3D Computer Vision

Radim Šára Martin Matoušek
Center for Machine Perception
Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz mailto:sara@cmp.felk.cvut.cz phone ext. 7203

rev. October 20, 2020

Open Informatics Master's Course

The Relative Orientation Problem

Problem: Given point triples $\left(X_{1}, X_{2}, X_{3}\right)$ and $\left(Y_{1}, Y_{2}, Y_{3}\right)$ in a general position in \mathbf{R}^{3} such that the correspondence $X_{i} \leftrightarrow Y_{i}$ is known, determine the relative orientation (\mathbf{R}, \mathbf{t}) that maps \mathbf{X}_{i} to \mathbf{Y}_{i}, i.e.

$$
\mathbf{Y}_{i}=\mathbf{R} \mathbf{X}_{i}+\mathbf{t}, \quad i=1,2,3
$$

Applies to:

- 3D scanners
- partial reconstructions from different viewpoints

Obs: Let the centroid be $\overline{\mathbf{X}}=\frac{1}{3} \sum_{i} \mathbf{X}_{i}$ and analogically for $\overline{\mathbf{Y}}$. Then

$$
\overline{\mathbf{Y}}=\mathbf{R} \overline{\mathbf{X}}+\mathbf{t}
$$

Therefore

$$
\mathbf{Z}_{i} \stackrel{\text { def }}{=}\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)=\mathbf{R}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right) \stackrel{\text { def }}{=} \mathbf{R} \mathbf{W}_{i}
$$

If all dot products are equal, $\mathbf{Z}_{i}^{\top} \mathbf{Z}_{j}=\mathbf{W}_{i}^{\top} \mathbf{W}_{j}$ for $i, j=1,2,3$, we have

$$
\mathbf{R}^{*}=\left[\begin{array}{lll}
\mathbf{W}_{1} & \mathbf{W}_{2} & \mathbf{W}_{3}
\end{array}\right]^{-1}\left[\begin{array}{lll}
\mathbf{Z}_{1} & \mathbf{Z}_{2} & \mathbf{Z}_{3}
\end{array}\right]
$$

Otherwise (in practice) we setup a minimization problem

$$
\begin{array}{r}
\mathbf{R}^{*}=\arg \min _{\mathbf{R}} \sum_{i=1}^{3}\left\|\mathbf{Z}_{i}-\mathbf{R} \mathbf{W}_{i}\right\|^{2} \quad \text { s.t. } \quad \mathbf{R}^{\top} \mathbf{R}=\mathbf{I}, \quad \operatorname{det} \mathbf{R}=1 \\
\arg \min _{\mathbf{R}} \sum_{i}\left\|\mathbf{Z}_{i}-\mathbf{R} \mathbf{W}_{i}\right\|^{2}=\arg \min _{\mathbf{R}} \sum_{i}\left(\left\|\mathbf{Z}_{i}\right\|^{2}-2 \mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}+\left\|\mathbf{W}_{i}\right\|^{2}\right)=\cdots \\
\cdots=\arg \max _{\mathbf{R}} \sum \mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}
\end{array}
$$

cont'd (What is Linear Algebra Telling Us?)

Obs 1: Let $\mathbf{A}: \mathbf{B}=\sum_{i, j} a_{i j} b_{i j}$ be the dot-product (Frobenius inner product) over real matrices. Then

$$
\mathbf{A}: \mathbf{B}=\mathbf{B}: \mathbf{A}=\operatorname{tr}\left(\mathbf{A}^{\top} \mathbf{B}\right)
$$

Obs 2: (cyclic property for matrix trace)

$$
\operatorname{tr}(\mathbf{A B C})=\operatorname{tr}(\mathbf{C A B})
$$

Obs 3: ($\mathbf{Z}_{i}, \mathbf{W}_{i}$ are vectors)

$$
\mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}=\operatorname{tr}\left(\mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}\right)=\operatorname{tr}\left(\mathbf{W}_{i} \mathbf{Z}_{i}^{\top} \mathbf{R}\right)=\left(\mathbf{Z}_{i} \mathbf{W}_{i}^{\top}\right): \mathbf{R}=\mathbf{R}:\left(\mathbf{Z}_{i} \mathbf{W}_{i}^{\top}\right)
$$

Let the SVD be

$$
\sum_{i} \mathbf{Z}_{i} \mathbf{W}_{i}^{\top} \stackrel{\text { def }}{=} \mathbf{M}=\mathbf{U D} \mathbf{V}^{\top}
$$

Then

$$
\mathbf{R}: \mathbf{M}=\mathbf{R}:\left(\mathbf{U D V}^{\top}\right)=\operatorname{tr}\left(\mathbf{R}^{\top} \mathbf{U D} \mathbf{V}^{\top}\right)=\operatorname{tr}\left(\mathbf{V}^{\top} \mathbf{R}^{\top} \mathbf{U D}\right)=\left(\mathbf{U}^{\top} \mathbf{R} \mathbf{V}\right): \mathbf{D}
$$

cont＇d：The Algorithm

We are solving

$$
\mathbf{R}^{*}=\arg \max _{\mathbf{R}} \sum_{i} \mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}=\arg \max _{\mathbf{R}}\left(\mathbf{U}^{\top} \mathbf{R} \mathbf{V}\right): \mathbf{D}
$$

A particular solution is found as follows：
－ $\mathbf{U}^{\top} \mathbf{R V}$ must be（1）orthogonal，and most similar to（2）diagonal，（3）positive definite
－Since U，V are orthogonal matrices then the solution to the problem is among $\mathbf{R}^{*}=\mathbf{U S V}^{\top}$ ，where \mathbf{S} is diagonal and orthogonal，i．e．one of

$$
\pm \operatorname{diag}(1,1,1), \quad \pm \operatorname{diag}(1,-1,-1), \quad \pm \operatorname{diag}(-1,1,-1), \quad \pm \operatorname{diag}(-1,-1,1)
$$

－ $\mathbf{U}^{\top} \mathbf{V}$ is not necessarily positive definite
－We choose \mathbf{S} so that $\left(\mathbf{R}^{*}\right)^{\top} \mathbf{R}^{*}=\mathbf{I}$

Alg：

1．Compute matrix $\mathbf{M}=\sum_{i} \mathbf{Z}_{i} \mathbf{W}_{i}^{\top}$ ．
2．Compute SVD $\mathbf{M}=\mathbf{U D V}{ }^{\top}$ ．
3．Compute all $\mathbf{R}_{k}=\mathbf{U} \mathbf{S}_{k} \mathbf{V}^{\top}$ that give $\mathbf{R}_{k}^{\top} \mathbf{R}_{k}=\mathbf{I}$ ．
4．Compute $\mathbf{t}_{k}=\overline{\mathbf{Y}}-\mathbf{R}_{k} \overline{\mathbf{X}}$ ．
－The algorithm can be used for more than 3 points
－Triple pairs can be pre－filtered based on motion invariants（lengths，angles）
－The P3P problem is very similar but not identical

Module IV

Computing with a Camera Pair

4．1）Camera Motions Inducing Epipolar Geometry
4．2 Estimating Fundamental Matrix from 7 Correspondences
4．3 Estimating Essential Matrix from 5 Correspondences
444 Triangulation：3D Point Position from a Pair of Corresponding Points

Abstract

covered by

［1］［H\＆Z］Secs：9．1，9．2，9．6，11．1，11．2，11．9，12．2，12．3，12．5．1
［2］H．Li and R．Hartley．Five－point motion estimation made easy．In Proc ICPR 2006，pp．630－633
additional references
宔
H．Longuet－Higgins．A computer algorithm for reconstructing a scene from two projections．Nature， 293 （5828）：133－135， 1981.

Geometric Model of a Camera Pair

Epipolar geometry:

- brings constraints necessary for inter-image matching
- its parametric form encapsulates information about the relative pose of two cameras

Description

- baseline b joins projection centers C_{1}, C_{2}

$$
\mathbf{b}=\mathbf{C}_{2}-\mathbf{C}_{1}
$$

- epipole $e_{i} \in \pi_{i}$ is the image of C_{j} :

$$
\underline{\mathbf{e}}_{1} \simeq \mathbf{P}_{1} \underline{\mathbf{C}}_{2}, \quad \underline{\mathbf{e}}_{2} \simeq \mathbf{P}_{2} \underline{\mathbf{C}}_{1}
$$

- $l_{i} \in \pi_{i}$ is the image of epipolar plane

$$
\varepsilon=\left(C_{2}, X, C_{1}\right)
$$

- l_{j} is the epipolar line in image π_{j} induced by m_{i} in image π_{i}

Epipolar constraint: corresponding d_{2}, b, d_{1} are coplanar
a necessary condition $\rightarrow 87$

$$
\mathbf{P}_{i}=\left[\begin{array}{ll}
\mathbf{Q}_{i} & \mathbf{q}_{i}
\end{array}\right]=\mathbf{K}_{i}\left[\begin{array}{ll}
\mathbf{R}_{i} & \mathbf{t}_{i}
\end{array}\right]=\mathbf{K}_{i} \mathbf{R}_{i}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}_{i}
\end{array}\right] \quad i=1,2 \quad \rightarrow 31
$$

Epipolar Geometry Example: Forward Motion

image 1

- red: correspondences
- green: epipolar line pairs per correspondence

image 2
click on the image to see their IDs same ID in both images

How high was the camera above the floor?

Cross Products and Maps by Skew-Symmetric 3×3 Matrices

- There is an equivalence $\mathbf{b} \times \mathbf{m}=[\mathbf{b}]_{\times} \mathbf{m}$, where $[\mathbf{b}]_{\times}$is a 3×3 skew-symmetric matrix

$$
[\mathbf{b}]_{\times}=\left[\begin{array}{ccc}
0 & -b_{3} & b_{2} \\
b_{3} & 0 & -b_{1} \\
-b_{2} & b_{1} & 0
\end{array}\right], \quad \text { assuming } \quad \mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

Some properties

1. $[\mathbf{b}]_{\times}^{\top}=-[\mathbf{b}]_{\times}$
the general antisymmetry property
2. \mathbf{A} is skew-symmetric iff $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}=0$ for all $\mathbf{x} \quad$ skew-sym mtx generalizes cross products
3. $[\mathbf{b}]_{\times}^{3}=-\|\mathbf{b}\|^{2} \cdot[\mathbf{b}]_{\times}$
4. $\left\|[\mathbf{b}]_{\times}\right\|_{F}=\sqrt{2}\|\mathbf{b}\|$

Frobenius norm $\left(\|\mathbf{A}\|_{F}=\sqrt{\operatorname{tr}\left(\mathbf{A}^{\top} \mathbf{A}\right)}=\sqrt{\left.\sum_{i, j}\left|a_{i j}\right|^{2}\right)}\right.$
5. $[\mathbf{b}]_{\times} \mathbf{b}=\mathbf{0}$
6. $\operatorname{rank}[\mathbf{b}]_{\times}=2$ iff $\|\mathbf{b}\|>0$
check minors of $[\mathbf{b}]_{\times}$
7. eigenvalues of $[\mathbf{b}]_{\times}$are $(0, \lambda,-\lambda)$
8. for any 3×3 regular $\mathbf{B}: \quad \mathbf{B}^{\top}[\mathbf{B z}]_{\times} \mathbf{B}=\operatorname{det} \mathbf{B}[\mathbf{z}]_{\times}$follows from the factoring on $\rightarrow 39$
9. in particular: if $\mathbf{R} \mathbf{R}^{\top}=\mathbf{I}$ then $[\mathbf{R b}]_{\times}=\mathbf{R}[\mathbf{b}]_{\times} \mathbf{R}^{\top}$

- note that if \mathbf{R}_{b} is rotation about \mathbf{b} then $\mathbf{R}_{b} \mathbf{b}=\mathbf{b}$
- note $[\mathbf{b}]_{\times}$is not a homography; it is not a rotation matrix it is the logarithm of a rotation mtx

Expressing Epipolar Constraint Algebraically

Epipolar constraint $\quad \underline{\mathbf{m}}_{2}^{\top} \mathbf{F} \underline{\mathbf{m}}_{1}=0 \quad$ is a point-line incidence constraint

- point $\underline{\mathbf{m}}_{2}$ is incident on epipolar line $\underline{\mathbf{l}}_{2} \simeq \mathbf{F} \underline{\mathbf{m}}_{1}$
- point $\underline{\mathbf{m}}_{1}$ is incident on epipolar line $\underline{l}_{1} \simeq \mathbf{F}^{\top} \underline{\mathbf{m}}_{2}$
- $\mathbf{F e}_{1}=\mathbf{F}^{\top} \underline{\mathbf{e}}_{2}=\mathbf{0}$ (non-trivially)
- all epipolars meet at the epipole

$$
\begin{aligned}
& \underline{\mathbf{e}}_{1} \simeq \mathbf{Q}_{1} \mathbf{C}_{2}+\mathbf{q}_{1}=\mathbf{Q}_{1} \mathbf{C}_{2}-\mathbf{Q}_{1} \mathbf{C}_{1}=\mathbf{K}_{1} \mathbf{R}_{1} \mathbf{b}=-\mathbf{K}_{1} \mathbf{R}_{1} \mathbf{R}_{2}^{\top} \mathbf{t}_{21}=-\mathbf{K}_{1} \mathbf{R}_{21}^{\top} \mathbf{t}_{21} \\
& \mathbf{F}=\mathbf{Q}_{2}^{-\top} \mathbf{Q}_{1}^{\top}\left[\mathbf{e}_{1}\right]_{\times}=\mathbf{Q}_{2}^{-\top} \mathbf{Q}_{1}^{\top}\left[-\mathbf{K}_{1} \mathbf{R}_{21}^{\top} \mathbf{t}_{21}\right]_{\times}={ }^{\circledast 1} \simeq \mathbf{K}_{2}^{-\top}\left[-\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21} \mathbf{K}_{1}^{-1} \text { fundamental } \\
& \mathbf{E}=\left[-\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21}=\underbrace{\left[\mathbf{R}_{2} \mathbf{b}\right]_{\times}}_{\text {baseline in Cam 2 }} \mathbf{R}_{21}=\mathbf{R}_{21} \underbrace{\left[\mathbf{R}_{1} \mathbf{b}\right]_{\times}}_{\text {baseline in Cam 1 }}=\mathbf{R}_{21}\left[-\mathbf{R}_{21}^{\top} \mathbf{t}_{21}\right]_{\times} \quad \text { essential }
\end{aligned}
$$

- The Structure and the Key Properties of the Fundamental Matrix

$$
\mathbf{F}=(\underbrace{\mathbf{Q}_{2} \mathbf{Q}_{1}^{-1}}_{\text {epipolar homography } \mathbf{H}_{e}})^{-\top}\left[\mathbf{e}_{1}\right]_{\times}=\underbrace{\mathbf{K}_{2}^{-\top} \mathbf{R}_{21} \mathbf{K}_{1}^{\top}}_{\mathbf{H}_{e}^{-\top}} \overbrace{\left[\mathbf{e}_{1}\right]}^{\text {left epipole }} \stackrel{\rightarrow 0}{\sim} \overbrace{}^{\text {right epipole }}[\overbrace{\left.\mathbf{H}_{e} \mathbf{e}_{1}\right]_{\times}}^{\text {ripo }} \mathbf{H}_{e}=\mathbf{K}_{2}^{-\top} \underbrace{\left[-\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21}}_{\text {essential matrix } \mathbf{E}} \mathbf{K}_{1}^{-1}
$$

1. E captures relative camera pose only
[Longuet-Higgins 1981]
(the change of the world coordinate system does not change \mathbf{E})

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\mathbf{R}_{i}^{\prime} & \mathbf{t}_{i}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{R}_{i} & \mathbf{t}_{i}
\end{array}\right] \cdot\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{R}_{i} \mathbf{R} & \mathbf{R}_{i} \mathbf{t}+\mathbf{t}_{i}
\end{array}\right] } \\
& \mathbf{R}_{21}^{\prime}= \mathbf{R}_{2}^{\prime} \mathbf{R}_{1}^{\prime}=\cdots=\mathbf{R}_{21} \quad \text { then } \\
& \mathbf{t}_{21}^{\prime}=\mathbf{t}_{2}^{\prime}-\mathbf{R}_{21}^{\prime} \mathbf{t}_{1}^{\prime}=\cdots=\mathbf{t}_{21}
\end{aligned}
$$

2. the translation length \mathbf{t}_{21} is lost since \mathbf{E} is homogeneous
3. \mathbf{F} maps points to lines and it is not a homography
4. \mathbf{H}_{e} maps epipoles to epipoles, $\mathbf{H}_{e}^{-\top}$ epipolar lines to epipolar lines: $\underline{l}_{2} \simeq \mathbf{H}_{e}^{-\top} \underline{l}_{1}$

- replacement for $\mathbf{H}_{e}^{-\top}$ for epipolar line map: $\underline{l}_{2} \simeq \mathbf{F}\left[\mathbf{e}_{1}\right]_{\times} \underline{\mathbf{l}}_{1}$
- proof by point/line 'transmutation' (left)
- point $\underline{\mathbf{e}}_{1}$ does not lie on line $\underline{\mathbf{e}}_{1}$ (dashed): $\underline{\mathbf{e}}_{1}^{\top} \underline{\mathbf{e}}_{1} \neq 0$
- $\mathbf{F}\left[\underline{\mathbf{e}}_{1}\right]_{X}$ is not a homography, unlike $\mathbf{H}_{e}^{-\top}$ but it does the same job for epipolar line mapping

Summary: Relations and Mappings Involving Fundamental Matrix

$$
\begin{aligned}
0 & =\underline{\mathbf{m}}_{2}^{\top} \mathbf{F} \underline{\mathbf{m}}_{1} & & \\
\underline{\mathbf{e}}_{1} & \simeq \operatorname{null}(\mathbf{F}), & & \underline{\mathbf{e}}_{2} \simeq \operatorname{null}\left(\mathbf{F}^{\top}\right) \\
\underline{\mathbf{e}}_{1} & \simeq \mathbf{H}_{e}^{-1} \underline{\mathbf{e}}_{2} & & \underline{\mathbf{e}}_{2} \simeq \mathbf{H}_{e} \underline{\mathbf{e}}_{1} \\
\underline{\mathbf{l}}_{1} & \simeq \mathbf{F}^{\top} \underline{\mathbf{m}}_{2} & & \underline{\mathbf{l}}_{2} \simeq \mathbf{F} \underline{\mathbf{m}}_{1} \\
\mathbf{l}_{1} & \simeq \mathbf{H}_{e}^{\top} \underline{\mathbf{l}}_{2} & & \underline{\mathbf{l}}_{2} \simeq \mathbf{H}_{e}^{-\top} \underline{\mathbf{l}}_{1} \\
\mathbf{l}_{1} & \simeq \mathbf{F}^{\top}\left[\underline{\mathbf{e}}_{2}\right]_{\times} \underline{\mathbf{l}}_{2} & & \underline{l}_{2} \simeq \mathbf{F}\left[\underline{\mathbf{e}}_{1}\right]_{\times} \underline{\mathbf{l}}_{1}
\end{aligned}
$$

- $\mathbf{F}\left[\underline{e}_{1}\right]_{\times}$maps lines to lines but it is not a homography
- $\mathbf{H}_{e}=\mathbf{Q}_{2} \mathbf{Q}_{1}^{-1}$ is the epipolar homography $\rightarrow 78$ $\mathbf{H}_{e}^{-\top}$ maps epipolar lines to epipolar lines, where

$$
\mathbf{H}_{e}=\mathbf{Q}_{2} \mathbf{Q}_{1}^{-1}=\mathbf{K}_{2} \mathbf{R}_{21} \mathbf{K}_{1}^{-1}
$$

you have seen this $\rightarrow 59$

－Representation Theorem for Fundamental Matrices

Def： \mathbf{F} is fundamental when $\mathbf{F} \simeq \mathbf{H}^{-\top}\left[\underline{\mathbf{e}}_{1}\right]_{\times}$，where \mathbf{H} is regular and $\underline{\mathbf{e}}_{1} \simeq \operatorname{null} \mathbf{F} \neq \mathbf{0}$ ．
Theorem：A 3×3 matrix \mathbf{A} is fundamental iff it is of rank 2 ．

Proof．

Direct：By the geometry， \mathbf{H} is full－rank，$\underline{\mathbf{e}}_{1} \neq \mathbf{0}$ ，hence $\mathbf{H}^{-\top}\left[\underline{\mathbf{e}}_{1}\right]_{\times}$is a 3×3 matrix of rank 2 ．

Converse：

1．let $\mathbf{A}=\mathbf{U D V}^{\top}$ be the SVD of \mathbf{A} of rank 2；then $\mathbf{D}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, 0\right), \lambda_{1} \geq \lambda_{2}>0$
2．we write $\mathbf{D}=\mathbf{B C}$ ，where $\mathbf{B}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right), \mathbf{C}=\operatorname{diag}(1,1,0), \lambda_{3}=\lambda_{2}$（w．l．o．g．）
3．then $\mathbf{A}=\mathbf{U B C V}^{\top}=\mathbf{U B C} \underbrace{\mathbf{W} \mathbf{W}^{\top}}_{\mathbf{I}} \mathbf{V}^{\top}$ with \mathbf{W} rotation
4．we look for a rotation \mathbf{W} that maps \mathbf{C} to a skew－symmetric \mathbf{S} ，i．e． $\mathbf{S}=\mathbf{C W}$
5．then $\mathbf{W}=\left[\begin{array}{ccc}0 & \alpha & 0 \\ -\alpha & 0 & 0 \\ 0 & 0 & 1\end{array}\right],|\alpha|=1$ ，and $\mathbf{S}=[\mathbf{s}]_{\times}, \mathbf{s}=(0,0,1)$
6．we write

$$
\mathbf{v}_{3}-3 \text { rd column of } \mathbf{V}, \mathbf{u}_{3}-3 \text { rd column of } \mathbf{U}
$$

$$
\begin{equation*}
\mathbf{A}=\mathbf{U B}[\mathbf{s}]_{\times} \mathbf{W}^{\top} \mathbf{V}^{\top}=\cdots 1=\underbrace{\mathbf{U B}(\mathbf{V} \mathbf{W})^{\top}}_{\simeq \mathbf{H}^{-\top}}\left[\mathbf{v}_{3}\right]_{\times} \simeq \underbrace{\left[\mathbf{H v}_{3}\right]_{\times}}_{\simeq\left[\mathbf{u}_{3}\right]_{\times}} \mathbf{H} \tag{12}
\end{equation*}
$$

7． \mathbf{H} regular， $\mathbf{A v}_{3}=\mathbf{0}, \mathbf{u}_{3} \mathbf{A}=\mathbf{0}$ for $\mathbf{v}_{3} \neq \mathbf{0}, \mathbf{u}_{3} \neq \mathbf{0}$
－we also got a（non－unique：$\alpha= \pm 1$ ）decomposition formula for fundamental matrices
－it follows there is no constraint on \mathbf{F} except the rank

-Representation Theorem for Essential Matrices

Theorem

Let \mathbf{E} be a 3×3 matrix with SVD $\mathbf{E}=\mathbf{U D V}^{\top}$. Then \mathbf{E} is essential iff $\mathbf{D} \simeq \operatorname{diag}(1,1,0)$.

Proof.

Direct:
If \mathbf{E} is an essential matrix, then the epipolar homography matrix is a rotation matrix $(\rightarrow 78)$, hence $\mathbf{H}^{-\top} \simeq \mathbf{U B}(\mathbf{V W})^{\top}$ in (12) must be (λ-scaled) orthogonal, therefore $\mathbf{B}=\lambda \mathbf{I}$.

Converse:
\mathbf{E} is fundamental with $\mathbf{D}=\lambda \operatorname{diag}(1,1,0)$ then we do not need \mathbf{B} (as if $\mathbf{B}=\lambda \mathbf{I}$) in (12) and $\mathbf{U}(\mathbf{V W})^{\top}$ is orthogonal, as required.

Essential Matrix Decomposition

We are decomposing \mathbf{E} to $\mathbf{E} \simeq\left[-\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21}=\mathbf{R}_{21}\left[-\mathbf{R}_{21}^{\top} \mathbf{t}_{21}\right]_{\times}$

1. compute SVD of $\mathbf{E}=\mathbf{U D V}^{\top}$ and verify $\mathbf{D}=\lambda \operatorname{diag}(1,1,0)$
2. ensure \mathbf{U}, \mathbf{V} are rotation matrices by $\mathbf{U} \mapsto \operatorname{det}(\mathbf{U}) \mathbf{U}, \mathbf{V} \mapsto \operatorname{det}(\mathbf{V}) \mathbf{V}$
3. compute

Notes

$$
\mathbf{R}_{21}=\mathbf{U} \underbrace{\left[\begin{array}{ccc}
0 & \alpha & 0 \tag{13}\\
-\alpha & 0 & 0 \\
0 & 0 & 1
\end{array}\right]}_{\mathbf{W}} \mathbf{V}^{\top}, \quad \mathbf{t}_{21}=-\beta \mathbf{u}_{3}, \quad|\alpha|=1, \quad \beta \neq 0
$$

- $\mathbf{v}_{3} \simeq \mathbf{R}_{21}^{\top} \mathbf{t}_{21}$ by (12), hence $\mathbf{R}_{21} \mathbf{v}_{3} \simeq \mathbf{t}_{21} \simeq \mathbf{u}_{3}$ since it must fall in left null space by $\mathbf{E} \simeq\left[\mathbf{u}_{3}\right]_{\times} \mathbf{R}_{21}$
- \mathbf{t}_{21} is recoverable up to scale β and direction $\operatorname{sign} \beta$
- the result for \mathbf{R}_{21} is unique up to $\alpha= \pm 1$
despite non-uniqueness of SVD
- the change of sign in α rotates the solution by 180° about \mathbf{t}_{21}

$$
\begin{aligned}
& \mathbf{R}(\alpha)=\mathbf{U W} \mathbf{V}^{\top}, \mathbf{R}(-\alpha)=\mathbf{U} \mathbf{W}^{\top} \mathbf{V}^{\top} \Rightarrow \mathbf{T}=\mathbf{R}(-\alpha) \mathbf{R}^{\top}(\alpha)=\cdots=\mathbf{U} \operatorname{diag}(-1,-1,1) \mathbf{U}^{\top} \\
& \text { which is a rotation by } 180^{\circ} \text { about } \mathbf{u}_{3} \simeq \mathbf{t}_{21} \text { : show that } \mathbf{u}_{3} \text { is the rotation axis }
\end{aligned}
$$

$$
\mathbf{U} \operatorname{diag}(-1,-1,1) \mathbf{U}^{\top} \mathbf{u}_{3}=\mathbf{U}\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\mathbf{u}_{3}
$$

- 4 solution sets for 4 sign combinations of α, β
see next for geometric interpretation

-Four Solutions to Essential Matrix Decomposition

Transform the world coordinate system so that the origin is in Camera 2. Then $\mathbf{t}_{21}=-\mathbf{b}$ and \mathbf{W} rotates about the baseline \mathbf{b}.

- chirality constraint: all 3D points are in front of both cameras
- this singles-out the upper left case
[H\&Z, Sec. 9.6.3]

- We Have Added to The ZOO

continuation from $\rightarrow 69$

problem	given	unknown	slide
camera resection	6 world-img correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{6}$	\mathbf{P}	62
exterior orientation	$\mathbf{K}, 3$ world-img correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{3}$	\mathbf{R}, t	66
relative orientation	3 world-world correspondences $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{3}$	R, t	70
fundamental matrix	7 img-img correspondences $\left\{\left(m_{i}, m_{i}^{\prime}\right)\right\}_{i=1}^{7}$	\mathbf{F}	84
relative orientation	$\mathbf{K}, 5$ img-img correspondences $\left\{\left(m_{i}, m_{i}^{\prime}\right)\right\}_{i=1}^{5}$	\mathbf{R}, t	88
triangulation	$\mathbf{P}_{1}, \mathbf{P}_{2}, 1$ img-img correspondence $\left(m_{i}, m_{i}^{\prime}\right)$	X	89

A bigger ZOO at http://cmp.felk.cvut.cz/minimal/

calibrated problems

- have fewer degenerate configurations
- can do with fewer points (good for geometry proposal generators $\rightarrow 117$)
- algebraic error optimization (SVD) makes sense in camera resection and triangulation only
- but it is not the best method; we will now focus on 'optimizing optimally'

Thank You

