

n′n

p

N ′‖N in 3D

Applications

• Given the image of a 3D line N , the origin, the unit point, and the vanishing point,
then the Euclidean coordinate of any point P ∈ N can be determined →48

• Finding v.p. of a line through a regular object →49
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Application: Counting Steps

p∞
p

p0

p1

su
p
p
o
rtin

g
 lin

e

• Namesti Miru underground station in Prague

p

p∞

detail around the vanishing point

Result: [P ] = 214 steps (correct answer is 216 steps) 4Mpx camera
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Application: Finding the Horizon from Repetitions

p

p∞

p0

p1

P1

P

P0

in 3D: |P0P | = 2|P0P1| then [H&Z, p. 218]

[P0P1PP∞] =
|P0P |
|P1P0|

= 2 ⇒ x∞ =
x0 (2x− x1)− xx1

x+ x0 − 2x1

• x – 1D coordinate along the yellow line, positive in the arrow direction

• could be applied to counting steps (→48) if there was no supporting line

~ P1; 1pt: How high is the camera above the floor?
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Homework Problem

~ H2; 3pt: What is the ratio of heights of Building A to Building B?
• expected: conceptual solution; use notation from this figure
• deadline: LD+2 weeks

B

A

tA

u

z

p

h

n∞

fB

tB
m

fA

Hints

1. What are the interesting properties of line h connecting the top tB of Buiding B with the point m at
which the horizon intersects the line p joining the foots fA, fB of both buildings? [1 point]

2. How do we actually get the horizon n∞? (we do not see it directly, there are some hills there. . . ) [1 point]

3. Give the formula for measuring the length ratio. [formula = 1 point]
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2D Projective Coordinates

V.P.

locate on the plane
pt we want to

origin in 3D

y-coordinate axis in 3D

unit pt

x-coordinate axis in 3D unit pt

V.P.

p0 px1 px px∞

p1

p

py∞

py

py1

[Px] = [P0 Px1 Px Px∞] [Py] = [P0 Py1 Py Py∞]
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Application: Measuring on the Floor (Wall, etc)

San Giovanni in Laterano, Rome

• measuring distances on the floor in terms of tile units

• what are the dimensions of the seal? Is it circular (assuming square tiles)?

• needs no explicit camera calibration
because we can see the calibrating object (vanishing points)
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Thank You
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