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The Relative Orientation Problem

Problem: Given point triples (X1, X2, X3) and (Y1, Y2,Y3) in a general position in R?
such that the correspondence X; <+ Y; is known, determine the relative orientation (R, t)
that maps X; to Y, i.e.
Y, =RX;+t, i=1,2,3.
Applies to:
e 3D scanners
e partial reconstructions from different viewpoints

Obs: Let the centroid be X = %ZZ X; and analogically for Y. Then
Y =RX +t.

Therefore

def ( ) def

Z; Y, -Y)=R(X; - X RW;
If all dot products are equal, Zi Z; = Wi W; fori,j =1,2,3, we have
= [W1 W2 7\7\73}_1 [Zl ZQ Z3]
Otherwise (in practice) we setup a minimization problem

3
R" = i Z;—RW,||? st. RTR=1I, detR=1
argm&nZ” i il s , e

argmlnz |Z; - RW;||? = argmlnz ( |Z;:||? — 2Z] RW; + ||W]| )
= argmaxZZTRW
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cont'd (What is Linear Algebra Telling Us?)

Obs 1: Let A: B =}, . ai;bi; be the dot-product (Frobenius inner product) over real
matrices. Then
A:B=B:A=tr(A'B)

Obs 2: (cyclic property for matrix trace)
tr(ABC) = tr(CAB)
Obs 3: (Z;, W; are vectors)
Z!RW,; = tr(Z{ RW,) = tr(W,Z; R) = (Z;W/ ) : R=R: (Z;W,)
Let the SVD be

T def

Z Z;W,] € M=UDV"
Then

R:M=R:(UDV") =tr(R'UDV') =tr(V'R'UD) = (U'RV): D
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cont'd: The Algorithm

We are solving
* T ‘ T .
R = arg max E Z; Rwl—argml%x(U RV) :D

A particular solution is found as follows:
e UTRV must be (1) orthogonal, and most similar to (2) diagonal, (3) positive definite
e Since U, V are orthogonal matrices then the solution to the problem is among
R* = USV", where S is diagonal and orthogonal, i.e. one of

+diag(1,1,1), +diag(l,—-1,-1), =+diag(-1,1,—1), =+diag(—1,—1,1)

e UV is not necessarily positive definite
e We choose S so that (R*)'R* =1

Alg:
1. Compute matrix M =3, Z; W, .
2. Compute SVD M = UDV'.
3. Compute all Ry = US, V" that give R Ry =1.
4. Compute t, =Y — RpX.

e The algorithm can be used for more than 3 points

e Triple pairs can be pre-filtered based on motion invariants (lengths, angles)
® The P3P problem is very similar but not identical
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Module [V

Computing with a Camera Pair

@® Camera Motions Inducing Epipolar Geometry

@®Estimating Fundamental Matrix from 7 Correspondences
@®Estimating Essential Matrix from 5 Correspondences

@ Triangulation: 3D Point Position from a Pair of Corresponding Points

covered by
[1] [H&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1
[2] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc ICPR 2006, pp. 630-633

additional references

@ H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293
(5828):133-135, 1981
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»Geometric Model of a Camera Pair

Epipolar geometry:

e brings constraints necessary for inter-image matching

e its parametric form encapsulates information about the relative pose of two cameras
Description

® baseline b joins projection centers Cp, C2

b=Cy—-Cy
® epipole e; € m; is the image of Cj:
e1 ~P1C2, e ~P2C
e |, € m; is the image of epipolar plane

e=(C2,X,C1)

® [; is the epipolar line in image 7; induced
two-camera setup by m; in image m;

Epipolar constraint: corresponding d2, b, d1 are coplanar a necessary condition —87
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Epipolar Geometry Example: Forward Motion

image 1 image 2
e red: correspondences click on the image to see their IDs
e green: epipolar line pairs per correspondence same ID in both images

How high was the camera above the floor?

o~
movement Il

2 1
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»Cross Products and Maps by Skew-Symmetric 3 x 3 Matrices

o There is an equivalence b x m = [b], m, where [b], is a 3 x 3 skew-symmetric matrix

0 —bs b2 b1
[b], = | b3 0 —b1|, assuming b = |bs
—ba b1 0 b3
Some properties
T .
1. [b], = —[b], the general antisymmetry property
2. A is skew-symmetric iff x T Ax = 0 for all x skew-sym mtx generalizes cross products
3. [bJ, = —[Ibl|*- [b],
4. ||[b], HF =+2]b| Frobenius norm (|[A|r = \/tr(ATA) = \/Z” lais]|?)
5 [bl,b=0
6. rank[b], =2 iff ||b]| >0 check minors of [b],
7. eigenvalues of [b], are (0, ), —\)
8. for any 3 x 3 regular B : BT[BZ]XB = detB [z],, follows from the factoring on —39
9. in particular: if RR" =T then [Rb], =R[b] R"

e note that if Ry is rotation about b then Ryb = b

e note [b], is not a homography; it is not a rotation matrix it is the logarithm of a rotation mtx
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»Expressing Epipolar Constraint Algebraically

Pi:[Qi qz'}IKi[Ri ti]7i:12

I’
R, — relative camera rotation, Ra; = RZRIT

to1 — relative camera translation, ta; = t2 — R21t1 = —Ra2b —74

b - baseline vector (world coordinate system)

remember: C = —Q 'q=-R't

—33 and 35
0=d; p. ~ (Q;'m)" QL =m; Q; Q) (e1 xm)=my (Q; Q [e1],) mu
~—~ N — N~ N

normal of optical ray  optical plane

image of ¢ in 72 fundamental matrix F

Epipolar constraint mJ Fm; =0 s a point-line incidence constraint

® point my is incident on epipolar line I ~ Fm; e Fer=F'ex=0 (non-trivially)

e point my is incident on epipolar line I} ~ F " mjy e all epipolars meet at the epipole

e1~Q,Cs+q, =Q,C:—Q,Ci =KiRib=-K RiR; t2; = —K;Rj; to1

_ _ ® 1 — _
F=Q, ' Q/ [e], =Q; Q| [-KiRjto1], = - ~ K5 ' [~t21] Ro1 K7 " fundamental
E = [—t21]XR21 = [sz} ><13,21 = R21 [Rlb] % = R21[—R2Tlt21]x essential

—— ——
baseline in Cam 2 baseline in Cam 1
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» The Structure and the Key Properties of the Fundamental Matrix

left epipole right epipole
—1 =T -T T —76 -T —1
F=(Q,Q, ) l[e], =K; RaK, [e1], ~ [Hees], He =K;  [~ta1] R K,
N—_—— —_——
epipolar homography He He_—r essential matrix E
1. E captures relative camera pose only [Longuet-Higgins 1981]
(the change of the world coordinate system does not change E)
R t
[Ri t]=[Ri t]- [OT 1} = [RiR Rit+t],
then
Rj, = RiR;| = - = Ro thy =t~ Ryt) = - = tan

2. the translation length t2; is lost since E is homogeneous
3. F maps points to lines and it is not a homography
4. H. maps epipoles to epipoles, H. T epipolar lines to epipolar lines: 1, ~ H. "1,

e replacement for H; T for epipolar line map: I ~ Flei1], Ik
e proof by point/line ‘transmutation’ (left)
e point e; does not lie on line e (dashed): girg] #0

e Flei], is not a homography, unlike HZ T but it does the
same job for epipolar line mapping
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»Summary: Relations and Mappings Involving Fundamental Matrix

er ~ null(F), e ~null(F")
e1 ~H, 'e e2 ~ Hees

L ~F m I~ Fmy
h~HL b~H 'L
L~F'le],l, L~Flel]L

e F[e1], maps lines to lines but it is not a homography

e H. = Q2Q1_1 is the epipolar homography—78
H;T maps epipolar lines to epipolar lines, where
He = Q,Q; ' = KaRo1 K[ '

you have seen this —59

H, or F ey«
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»Representation Theorem for Fundamental Matrices
Def: F is fundamental when F ~ H’T[gl}x, where H is regular and e; ~ null F # 0.

Theorem: A 3 X 3 matrix A is fundamental iff it is of rank 2.
Proof.
Direct: By the geometry, H is full-rank, e; # 0, hence H’T[gl]>< is a 3 X 3 matrix of rank 2.
Converse:

1. let A =UDV' be the SVD of A of rank 2: then D = diag(A1,A2,0), A1 > A2 >0

2. we write D = BC, where B = diag(A1, A2, A3), C = diag(1,1,0), A3 = A2 (w.l.o.g.)

3. then A= UBCV' = UBCWW' VT with W rotation

1
4. we look for a rotation W that maps C to a skew-symmetric S, i.,e. S = CW

0 a 0
5. then W= |—a 0 0], |a]=1 and S=][s],,s=(0,0,1)
0 0 1
6. we write ©1 v3 — 3rd column of V, us — 3rd column of U
A=UB[s|, W'V =5 =UB(VW)T [v3], ~ [Hvs], H, (12)
%/_/,T ——
~H z[ug]><
7. H regular, Avg =0, usA =0 for v3 # 0, ug # 0 O

® we also got a (non-unique: a = £1) decomposition formula for fundamental matrices
o it follows there is no constraint on F' except the rank
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» Representation Theorem for Essential Matrices

Theorem
Let E be a 3 x 3 matrix with SVD E = UDV . Then E is essential iff D ~ diag(1,1,0).

Proof.
Direct:

If E is an essential matrix, then the epipolar homography matrix is a rotation matrix

(—78), hence H™T ~ UB(VW)" in (12) must be (A-scaled) orthogonal, therefore
B =)L

Converse:

E is fundamental with D = Adiag(1,1,0) then we do not need B (as if B = AI) in (12)
and U(VW)T is orthogonal, as required.
O
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»Essential Matrix Decompaosition
We are decomposing E to E ~ [—t21], Ra1 = Ro1[-Rg t21],, [H&Z, sec. 9.6]

1. compute SVD of E = UDV " and verify D = Adiag(1,1,0)
2. ensure U, V are rotation matrices by U — det(U)U, V — det(V)V
3. compute

0 o O
Ray=U|—-a 0 0 VT, to1 = —,3113, \a| = 1, ﬂ 75 0 (13)
0 0 1
Notes W

® v3 ~ R;ltgl by (12), hence Ra1v3 =~ t21 ~ ug since it must fall in left null space by
E ~ [UB]XRQI

® to; is recoverable up to scale 3 and direction sign (3
o the result for R21 is unique up to ao = £1 despite non-uniqueness of SVD
e the change of sign in « rotates the solution by 180° about to;

R(e) =UWV' R(-a)=UW'V' = T =R(-a)R' (a) = --- = Udiag(—1,-1,1)U"
which is a rotation by 180° about us ~ ta1: show that ug is the rotation axis

-1 0 0] o
Udiag(—1,-1,1)U us=U |0 -1 0| [0 =us
o o 1|1

® 4 solution sets for 4 sign combinations of «;, (8 see next for geometric interpretation
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»Four Solutions to Essential Matrix Decomposition

Transform the world coordinate system so that the origin is in Camera 2. Then t2; = —b
and W rotates about the baseline b. —77

o, —f (baseline reversal) —a, —f (combination of both)

o chirality constraint: all 3D points are in front of both cameras
e this singles-out the upper left case [H&Z, Sec. 9.6.3]
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»We Have Added to The ZOO

continuation from —69

problem given unknown | slide
camera resection 6 world—img correspondences {(X,', mi)}?zl P 62
exterior orientation | K, 3 world—img correspondences { (X, mi)}?zl R, t 66
relative orientation | 3 world-world correspondences { (X, Yi)}f:l R, t 70
fundamental matrix | 7 img—img correspondences {(m, m;)}:zl F 84
relative orientation | K, 5 img—img correspondences {(m, m;)}le R, t 88
triangulation Pi, Po, 1 img-img correspondence (m;, m;) X 89

calibrated problems

A bigger ZOO at http://cmp.felk.cvut.cz/minimal/

e have fewer degenerate configurations
e can do with fewer points (good for geometry proposal generators —117)

e algebraic error optimization (SVD) makes sense in camera resection and triangulation only

e but it is not the best method; we will now focus on ‘optimizing optimally’
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Thank You
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