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The Relative Orientation Problem

Problem: Given point triples (X1, X2, X3) and (Y1, Y2, Y3) in a general position in R3

such that the correspondence Xi ↔ Yi is known, determine the relative orientation (R, t)
that maps Xi to Yi, i.e.

Yi = RXi + t, i = 1, 2, 3 .
Applies to:
• 3D scanners

• partial reconstructions from different viewpoints

Obs: Let the centroid be X̄ = 1
3

∑
i Xi and analogically for Ȳ. Then

Ȳ = RX̄ + t.

Therefore

Zi
def
= (Yi − Ȳ) = R(Xi − X̄)

def
= RWi

If all dot products are equal, Z>i Zj = W>
i Wj for i, j = 1, 2, 3, we have

R∗ =
[
W1 W2 W3

]−1 [
Z1 Z2 Z3

]
Otherwise (in practice) we setup a minimization problem

R∗ = arg min
R

3∑
i=1

‖Zi −RWi‖2 s.t. R>R = I, det R = 1

arg min
R

∑
i

‖Zi −RWi‖2 = arg min
R

∑
i

(
‖Zi‖2 − 2Z>i RWi + ‖Wi‖2

)
= · · ·

· · · = arg max
R

∑
i

Z>i RWi
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cont’d (What is Linear Algebra Telling Us?)

Obs 1: Let A : B =
∑
i,j aijbij be the dot-product (Frobenius inner product) over real

matrices. Then
A : B = B : A = tr(A>B)

Obs 2: (cyclic property for matrix trace)

tr(ABC) = tr(CAB)

Obs 3: (Zi, Wi are vectors)

Z>i RWi = tr(Z>i RWi) = tr(WiZ
>
i R) = (ZiW

>
i ) : R = R : (ZiW

>
i )

Let the SVD be ∑
i

ZiW
>
i

def
= M = UDV>

Then

R : M = R : (UDV>) = tr(R>UDV>) = tr(V>R>UD) = (U>RV) : D
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cont’d: The Algorithm

We are solving

R∗ = arg max
R

∑
i

Z>i RWi = arg max
R

(
U>RV

)
: D

A particular solution is found as follows:
• U>RV must be (1) orthogonal, and most similar to (2) diagonal, (3) positive definite
• Since U, V are orthogonal matrices then the solution to the problem is among
R∗ = USV>, where S is diagonal and orthogonal, i.e. one of

±diag(1, 1, 1), ± diag(1,−1,−1), ±diag(−1, 1,−1), ± diag(−1,−1, 1)

• U>V is not necessarily positive definite
• We choose S so that (R∗)>R∗ = I

Alg:
1. Compute matrix M =

∑
i ZiW

>
i .

2. Compute SVD M = UDV>.
3. Compute all Rk = USkV

> that give R>kRk = I.
4. Compute tk = Ȳ −RkX̄.

• The algorithm can be used for more than 3 points

• Triple pairs can be pre-filtered based on motion invariants (lengths, angles)

• The P3P problem is very similar but not identical
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Module IV

Computing with a Camera Pair

4.1 Camera Motions Inducing Epipolar Geometry

4.2 Estimating Fundamental Matrix from 7 Correspondences

4.3 Estimating Essential Matrix from 5 Correspondences

4.4 Triangulation: 3D Point Position from a Pair of Corresponding Points

covered by

[1] [H&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1

[2] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc ICPR 2006, pp. 630–633

additional references

H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293

(5828):133–135, 1981.
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IGeometric Model of a Camera Pair

Epipolar geometry:

• brings constraints necessary for inter-image matching
• its parametric form encapsulates information about the relative pose of two cameras" �2�1 d2d1

e2e1m1
X

C2l1 m2C1 l2b
two-camera setup

Description

• baseline b joins projection centers C1, C2

b = C2 −C1

• epipole ei ∈ πi is the image of Cj :

e1 ' P1C2, e2 ' P2C1

• li ∈ πi is the image of epipolar plane

ε = (C2, X,C1)

• lj is the epipolar line in image πj induced
by mi in image πi

Epipolar constraint: corresponding d2, b, d1 are coplanar a necessary condition →87

Pi =
[
Qi qi

]
= Ki

[
Ri ti

]
= KiRi

[
I −Ci

]
i = 1, 2 →31
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Epipolar Geometry Example: Forward Motion
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image 1 image 2

• red: correspondences click on the image to see their IDs

• green: epipolar line pairs per correspondence same ID in both images

How high was the camera above the floor?

movement2 1 h=?
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ICross Products and Maps by Skew-Symmetric 3× 3 Matrices

• There is an equivalence b×m = [b]×m, where [b]× is a 3× 3 skew-symmetric matrix

[b]× =

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 , assuming b =

b1b2
b3


Some properties

1. [b]>× = −[b]× the general antisymmetry property

2. A is skew-symmetric iff x>Ax = 0 for all x skew-sym mtx generalizes cross products

3. [b]3× = −‖b‖2 · [b]×

4. ‖[b]×‖F =
√

2 ‖b‖ Frobenius norm (‖A‖F =
√

tr(A>A) =
√∑

i,j |aij |
2)

5. [b]×b = 0

6. rank [b]× = 2 iff ‖b‖ > 0 check minors of [b]×

7. eigenvalues of [b]× are (0, λ,−λ)

8. for any 3× 3 regular B : B>[Bz]×B = detB [z]× follows from the factoring on →39

9. in particular: if RR> = I then [Rb]× = R[b]×R
>

• note that if Rb is rotation about b then Rbb = b

• note [b]× is not a homography; it is not a rotation matrix it is the logarithm of a rotation mtx
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IExpressing Epipolar Constraint Algebraically"p"b �2�1 d2d1
e2e1m1

X
C2l1 m2C1 l2

Pi =
[
Qi qi

]
= Ki

[
Ri ti

]
, i = 1, 2

R21 – relative camera rotation, R21 = R2R
>
1

t21 – relative camera translation, t21 = t2 −R21t1 = −R2b →74

b – baseline vector (world coordinate system)

remember: C = −Q−1q = −R>t →33 and 35

0 = d>2 pε︸︷︷︸
normal of ε

' (Q−1
2 m2)>︸ ︷︷ ︸

optical ray

Q>1 l1︸ ︷︷ ︸
optical plane

= m>2 Q−>2 Q>1 (e1 ×m1)︸ ︷︷ ︸
image of ε in π2

= m>2
(
Q−>2 Q>1 [e1]×

)︸ ︷︷ ︸
fundamental matrix F

m1

Epipolar constraint m>2 Fm1 = 0 is a point-line incidence constraint

• point m2 is incident on epipolar line l2 ' Fm1

• point m1 is incident on epipolar line l1 ' F>m2

• Fe1 = F>e2 = 0 (non-trivially)

• all epipolars meet at the epipole

e1 ' Q1C2 + q1 = Q1C2 −Q1C1 = K1R1b = −K1R1R
>
2 t21 = −K1R

>
21t21

F = Q−>2 Q>1 [e1]× = Q−>2 Q>1 [−K1R
>
21t21]× =

~ 1· · · ' K−>2 [−t21]×R21K
−1
1 fundamental

E = [−t21]×R21 = [R2b]×︸ ︷︷ ︸
baseline in Cam 2

R21 = R21 [R1b]×︸ ︷︷ ︸
baseline in Cam 1

= R21[−R>21t21]× essential
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IThe Structure and the Key Properties of the Fundamental Matrix

F = ( Q2Q
−1
1︸ ︷︷ ︸

epipolar homography He

)−>[e1]× = K−>2 R21K
>
1︸ ︷︷ ︸

H−>e

[

left epipole︷︸︸︷
e1 ]×

→76' [

right epipole︷ ︸︸ ︷
Hee1]×He = K−>2 [−t21]×R21︸ ︷︷ ︸

essential matrix E

K−1
1

1. E captures relative camera pose only [Longuet-Higgins 1981]

(the change of the world coordinate system does not change E)[
R′i t′i

]
=
[
Ri ti

]
·
[

R t
0> 1

]
=
[
RiR Rit + ti

]
,

then
R′21 = R′2R′1

>
= · · · = R21 t′21 = t′2 −R′21t′1 = · · · = t21

2. the translation length t21 is lost since E is homogeneous
3. F maps points to lines and it is not a homography
4. He maps epipoles to epipoles, H−>e epipolar lines to epipolar lines: l2 ' H−>e l1

l1

e1

e1 × l1

e1

• replacement for H−>e for epipolar line map: l2 ' F[e1]×l1

• proof by point/line ‘transmutation’ (left)

• point e1 does not lie on line e1 (dashed): e>1 e1 6= 0

• F[e1]× is not a homography, unlike H−>e but it does the
same job for epipolar line mapping
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ISummary: Relations and Mappings Involving Fundamental Matrix

�2�1 e2e1m1 l1 m2l2
Fm1

0 = m>2 Fm1

e1 ' null(F), e2 ' null(F>)

e1 ' H−1
e e2 e2 ' Hee1

l1 ' F>m2 l2 ' Fm1

l1 ' H>e l2 l2 ' H−>e l1

l1 ' F>[e2]×l2 l2 ' F[e1]×l1

m⊤
2 Fm1 = 0m1 m2

l1l2

F⊤F

H−⊤
e or F [e1]×

H⊤
e or F⊤[e2]×

• F[e1]× maps lines to lines but it is not a homography

• He = Q2Q−1
1 is the epipolar homography→78

H−>e maps epipolar lines to epipolar lines, where

He = Q2Q−1
1 = K2R21K−1

1

you have seen this →59
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IRepresentation Theorem for Fundamental Matrices

Def: F is fundamental when F ' H−>[e1]×, where H is regular and e1 ' null F 6= 0.

Theorem: A 3× 3 matrix A is fundamental iff it is of rank 2.

Proof.
Direct: By the geometry, H is full-rank, e1 6= 0, hence H−>[e1]× is a 3× 3 matrix of rank 2.

Converse:

1. let A = UDV> be the SVD of A of rank 2; then D = diag(λ1, λ2, 0), λ1 ≥ λ2 > 0

2. we write D = BC, where B = diag(λ1, λ2, λ3), C = diag(1, 1, 0), λ3 = λ2 (w.l.o.g.)

3. then A = UBCV> = UBC WW>︸ ︷︷ ︸
I

V> with W rotation

4. we look for a rotation W that maps C to a skew-symmetric S, i.e. S = CW

5. then W =

 0 α 0
−α 0 0
0 0 1

, |α| = 1, and S = [s]×, s = (0, 0, 1)

6. we write v3 – 3rd column of V, u3 – 3rd column of U

A = UB[s]×W>V> =
~ 1· · · = UB(VW)>︸ ︷︷ ︸

'H−>

[v3]× ' [Hv3]×︸ ︷︷ ︸
'[u3]×

H, (12)

7. H regular, Av3 = 0, u3A = 0 for v3 6= 0, u3 6= 0 ut

• we also got a (non-unique: α = ±1) decomposition formula for fundamental matrices

• it follows there is no constraint on F except the rank
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IRepresentation Theorem for Essential Matrices

Theorem

Let E be a 3× 3 matrix with SVD E = UDV>. Then E is essential iff D ' diag(1, 1, 0).

Proof.
Direct:

If E is an essential matrix, then the epipolar homography matrix is a rotation matrix
(→78), hence H−> ' UB(VW)> in (12) must be (λ-scaled) orthogonal, therefore
B = λI.

Converse:

E is fundamental with D = λ diag(1, 1, 0) then we do not need B (as if B = λI) in (12)
and U(VW)> is orthogonal, as required.

ut
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IEssential Matrix Decomposition

We are decomposing E to E ' [−t21]×R21 = R21[−R>21t21]× [H&Z, sec. 9.6]

1. compute SVD of E = UDV> and verify D = λdiag(1, 1, 0)
2. ensure U, V are rotation matrices by U 7→ det(U)U, V 7→ det(V)V
3. compute

R21 = U

 0 α 0
−α 0 0
0 0 1


︸ ︷︷ ︸

W

V>, t21 = −β u3, |α| = 1, β 6= 0 (13)

Notes

• v3 ' R>21t21 by (12), hence R21v3 ' t21 ' u3 since it must fall in left null space by
E ' [u3]×R21

• t21 is recoverable up to scale β and direction signβ

• the result for R21 is unique up to α = ±1 despite non-uniqueness of SVD

• the change of sign in α rotates the solution by 180◦ about t21

R(α) = UWV>, R(−α) = UW>V> ⇒ T = R(−α)R>(α) = · · · = U diag(−1,−1, 1)U>
which is a rotation by 180◦ about u3 ' t21: show that u3 is the rotation axis

U diag(−1,−1, 1)U>u3 = U

−1 0 0
0 −1 0
0 0 1

00
1

 = u3

• 4 solution sets for 4 sign combinations of α, β see next for geometric interpretation
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IFour Solutions to Essential Matrix Decomposition

Transform the world coordinate system so that the origin is in Camera 2. Then t21 = −b
and W rotates about the baseline b. →77

b C2C1
C1 C2

α, β FF −α, β (twisted by W) BF

C1
C2

C1
C2

α, −β (baseline reversal) BB −α, −β (combination of both) BF

• chirality constraint: all 3D points are in front of both cameras

• this singles-out the upper left case [H&Z, Sec. 9.6.3]
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IWe Have Added to The ZOO

continuation from →69

problem given unknown slide

camera resection 6 world–img correspondences
{

(Xi, mi)
}6
i=1

P 62

exterior orientation K, 3 world–img correspondences
{

(Xi, mi)
}3
i=1

R, t 66

relative orientation 3 world-world correspondences
{

(Xi, Yi)
}3
i=1

R, t 70

fundamental matrix 7 img–img correspondences
{

(mi, m
′
i)
}7
i=1

F 84

relative orientation K, 5 img–img correspondences
{

(mi, m
′
i)
}5
i=1

R, t 88

triangulation P1, P2, 1 img–img correspondence (mi, m
′
i) X 89

A bigger ZOO at http://cmp.felk.cvut.cz/minimal/

calibrated problems
• have fewer degenerate configurations
• can do with fewer points (good for geometry proposal generators →117)

• algebraic error optimization (SVD) makes sense in camera resection and triangulation only

• but it is not the best method; we will now focus on ‘optimizing optimally’
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Thank You



 1

 2 3
 4 5

 6

 7 8 910111213

1415
1617

18

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 20–Oct–2020
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