# 3D Computer Vision 

Radim Šára Martin Matoušek<br>Center for Machine Perception<br>Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague<br>https://cw.fel.cvut.cz/wiki/courses/tdv/start<br>http://cmp.felk.cvut.cz<br>mailto:sara@cmp.felk.cvut.cz<br>phone ext. 7203

rev. September 29, 2020


## Open Informatics Master's Course

## Module II

## Perspective Camera

（21）Basic Entities：Points，Lines
（22Homography：Mapping Acting on Points and Lines
（23Canonical Perspective Camera
（24）Changing the Outer and Inner Reference Frames
（25）Projection Matrix Decomposition
（20）Anatomy of Linear Perspective Camera
272Vanishing Points and Lines
covered by
［H\＆Z］Secs：2．1，2．2，3．1，6．1，6．2，8．6，2．5，Example： 2.19

## Basic Geometric Entities, their Representation, and Notation

- entities have names and representations
- names and their components:

| entity | in 2-space | in 3-space |
| :--- | :--- | :--- |
| point | $m=(u, v)$ | $X=(x, y, z)$ |
| line | $n$ | $O$ |
| plane |  | $\pi, \varphi$ |

- associated vector representations

$$
\mathbf{m}=\left[\begin{array}{l}
u \\
v
\end{array}\right]=[u, v]^{\top}, \quad \mathbf{X}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \quad \mathbf{n}
$$

will also be written in an 'in-line' form as $\mathbf{m}=(u, v), \mathbf{X}=(x, y, z)$, etc.

- vectors are always meant to be columns $\mathbf{x} \in \mathbb{R}^{n \times 1}$
- associated homogeneous representations

$$
\begin{aligned}
& \underline{\mathbf{m}}=\left[m_{1}, m_{2}, m_{3}\right]^{\top}, \quad \underline{\mathbf{X}}=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{\top}, \quad \underline{\mathbf{n}} \\
& \text { 'in-line' forms: } \underline{\mathbf{m}}=\left(m_{1}, m_{2}, m_{3}\right), \underline{\mathbf{X}}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \text {, etc. }
\end{aligned}
$$

- matrices are $\mathbf{Q} \in \mathbb{R}^{m \times n}$, linear map of a $\mathbb{R}^{n \times 1}$ vector is $\mathbf{y}=\mathbf{Q x}$
- $j$-th element of vector $\mathbf{m}_{i}$ is $\left(\mathbf{m}_{i}\right)_{j}$; element $i, j$ of matrix $\mathbf{P}$ is $\mathbf{P}_{i j}$


## －Image Line（in 2D）

a finite line in the 2D $(u, v)$ plane

$$
a u+b v+c=0
$$

has a parameter（homogeneous）vector

$$
\underline{\mathbf{n}} \simeq(a, b, c), \quad\|\underline{\mathbf{n}}\| \neq 0
$$

and there is an equivalence class for $\lambda \in \mathbb{R}, \lambda \neq 0 \quad(\lambda a, \lambda b, \lambda c) \simeq(a, b, c)$

## ‘Finite’ lines

－standard representative for finite $\underline{\mathbf{n}}=\left(n_{1}, n_{2}, n_{3}\right)$ is $\lambda \underline{\mathbf{n}}$ ，where $\lambda=\frac{\mathbf{1}}{\sqrt{n_{1}^{2}+n_{2}^{2}}}$ assuming $n_{1}^{2}+n_{2}^{2} \neq 0 ; \mathbf{1}$ is the unit，usually $\mathbf{1}=1$

## ＇Infinite’ line

－we augment the set of lines for a special entity called the line at infinity（ideal line）

$$
\underline{\mathbf{n}}_{\infty} \simeq(0,0,1) \quad \text { (standard representative) }
$$

－the set of equivalence classes of vectors in $\mathbb{R}^{3} \backslash(0,0,0)$ forms the projective space $\mathbb{P}^{2}$
a set of rays $\rightarrow 21$
－line at infinity is a proper member of $\mathbb{P}^{2}$
－I may sometimes wrongly use $=$ instead of $\simeq$ ，if you are in doubt，ask me

## -Image Point

Finite point $\mathbf{m}=(u, v)$ is incident on a finite line $\underline{\mathbf{n}}=(a, b, c)$ iff $\quad$ iff $=$ works either way!

$$
a u+b v+c=0
$$

can be rewritten as (with scalar product): $\quad(u, v, \mathbf{1}) \cdot(a, b, c)=\underline{\mathbf{m}}^{\top} \underline{\mathbf{n}}=0$

## 'Finite' points

- a finite point is also represented by a homogeneous vector $\underline{\mathbf{m}} \simeq(u, v, \mathbf{1}),\|\underline{\mathbf{m}}\| \neq 0$
- the equivalence class for $\lambda \in \mathbb{R}, \lambda \neq 0$ is $\left(m_{1}, m_{2}, m_{3}\right)=\lambda \underline{\mathbf{m}} \simeq \underline{\mathbf{m}}$
- the standard representative for finite point $\underline{\mathbf{m}}$ is $\lambda \underline{\mathbf{m}}$, where $\lambda=\frac{\mathbf{1}}{m_{3}}$ assuming $m_{3} \neq 0$
- when $\mathbf{1}=1$ then units are pixels and $\lambda \underline{\mathbf{m}}=(u, v, 1)$
- when $\mathbf{1}=f$ then all elements have a similar magnitude, $f \sim$ image diagonal
use $1=1$ unless you know what you are doing; all entities participating in a formula must be expressed in the same units


## 'Infinite' points

- we augment for points at infinity (ideal points) $\underline{\mathbf{m}}_{\infty} \simeq\left(m_{1}, m_{2}, 0\right)$
proper members of $\mathbb{P}^{2}$
- all such points lie on the line at infinity (ideal line) $\quad \underline{\mathbf{n}}_{\infty} \simeq(0,0,1)$, i.e. $\underline{\mathbf{m}}_{\infty}^{\top} \underline{\mathbf{n}}_{\infty}=0$


## Line Intersection and Point Join

The point of intersection $m$ of image lines $n$ and $n^{\prime}, n \nsucceq n^{\prime}$ is
$\underline{\mathbf{m}} \simeq \underline{\mathbf{n}} \times \underline{\mathbf{n}}^{\prime}$

proof: If $\underline{\mathbf{m}}=\underline{\mathbf{n}} \times \underline{\mathbf{n}}^{\prime}$ is the intersection point, it must be incident on both lines. Indeed, using known equivalences from vector algebra

$$
\underline{\mathbf{n}}^{\top} \underbrace{\left(\underline{\mathbf{n}} \times \underline{\mathbf{n}}^{\prime}\right)}_{\underline{\mathbf{m}}} \equiv \underline{\mathbf{n}}^{\prime \top} \underbrace{\left(\underline{\mathbf{n}} \times \underline{\mathbf{n}}^{\prime}\right)}_{\underline{\mathbf{m}}} \equiv 0
$$

The join $n$ of two image points $m$ and $m^{\prime}, m \nsucceq m^{\prime}$ is

$$
\underline{\mathbf{n}} \simeq \underline{\mathbf{m}} \times \underline{\mathbf{m}}^{\prime}
$$




$$
\begin{aligned}
& a u+b v+c=0, \\
& a u+b v+d=0, \\
& \quad(a, b, c) \times(a, b, d) \simeq(b,-a, 0)
\end{aligned}
$$

- all such intersections lie on $\underline{\mathbf{n}}_{\infty}$
- line at infinity therefore represents the set of (unoriented) directions in the plane
- Matlab: m = cross(n, n_prime);


## -Homography in $\mathbb{P}^{2}$



Projective plane $\mathbb{P}^{2}$ : Vector space of dimension 3 excluding the zero vector, $\mathbb{R}^{3} \backslash(0,0,0)$, factorized to linear equivalence classes ('rays'), $\mathbf{x} \simeq \lambda \underline{\mathbf{x}}, \lambda \neq 0$ including 'points at infinity'

Homography in $\mathbb{P}^{2}$ : Non-singular linear mapping in $\mathbb{P}^{2}$
an analogic definition for $\mathbb{P}^{3}$

## Defining properties

collinear points are mapped to collinear points
lines of points are mapped to lines of points

- concurrent lines are mapped to concurrent lines
$\bullet$ and point-line incidence is preserved

$$
\text { concurrent }=\text { intersecting at a point }
$$ e.g. line intersection points mapped to line intersection points

- $\mathbf{H}$ is a $3 \times 3$ non-singular matrix, $\lambda \mathbf{H} \simeq \mathbf{H}$ equivalence class, 8 degrees of freedom
- homogeneous matrix representant: $\operatorname{det} \mathbf{H}=1$
- what we call homography here is often called 'projective collineation' in mathematics


## - Mapping 2D Points and Lines by Homegraphy



- incidence is preserved: $\underbrace{(\underbrace{\mathbf{m}^{\prime}})^{\top} \underline{\mathbf{n}}^{\prime}} \simeq \underline{\mathbf{m}}^{\top} \underbrace{\mathbf{H}^{\top}\left(\mathbf{H}^{-\top}\right.}, \underline{\underline{n}})=\underline{\underline{\mathbf{m}}}^{\top} \underline{\mathbf{n}}=0$

Mapping a finite 2D point $\mathbf{m}=(u, v)$ to $\underline{\mathbf{m}}=\left(u^{\prime}, v^{\prime}\right)$

1. extend the Cartesian (pixel) coordinates to homogeneous coordinates, $\underline{\mathbf{m}}=(u, v, \mathbf{1})$
(2.) map by homography, $\underline{\mathbf{m}}^{\prime}=\mathbf{H} \underline{\mathbf{m}} \quad m=(\mu, V, 1)$
2. if $m_{3}^{\prime} \neq 0$ convert the result $\underline{\mathbf{m}}^{\prime}=\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right)$ back to Cartesian coordinates (pixels),

$$
u^{\prime}=\frac{m_{1}^{\prime}}{m_{3}^{\prime}} \mathbf{1}, \quad v^{\prime}=\frac{m_{2}^{\prime}}{m_{3}^{\prime}} \mathbf{1}
$$

- note that, typically, $m_{3}^{\prime} \neq 1$
$m_{3}^{\prime}=1$ when $\mathbf{H}$ is affine
- an infinite point $\underline{\mathbf{m}}=(u, v, 0)$ maps the same way


## Some Homographic Tasters

Rectification of camera rotation: $\rightarrow 59$ (geometry), $\rightarrow 127$ (homography estimation)

$\mathbf{H} \simeq \mathbf{K} \mathbf{R}^{\top} \mathbf{K}^{-1}$

maps from image plane to facade plane

Homographic Mouse for Visual Odometry: [Mallis 2007]

illustrations courtesy of AMSL Racing Team, Meiji University and LIBVISO: Library for VISual Odometry

$$
\mathbf{H} \simeq \mathbf{K}\left(\mathbf{R}-\frac{\mathbf{t n}^{\top}}{d}\right) \mathbf{K}^{-1} \quad[\mathbf{H} \& Z, \text { p. 327] }
$$

## -Homography Subgroups: Euclidean Mapping (aka Rigid Motion)

- Euclidean mapping (EM): rotation, translation and their combination

$$
\mathbf{H}=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & t_{/ a} \\
\sin \phi & \cos \phi & t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

- eigenvalues $\left(1, e^{-i \phi}, e^{i \phi}\right)$
$\mathrm{EM}=$ The most general homography preserving


1. areas: $\operatorname{det} \mathbf{H}=1 \Rightarrow$ unit Jacobian
2. lengths: Let $\underline{x}_{i}^{\prime}=\mathbf{H} \underline{\mathbf{x}}_{i}$ (check we can use $=$ instead of $\simeq$ ). Let $\left(x_{i}\right)_{3}=1$, Then

$$
\left\|\underline{\mathbf{x}}_{2}^{\prime}-\underline{\mathbf{x}}_{1}^{\prime}\right\|=\left\|\mathbf{H} \underline{\mathbf{x}}_{2}-\mathbf{H} \underline{\mathbf{x}}_{1}\right\|=\left\|\mathbf{H}\left(\underline{\mathbf{x}}_{2}-\underline{\mathbf{x}}_{1}\right)\right\|=\cdots=\left\|\underline{\mathbf{x}}_{2}-\underline{\mathbf{x}}_{1}\right\|
$$

3. angles check the dot-product of normalized differences from a point $(\mathbf{x}-\mathbf{z})^{\top}(\mathbf{y}-\mathbf{z}) \quad$ (Cartesian(!))

- eigenvectors when $\phi \neq k \pi, k=0,1, \ldots$ (columnwise)

$$
\mathbf{e}_{1} \simeq\left[\begin{array}{c}
t_{x}+t_{y} \cot \frac{\phi}{2} \\
t_{y}-t_{x} \cot \frac{\phi}{2} \\
2
\end{array}\right], \quad \mathbf{e}_{2} \simeq\left[\begin{array}{l}
i \\
1 \\
0
\end{array}\right], \quad \mathbf{e}_{3} \simeq\left[\begin{array}{c}
-i \\
1 \\
0
\end{array}\right] \quad \mathbf{e}_{2}, \mathbf{e}_{3} \text { - circular points, } i \text { - imaginary unit }
$$

4. circular points: points at infinity $(i, 1,0),(-i, 1,0)$ (preserved even by similarity)

- similarity: scaled Euclidean mapping (does not preserve lengths, areas)


## -Homography Subgroups: Affine Mapping

$$
\mathbf{H}=\left[\begin{array}{ccc}
a_{11} & a_{12} & t_{x} \\
a_{21} & a_{22} & t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

AM $=$ The most general homography preserving

- parallelism
- ratio of areas
- ratio of lengths on parallel lines
- linear combinations of vectors (e.g. midpoints)
- convex hull
- line at infinity $\underline{\mathbf{n}}_{\infty}$ (not pointwise)
$\begin{array}{lll}\text { does not preserve } & \text { observe } \mathbf{H}^{\top} \underline{\mathbf{n}}_{\infty} \simeq\left[\begin{array}{ccc}a_{11} & a_{21} & 0 \\ a_{12} & a_{22} & 0 \\ t_{x} & t_{y} & 1\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\underline{\mathbf{n}}_{\infty} \quad \Rightarrow \quad \underline{\mathbf{n}}_{\infty} \simeq^{4} \mathbf{H}^{-\top} \underline{\mathbf{n}}_{\infty} \\ \text { lengths }\end{array}$
- angles
- areas
- circular points

Euclidean mappings preserve all properties affine mappings preserve, of course

## -Homography Subgroups: General Homography

$$
\mathbf{H}=\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]
$$

## preserves only

- incidence and concurrency
- collinearity
- cross-ratio on the line
does not preserve
- lengths
- areas
- parallelism
- ratio of areas
- ratio of lengths
- linear combinations of vectors (midpoints, etc.)
- convex hull
- line at infinity $\underline{\mathbf{n}}_{\infty}$



## Canonical Perspective Camera (Pinhole Camera, Camera Obscura)



1. in this picture we are looking 'down the street'
2. right-handed canonical coordinate system $(x, y, z)$ with unit vectors $\mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{e}_{z}$
3. origin $=$ center of projection $C$
4. image plane $\pi$ at unit distance from $C$
5.) optical axis $O$ is perpendicular to $\pi$
5. principal point $x_{p}$ : intersection of $O$ and $\pi$
6. perspective camera is given by $C$ and $\pi$

projected point in the natural image coordinate system:

$$
\frac{y^{\prime}}{1}=y^{\prime}=\frac{y}{1+z-1}=\frac{y}{z}, \quad x^{\prime}=\frac{x}{z}
$$

## - Natural and Canonical Image Coordinate Systems

$\mathfrak{K}$ (finite pointing projected point in canonical camera $(z \neq 0)$

$$
\begin{aligned}
& \text { point in canonical camera }(z \neq 0) \\
& \left(x^{\prime}, y^{\prime}, 1\right)=\underbrace{\left(\frac{x}{z}, \frac{y}{z}, 1\right)}_{\mathbf{P}_{0}=[\mathbf{I}}]=\frac{1}{z}(x, y, z) \simeq \underbrace{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]} \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\mathbf{P}_{0}(\underline{\mathbb{X}})\left[\begin{array}{l}
x \\
y \\
z \\
0
\end{array}\right]
\end{aligned}
$$

projected point in scanned image
scale by $f$ and translate by $\left(-u_{0},-v_{0}\right)$

$u=f \frac{x}{z}+\underline{u_{0}} \quad \frac{1}{z}\left[\begin{array}{c}f x+z u_{0} \\ f y+z v_{0} \\ z\end{array}\right] \simeq \overbrace{\left[\begin{array}{ccc}f & 0 & u_{0} \\ 0 & f & v_{0} \\ 0 & 0 & 1\end{array}\right]} \cdot\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right] \cdot\left[\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right]=\mathbf{K} \mathbf{P}_{0} \underline{\mathbf{X}}=\underline{\mathbf{P} \underline{\mathbf{X}}}$

- 'calibration' matrix $\mathbf{K}$ transforms canonical $\mathbf{P}_{0}$ to standard perspective camera $\mathbf{P}$


## -Computing with Perspective Camera Projection Matrix


$f$ - 'focal length' - converts length ratios to pixels, $[f]=\mathrm{px}, f>0$ $\left(u_{0}, v_{0}\right)$ - principal point in pixels

## Perspective Camera:

1. dimension reduction
2. nonlinear unit change $1 \mapsto 1 \cdot z / f$, see (a)
for convenience we use $P_{11}=P_{22}=f$ rather than $P_{33}=1 / f$ and the $u_{0}, v_{0}$ in relative units
3. $m_{3}=0$ represents points at infinity in image plane $\pi$
i.e. points with $z=0$

## Changing The Outer (World) Reference Frame

A transformation of a point from the world to camera coordinate system:

$$
\mathbf{X}_{c}=\mathbf{R} \mathbf{X}_{w}+\mathbf{t}
$$

$\mathbf{R}$ - camera rotation matrix
t - camera translation vector
 world orientation in the camera coordinate frame $\mathcal{F}_{c}$ world origin in the camera coordinate frame $\mathcal{F}_{c}$ $\underbrace{\mathbf{P} \underline{\mathbf{X}}_{c}}=\mathbf{K P}_{0}\left[\begin{array}{c}\mathbf{X}_{c} \\ 1\end{array}\right]=\mathbf{K P}_{0}\left[\begin{array}{c}\mathbf{R} \mathbf{X}_{w}+\mathbf{t} \\ 1\end{array}\right]=\underbrace{\mathbf{K}}_{\mathbf{P}_{0}} \begin{array}{ll}\mathbf{I} & \mathbf{0}]\end{array} \underbrace{\left[\begin{array}{cc}\mathbf{R} & \mathbf{t} \\ \mathbf{0}^{\top} & 1\end{array}\right]}_{\mathbf{T}}\left[\begin{array}{c}\mathbf{X}_{w} \\ 1\end{array}\right]=\underbrace{\underbrace{\mathbf{K}\left[\begin{array}{ll}\mathbf{R} & \mathbf{t}\end{array}\right] \underline{\mathbf{X}}_{w}}_{\mathbf{P}}]}_{P}$
$\mathbf{P}_{0}$ (a $3 \times 4 \mathrm{mtx}$ ) discards the last row of $\mathbf{T}$

- $\mathbf{R}$ is rotation, $\mathbf{R}^{\top} \mathbf{R}=\mathbf{I}, \operatorname{det} \mathbf{R}=+1$
- 6 extrinsic parameters: 3 rotation angles (Euler theorem), 3 translation components
- alternative, often used, camera representations

$$
\mathbf{P}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K} \mathbf{R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]
$$

C - camera position in the world reference frame $\mathcal{F}_{w}$
third row of $\mathbf{R}: \mathbf{r}_{3}=\mathbf{R}^{\frac{\mathbf{t}=-\mathbf{R C}}{[0,0,1]}}$

- we can save some conversion and computation by noting that $\mathbf{K R}\lceil\mathbf{I} \quad-\mathbf{C}\rceil \underline{\mathbf{X}}=\mathbf{K R}(\mathbf{X}-\mathbf{C})$


## Changing the Inner (Image) Reference Frame

The general form of calibration matrix $\mathbf{K}$ includes

- skew angle $\theta$ of the digitization raster
- pixel aspect ratio $a$

$\circledast \mathrm{H} 1 ; 2 \mathrm{pt}:$ Verify this $\mathbf{K}$; deadline LD +2 wk
Hints:

1. image projects to orthogonal system $F$, then it maps by skew to $F^{\prime}$, then by scale $f, a f$ to $F^{\prime \prime}$, then by translation by $u_{0}, v_{0}$ to $F^{\prime \prime \prime}$
2. Skew: Express point $x$ as 3
e: are unit basis vectors
3. $\mathbf{K}$ maps from $F^{\perp}$ to $F^{\prime \prime \prime}$ as

$$
\mathbf{x}=u^{\prime}\left(\mathbf{e}_{u^{\prime}}\right)+v\left(\widehat{\mathbf{e}^{\prime}}\right)=u^{\perp} \mathbf{e}_{u}^{\perp}+v^{\perp} \mathbf{e}_{v}^{\perp}
$$

$$
e_{r}^{1} \perp e_{v}^{1}
$$

$$
c_{a}^{\prime} \not \perp e_{v}^{\prime}
$$

$$
w^{\prime \prime \prime}\left[u^{\prime \prime \prime}, v^{\prime \prime \prime}, 1\right]^{\top}=\mathbf{K}\left[u^{\perp}, v^{\perp}, 1\right]^{\top}
$$

## Summary: Projection Matrix of a General Finite Perspective Camera

$$
\underline{\mathbf{m}} \simeq 巴 \mathbf{X}, \quad \mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right] \cong \mathbf{O}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]
$$

a recipe for filling $\mathbf{P}$
general finite perspective camera has 11 parameters:

- 5 intrinsic parameters: $f, u_{0}, v_{0}, a, \theta$
finite camera: $\operatorname{det} \mathbf{K} \neq 0$
- 6 extrinsic parameters: $\mathbf{t}, \mathbf{R}(\alpha, \beta, \gamma)$

Representation Theorem: The set of projection matrices $\mathbf{P}$ of finite perspective cameras is isomorphic to the set of homogeneous $3 \times 4$ matrices with the left $3 \times 3$ submatrix $\mathbf{Q}$ non-singular.
random finite camera: $Q=\operatorname{rand}(3,3)$; while $\operatorname{det}(Q)==0, Q=\operatorname{rand}(3,3) ;$ end, $P=[Q$, rand $(3,1)]$;

## -Projection Matrix Decomposition

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right] \quad \longrightarrow \quad \mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]
$$

$\mathbf{Q} \in \mathbb{R}^{3,3} \quad$ full rank $\quad$ (if finite perspective camera; see [H\&Z, Sec. 6.3] for cameras at infinity) $\mathbf{K} \in \mathbb{R}^{3,3} \quad$ upper triangular with positive diagonal elements
$\mathbf{R} \in \mathbb{R}^{3,3} \quad$ rotation: $\quad \mathbf{R}^{\top} \mathbf{R}=\mathbf{I}$ and $\operatorname{det} \mathbf{R}=+1$

1. $\left[\begin{array}{ll}\mathbf{Q} & \mathbf{q}\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}\mathbf{R} & \mathbf{t}\end{array}\right]=\left[\begin{array}{ll}\mathbf{K R} & \mathbf{K t}\end{array}\right]$

$$
\text { also } \rightarrow 35
$$

2. RQ decomposition of $\mathbf{Q}=\mathbf{K R}$ using three Givens rotations
[H\&Z, p. 579]
$\mathbf{R}_{i j}$ zeroes element $i j$ in $\mathbf{Q}$ affecting only columns $i$ and $j$ and the sequence preserves previously zeroed elements, e.g. (see next slide for derivation details)
$\mathbf{R}_{32}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c\end{array}\right]$ gives $\begin{gathered}c^{2}+s^{2}=1 \\ 0=k_{32}=c q_{32}+s q_{33}\end{gathered} \Rightarrow c=\frac{q_{33}}{\sqrt{q_{32}^{2}+q_{33}^{2}}} \quad s=\frac{-q_{32}}{\sqrt{q_{32}^{2}+q_{33}^{2}}}$
P1; 1pt: Multiply known matrices $\mathbf{K}, \mathbf{R}$ and then decompose back; discuss numerical errors

- RQ decomposition nonuniqueness: $\mathbf{K R}=\mathbf{K} \mathbf{T}^{-1} \mathbf{T R}$, where $\mathbf{T}=\operatorname{diag}(-1,-1,1)$ is also a rotation, we must correct the result so that the diagonal elements of $\mathbf{K}$ are all positive 'thin' RQ decomposition
- care must be taken to avoid overflow, see [Golub \& van Loan 2013, sec. 5.2]
|RQ Decomposition Step

```
Q = Array [ q q#1,#2 &, {3, 3}];
R32 ={{1, 0, 0},{0,c,-s},{0,s,c}};R32 // MatrixForm
```

$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c\end{array}\right)$

```
Q1 = Q.R32 ; Q1 // MatrixForm
```

$\left(\begin{array}{lll}q_{1,1} & c & q_{1,2}+s q_{1,3}-s q_{1,2}+c q_{1,3} \\ q_{2,1} & c & q_{2,2}+s q_{2,3}-s q_{2,2}+c q_{2,3} \\ q_{3,1} & c & q_{3,2}+s q_{3,3}-s q_{3,2}+c \\ q_{3,3}\end{array}\right)$

```
s1 = Solve [{Q1 [[3]][[2]]=0, c^^2 + s^^2=1}, {c, s}][[2]]
```


Q1 /. s1 // Simplify // MatrixForm

$$
\left(\begin{array}{cc}
q_{1,1} \frac{-q_{1,3} q_{3,2}+q_{1,2} q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}} & \frac{q_{1,2} q_{3,2}+q_{1,3} q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}} \\
q_{2,1} \frac{-q_{2,3} q_{3,2}+q_{2,2} q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}} & \frac{q_{2,2} q_{3,2}+q_{2,3} q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}} \\
q_{3,1} & 0
\end{array}\right.
$$

## -Center of Projection (Optical Center)

Observation: finite $\mathbf{P}$ has a non-trivial right null-space

## Theorem

Let $\mathbf{P}$ be a camera and let there be $\underline{B} \neq \mathbf{0}$ s.t. $\mathbf{P} \underline{B}=\mathbf{0}$. Then $\underline{B}$ is equivalent to the projection center $\underline{\mathbf{C}}$ (homogeneous, in world coordinate frame).

Proof.

1. Consider spatial line $A B$ ( $B$ is given, $A \neq B$ ). We can write

$$
\underline{\mathbf{X}}(\lambda) \simeq \lambda \underline{\mathbf{A}}+(1-\lambda) \underline{\mathbf{B}}, \quad \lambda \in \mathbb{R}
$$

2. it projects to


$$
\mathbf{P} \underline{\mathbf{X}}(\lambda) \simeq \lambda \mathbf{P} \underline{\mathbf{A}}+(1-\lambda) \mathbf{P} \underline{\mathbf{B}} \simeq \mathbf{P} \underline{\mathbf{A}}
$$

- the entire line projects to a single point $\Rightarrow$ it must pass through the projection center of $\mathbf{P}$
- this holds for any choice of $A \neq B \Rightarrow$ the only common point of the lines is the $C$, i.e. $\underline{\mathbf{B}} \simeq \underline{\mathbf{C}}$

Hence

$$
\mathbf{0}=\mathbf{P} \underline{\mathbf{C}}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{l}
\mathbf{C} \\
1
\end{array}\right]=\mathbf{Q} \mathbf{C}+\mathbf{q} \Rightarrow \mathbf{C}=-\mathbf{Q}^{-1} \mathbf{q}
$$

$\underline{\mathbf{C}}=\left(c_{j}\right)$, where $c_{j}=(-1)^{j} \operatorname{det} \mathbf{P}^{(j)}$, in which $\mathbf{P}^{(j)}$ is $\mathbf{P}$ with column $j$ dropped Matlab: C_homo $=$ null $(P)$; or $C=-Q \backslash q$;

## -Optical Ray

Optical ray: Spatial line that projects to a single image point.

1. consider the following line
$\mathbf{d}$ unit line direction vector, $\|\mathbf{d}\|=1, \lambda \in \mathbb{R}$, Cartesian representation

$$
\mathbf{X}(\lambda)=\mathbf{C}+\lambda \mathbf{d}
$$

2. the projection of the (finite) point $X(\lambda)$ is

$$
\begin{aligned}
\underline{\mathbf{m}} & \simeq\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{c}
\mathbf{X}(\lambda) \\
1
\end{array}\right]=\mathbf{Q}(\mathbf{C}+\lambda \mathbf{d})+\mathbf{q}=\lambda \mathbf{Q} \mathbf{d}= \\
& =\lambda\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{l}
\mathbf{d} \\
0
\end{array}\right]
\end{aligned}
$$

$\ldots$ which is also the image of a point at infinity in $\mathbb{P}^{3}$

- optical ray line corresponding to image point $m$ is the set

$$
\mathbf{X}(\lambda)=\mathbf{C}+\mu \mathbf{Q}^{-1} \underline{\mathbf{m}}, \quad \mu \in \mathbb{R}
$$

- optical ray direction may be represented by a point at infinity $(\mathbf{d}, 0)$ in $\mathbb{P}^{3}$
- optical ray is expressed in world coordinate frame


## -Optical Axis

Optical axis: Optical ray that is perpendicular to image plane $\pi$

1. points on a line parallel to $\pi$ project to line at infinity in $\pi$ :

$$
\left[\begin{array}{l}
u \\
v \\
0
\end{array}\right] \simeq \mathbf{P} \underline{\mathbf{X}}=\left[\begin{array}{ll}
\mathbf{q}_{1}^{\top} & q_{14} \\
\mathbf{q}_{2}^{\top} & q_{24} \\
\mathbf{q}_{3}^{\top} & q_{34}
\end{array}\right]\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right]
$$

2. therefore the set of points $X$ is parallel to $\pi$ iff

$$
\mathbf{q}_{3}^{\top} \mathbf{X}+q_{34}=0
$$


3. this is a plane with $\pm \mathbf{q}_{3}$ as the normal vector
4. optical axis direction: substitution $\mathbf{P} \mapsto \lambda \mathbf{P}$ must not change the direction
5. we select (assuming $\operatorname{det}(\mathbf{R})>0$ )

$$
\mathbf{o}=\operatorname{det}(\mathbf{Q}) \mathbf{q}_{3}
$$

$$
\text { if } \mathbf{P} \mapsto \lambda \mathbf{P} \text { then } \operatorname{det}(\mathbf{Q}) \mapsto \lambda^{3} \operatorname{det}(\mathbf{Q}) \quad \text { and } \quad \mathbf{q}_{3} \mapsto \lambda \mathbf{q}_{3}
$$

- the axis is expressed in world coordinate frame


## -Principal Point

Principal point: The intersection of image plane and the optical axis

1. as we saw, $\mathbf{q}_{3}$ is the directional vector of optical axis
2. we take point at infinity on the optical axis that must project to the principal point $m_{0}$
3. then

$$
\underline{\mathbf{m}}_{0} \simeq\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{c}
\mathbf{q}_{3} \\
0
\end{array}\right]=\mathbf{Q} \mathbf{q}_{3}
$$

$$
\text { principal point: } \quad \underline{\mathbf{m}}_{0} \simeq \mathbf{Q} \mathbf{q}_{3}
$$

- principal point is also the center of radial distortion


## -Optical Plane

A spatial plane with normal $p$ containing the projection center $C$ and a given image line $n$.
optical ray given by $m \quad \mathbf{d} \simeq \mathbf{Q}^{-1} \underline{\mathbf{m}}$ optical ray given by $m^{\prime} \quad \mathbf{d}^{\prime} \simeq \mathbf{Q}^{-1} \underline{\mathbf{m}}^{\prime}$

$$
\mathbf{p} \simeq \mathbf{d} \times \mathbf{d}^{\prime}=\left(\mathbf{Q}^{-1} \underline{\mathbf{m}}\right) \times\left(\mathbf{Q}^{-1} \underline{\mathbf{m}}^{\prime}\right)=\mathbf{Q}^{\top}\left(\underline{\mathbf{m}} \times \underline{\mathbf{m}}^{\prime}\right)=\mathbf{Q}^{\top} \underline{\mathbf{n}}
$$

- note the way $\mathbf{Q}$ factors out!
hence, $0=\mathbf{p}^{\top}(\mathbf{X}-\mathbf{C})=\underline{\mathbf{n}}^{\top} \underbrace{\mathbf{Q}(\mathbf{X}-\mathbf{C})}_{\rightarrow 30}=\underline{\mathbf{n}}^{\top} \mathbf{P} \underline{\mathbf{X}}=\left(\mathbf{P}^{\top} \underline{\mathbf{n}}\right)^{\top} \underline{\mathbf{X}}$ for every $X$ in plane $\rho$
optical plane is given by $n: \quad \underline{\boldsymbol{\rho}} \simeq \mathbf{P}^{\top} \underline{\mathbf{n}} \quad \rho_{1} x+\rho_{2} y+\rho_{3} z+\rho_{4}=0$


## Cross－Check：Optical Ray as Optical Plane Intersection


$\begin{array}{rlrl}\text { optical plane normal given by } n & \mathbf{p} & =\mathbf{Q}^{\top} \underline{\mathbf{n}} \\ \text { optical plane normal given by } n^{\prime} & \mathbf{p}^{\prime} & =\mathbf{Q}^{\top} \underline{\mathbf{n}}\end{array}$
$\mathbf{d}=\mathbf{p} \times \mathbf{p}^{\prime}=\left(\mathbf{Q}^{\top} \underline{\mathbf{n}}\right) \times\left(\mathbf{Q}^{\top} \underline{\mathbf{n}}^{\prime}\right)=\mathbf{Q}^{-1}\left(\underline{\mathbf{n}} \times \underline{\mathbf{n}}^{\prime}\right)=\mathbf{Q}^{-1} \underline{\mathbf{m}}$

## Summary: Projection Center; Optical Ray, Axis, Plane

General (finite) camera

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{q}_{1}^{\top} & q_{14} \\
\mathbf{q}_{2}^{\top} & q_{24} \\
\mathbf{q}_{3}^{\top} & q_{34}
\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K} \mathbf{R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]
$$

$$
\begin{aligned}
& \underline{\mathbf{C}} \simeq \operatorname{rnull}(\mathbf{P}), \quad \mathbf{C}=-\mathbf{Q}^{-1} \mathbf{q} \\
& \mathbf{d}=\mathbf{Q}^{-1} \underline{\mathbf{m}} \\
& \mathbf{o}=\operatorname{det}(\mathbf{Q}) \mathbf{q}_{3}
\end{aligned}
$$

$$
\begin{aligned}
\underline{\mathbf{m}}_{0} & \simeq \mathbf{Q} \mathbf{q}_{3} \\
\underline{\boldsymbol{o}} & =\mathbf{P}^{\top} \underline{\mathbf{n}} \\
\mathbf{K} & =\left[\begin{array}{ccc}
f & -f \cot \theta & u_{0} \\
0 & f /(a \sin \theta) & v_{0} \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\mathbf{R}
$$

$$
\mathrm{t}
$$

projection center (world coords.) $\rightarrow 35$
optical ray direction (world coords.) $\rightarrow 36$
outward optical axis (world coords.) $\rightarrow 37$ principal point (in image plane) $\rightarrow 38$
optical plane (world coords.) $\rightarrow 39$
camera (calibration) matrix ( $f, u_{0}, v_{0}$ in pixels) $\rightarrow 31$
camera rotation matrix (cam coords.) $\rightarrow 30$ camera translation vector (cam coords.) $\rightarrow 30$

## What Can We Do with An 'Uncalibrated' Perspective Camera?



How far is the engine?
distance between sleepers (ties) 0.806 m but we cannot count them, the image resolution is too low
We will review some life-saving theory...
$\ldots$. and build a bit of geometric intuition. . .

In fact

- 'uncalibrated' $=$ the image contains a calibrating object that suffices for the task at hand


## - Vanishing Point

Vanishing point: the limit of the projection of a point that moves along a space line infinitely in one direction. the image of the point at infinity on the line


$$
\underline{\mathbf{m}}_{\infty} \simeq \lim _{\lambda \rightarrow \pm \infty} \mathbf{P}\left[\begin{array}{c}
\mathbf{X}_{0}+\lambda \mathbf{d} \\
1
\end{array}\right]=\cdots \simeq \mathbf{Q} \mathbf{d} \quad \begin{aligned}
& \circledast \text { P1; 1pt: Prove (use Cartesian } \\
& \text { coordinates and L'Hôpital's rule) }
\end{aligned}
$$

- the V.P. of a spatial line with directional vector $\mathbf{d}$ is $\underline{\mathbf{m}}_{\infty} \simeq \mathbf{Q} \mathbf{d}$
- V.P. is independent on line position $\mathbf{X}_{0}$, it depends on its directional vector only
- all parallel lines share the same V.P., including the optical ray defined by $m_{\infty}$


## Some Vanishing Point "Applications"


where is the sun?

what is the wind direction?
(must have video)

fly above the lane, at constant altitude!

## - Vanishing Line

Vanishing line: The set of vanishing points of all lines in a plane
the image of the line at infinity in the plane and in all parallel planes


- V.L. $n$ corresponds to spatial plane of normal vector $\mathbf{p}=\mathbf{Q}^{\top} \underline{\mathbf{n}}$
because this is the normal vector of a parallel optical plane (!) $\rightarrow 39$
- a spatial plane of normal vector $\mathbf{p}$ has a V.L. represented by $\quad \underline{\mathbf{n}}=\mathbf{Q}^{-\top} \mathbf{p}$.


## Cross Ratio

Four distinct finite collinear spatial points $R, S, T, U$ define cross-ratio

$$
[R S T U]=\frac{|\overrightarrow{R T}|}{|\overrightarrow{S R}|} \frac{|\overrightarrow{U S}|}{|\overrightarrow{T U}|}
$$


a mnemonic ( $\infty$ )
$|\overrightarrow{R T}|$ - signed distance from $R$ to $T$ in the arrow direction 6 cross-ratios from four points:

$$
[S R U T]=[R S T U],[R S U T]=\frac{1}{[R S T U]},[R T S U]=1-[R S T U]
$$



Obs: $\quad[R S T U]=\frac{|\underline{\mathbf{r}} \underline{\mathbf{t}} \underline{\mathbf{v}}|}{|\underline{\mathbf{s}} \underline{\mathbf{r}} \underline{\mathbf{v}}|} \cdot \frac{|\underline{\mathbf{u}} \mathbf{s} \mathbf{\mathbf { s }}|}{|\underline{\mathbf{t}} \underline{\mathbf{u}} \mathbf{v}|}, \quad|\underline{\underline{\mathbf{r}}} \underline{\mathbf{t}} \underline{\mathbf{v}}|=\operatorname{det}\left[\begin{array}{lll}\underline{\mathbf{r}} & \underline{\mathbf{t}} & \underline{\mathbf{v}}\end{array}\right]=(\underline{\underline{\mathbf{r}}} \times \underline{\mathbf{t}})^{\top} \underline{\mathbf{v}}$

## Corollaries:

- cross ratio is invariant under homographies $\underline{\mathbf{x}}^{\prime} \simeq \mathbf{H} \underline{\mathbf{x}}$ plug $\mathbf{H} \underline{\mathbf{x}}$ in (1): $\left(\mathbf{H}^{-\top}(\underline{\mathbf{r}} \times \underline{\mathbf{t}})\right)^{\top} \mathbf{H} \underline{\mathbf{v}}$
- cross ratio is invariant under perspective projection: $[R S T U]=[r$ stu]
- 4 collinear points: any perspective camera will "see" the same cross-ratio of their images
- we measure the same cross-ratio in image as on the world line
- one of the points $R, S, T, U$ may be at infinity (we take the limit, in effect $\frac{\infty}{\infty}=1$ )


## 1D Projective Coordinates

The 1-D projective coordinate of a point $P$ is defined by the following cross-ratio:
$[P]=\left[P_{0} P_{1} P P_{\infty}\right]=\left[p_{0} p_{1} p p_{\infty}\right]=\frac{\left|\overrightarrow{p_{0} p}\right|}{\left|\overrightarrow{p_{1} p_{0}}\right|} \frac{\left|\overrightarrow{p_{\infty} p_{1}}\right|}{\left|\overrightarrow{p p_{\infty}}\right|}=[p]$

naming convention:

$$
\begin{aligned}
P_{0}-\text { the origin } & {\left[P_{0}\right] } & =0 \\
P_{1}-\text { the unit point } & {\left[P_{1}\right] } & =1 \\
P_{\infty}-\text { the supporting point } & {\left[P_{\infty}\right] } & = \pm \infty
\end{aligned}
$$

$$
[P]=[p]
$$

$[P]$ is equal to Euclidean coordinate along $N$
$[p]$ is its measurement in the image plane


## Applications

- Given the image of a 3D line $N$, the origin, the unit point, and the vanishing point, then the Euclidean coordinate of any point $P \in N$ can be determined
- Finding v.p. of a line through a regular object


## Application: Counting Steps



- Namesti Miru underground station in Prague

detail around the vanishing point

Result: $[P]=214$ steps (correct answer is 216 steps)
4Mpx camera

## Application：Finding the Horizon from Repetitions


in 3D：$\left|P_{0} P\right|=2\left|P_{0} P_{1}\right|$ then
［H\＆Z，p．218］

$$
\left[P_{0} P_{1} P P_{\infty}\right]=\frac{\left|P_{0} P\right|}{\left|P_{1} P_{0}\right|}=2 \quad \Rightarrow \quad x_{\infty}=\frac{x_{0}\left(2 x-x_{1}\right)-x x_{1}}{x+x_{0}-2 x_{1}}
$$

－$x-1 \mathrm{D}$ coordinate along the yellow line，positive in the arrow direction
－could be applied to counting steps $(\rightarrow 48)$ if there was no supporting line
$\circledast \mathrm{P} 1 ; 1$ pt：How high is the camera above the floor？

## Homework Problem

$\circledast \mathrm{H} 2$; 3pt: What is the ratio of heights of Building $A$ to Building $B$ ?

- expected: conceptual solution; use notation from this figure
- deadline: LD+2 weeks



## Hints

1. What are the interesting properties of line $h$ connecting the top $t_{B}$ of Buiding B with the point $m$ at which the horizon intersects the line $p$ joining the foots $f_{A}, f_{B}$ of both buildings? [ 1 point]
2. How do we actually get the horizon $n_{\infty}$ ? (we do not see it directly, there are some hills there...) [1 point]
3. Give the formula for measuring the length ratio. [formula $=1$ point]

## 2D Projective Coordinates



Application: Measuring on the Floor (Wall, etc)


San Giovanni in Laterano, Rome

- measuring distances on the floor in terms of tile units
- what are the dimensions of the seal? Is it circular (assuming square tiles)?
- needs no explicit camera calibration
because we can see the calibrating object (vanishing points)

Thank You





