3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz

mailto:sara@cmp.felk.cvut.cz phone ext. 7203

rev. January 5, 2021

Open Informatics Master's Course

Module II

Perspective Camera

- 21 Basic Entities: Points, Lines
- 22 Homography: Mapping Acting on Points and Lines
- 23 Canonical Perspective Camera
- Changing the Outer and Inner Reference Frames
- 25 Projection Matrix Decomposition
- 26 Anatomy of Linear Perspective Camera
- ☑ Vanishing Points and Lines
- covered by

[H&Z] Secs: 2.1, 2.2, 3.1, 6.1, 6.2, 8.6, 2.5, Example: 2.19

▶ Basic Geometric Entities, their Representation, and Notation

- entities have names and representations
- names and their components:

entity	in 2-space	in 3-space
point	m = (u, v)	X = (x, y, z)
line	n	0
plane		π , φ

associated vector representations

$$\mathbf{m} = \begin{bmatrix} u \\ v \end{bmatrix} = [u, v]^{\top}, \quad \mathbf{X} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad \mathbf{n}$$

will also be written in an 'in-line' form as $\mathbf{m}=(u,v)$, $\mathbf{X}=(x,y,z)$, etc.

- ullet vectors are always meant to be columns $\mathbf{x} \in \mathbb{R}^{n imes 1}$
- associated homogeneous representations

$$\underline{\mathbf{m}} = \left[m_1, m_2, m_3\right]^\top, \quad \underline{\mathbf{X}} = \left[x_1, x_2, x_3, x_4\right]^\top, \quad \underline{\mathbf{n}}$$

'in-line' forms: $\underline{\mathbf{m}} = (m_1, m_2, m_3), \ \underline{\mathbf{X}} = (x_1, x_2, x_3, x_4), \ \text{etc.}$

- ullet matrices are $\mathbf{Q} \in \mathbb{R}^{m imes n}$, linear map of a $\mathbb{R}^{n imes 1}$ vector is $\mathbf{y} = \mathbf{Q} \mathbf{x}$
- j-th element of vector \mathbf{m}_i is $(\mathbf{m}_i)_j$; element i, j of matrix \mathbf{P} is \mathbf{P}_{ij}

►Image Line (in 2D)

a finite line in the 2D (u, v) plane

$$a\,u + b\,v + c = 0$$

has a parameter (homogeneous) vector

$$\underline{\mathbf{n}} \simeq (a, b, c), \quad ||\underline{\mathbf{n}}|| \neq 0$$

and there is an equivalence class for $\lambda \in \mathbb{R}, \lambda \neq 0$ $(\lambda a, \lambda b, \lambda c) \simeq (a, b, c)$

'Finite' lines

• standard representative for $\underline{\text{finite}} \ \underline{\mathbf{n}} = (n_1, n_2, n_3)$ is $\lambda \underline{\mathbf{n}}$, where $\lambda = \frac{\mathbf{1}}{\sqrt{n_1^2 + n_2^2}}$ assuming $n_1^2 + n_2^2 \neq 0$; $\mathbf{1}$ is the unit, usually $\mathbf{1} = 1$

'Infinite' line

• we augment the set of lines for a special entity called the line at infinity (ideal line)

$$\underline{\mathbf{n}}_{\infty} \simeq (0,0,1)$$
 (standard representative)

- the set of equivalence classes of vectors in $\mathbb{R}^3 \setminus (0,0,0)$ forms the projective space \mathbb{P}^2 a set of rays \to 21
- ullet line at infinity is a proper member of \mathbb{P}^2
- I may sometimes wrongly use = instead of \simeq , if you are in doubt, ask me

▶Image Point

Finite point $\mathbf{m}=(u,v)$ is incident on a finite line $\underline{\mathbf{n}}=(a,b,c)$ iff $\underline{}$ iff $\underline{}$ works either way!

$$a u + b v + c = 0$$

can be rewritten as (with scalar product): $(u, v, \mathbf{1}) \cdot (a, b, c) = \underline{\mathbf{m}}^{\mathsf{T}} \underline{\mathbf{n}} = 0$

'Finite' points

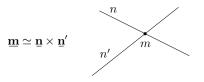
- ullet a finite point is also represented by a homogeneous vector $\underline{\mathbf{m}} \simeq (u,v,\mathbf{1})$, $\|\underline{\mathbf{m}}\|
 eq 0$
- the equivalence class for $\lambda \in \mathbb{R}, \ \lambda \neq 0$ is $(m_1, m_2, m_3) = \lambda \, \underline{\mathbf{m}} \simeq \underline{\mathbf{m}}$
- the standard representative for <u>finite</u> point $\underline{\mathbf{m}}$ is $\lambda \underline{\mathbf{m}}$, where $\lambda = \frac{1}{m_2}$ assuming $m_3 \neq 0$
- ullet when ${f 1}=1$ then units are pixels and $\lambda {f \underline{m}}=(u,v,1)$
- when ${\bf 1}=f$ then all elements have a similar magnitude, $f\sim$ image diagonal use ${\bf 1}=1$ unless you know what you are doing; all entities participating in a formula must be expressed in the same units

'Infinite' points

- ullet we augment for points at infinity (ideal points) $\underline{\mathbf{m}}_{\infty} \simeq (m_1, m_2, 0)$
- proper members of \mathbb{P}^2 all such points lie on the line at infinity (ideal line) $\underline{\mathbf{n}}_{\infty} \simeq (0,0,1)$, i.e. $\mathbf{m}_{\infty}^{\top} \mathbf{n}_{\infty} = 0$

▶Line Intersection and Point Join

The point of intersection m of image lines n and n', $n \not\simeq n'$ is



proof: If $\underline{\mathbf{m}} = \underline{\mathbf{n}} \times \underline{\mathbf{n}}'$ is the intersection point, it must be incident on both lines. Indeed, using known equivalences from vector algebra

$$\underline{\mathbf{n}}^{\top} \underbrace{(\underline{\mathbf{n}} \times \underline{\mathbf{n}}')}_{\underline{\mathbf{m}}} \equiv \underline{\mathbf{n}}'^{\top} \underbrace{(\underline{\mathbf{n}} \times \underline{\mathbf{n}}')}_{\underline{\mathbf{m}}} \equiv 0$$

The join n of two image points m and m', $m \not\simeq m'$ is

$$\underline{\mathbf{n}} \simeq \underline{\mathbf{m}} \times \underline{\mathbf{m}}'$$

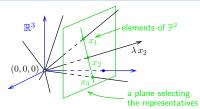
Paralel lines intersect (somewhere) on the line at infinity $\underline{\mathbf{n}}_{\infty} \simeq (0,0,1)$:

$$a u + b v + c = 0,$$

 $a u + b v + d = 0,$ $d \neq c$
 $(a, b, c) \times (a, b, d) \simeq (b, -a, 0)$

- ullet all such intersections lie on \mathbf{n}_{∞}
- line at infinity therefore represents the set of (unoriented) directions in the plane
- Matlab: m = cross(n, n_prime);

▶ Homography in \mathbb{P}^2



Projective plane \mathbb{P}^2 : Vector space of dimension 3 excluding the zero vector, $\mathbb{R}^3 \setminus (0,0,0)$, factorized to linear equivalence classes ('rays'), $\underline{\mathbf{x}} \simeq \lambda \underline{\mathbf{x}}$, $\lambda \neq 0$ including 'points at infinity'

we call $\underline{\mathbf{x}} \in \mathbb{P}^2$ 'points'

Homography in \mathbb{P}^2 : Non-singular linear mapping in \mathbb{P}^2

an analogic definition for \mathbb{P}^3

 $\underline{\mathbf{x}}' \simeq \mathbf{H}\,\underline{\mathbf{x}}, \quad \mathbf{H} \in \mathbb{R}^{3,3}$ non-singular

Defining properties

• collinear points are mapped to collinear points

lines of points are mapped to lines of points

• concurrent lines are mapped to concurrent lines

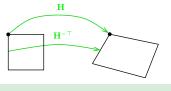
 ${\sf concurrent} = {\sf intersecting} \ {\sf at} \ {\sf a} \ {\sf point}$

and point-line incidence is preserved

e.g. line intersection points mapped to line intersection points

- H is a 3×3 non-singular matrix, $\lambda H \simeq H$ equivalence class, 8 degrees of freedom
- homogeneous matrix representant: $\det \mathbf{H} = 1$
- what we call homography here is often called 'projective collineation' in mathematics

► Mapping 2D Points and Lines by Homography



$$\underline{\mathbf{m}}' \simeq \mathbf{H} \, \underline{\mathbf{m}}$$
 (image) point
$$\underline{\mathbf{n}}' \simeq \mathbf{H}^{-\top} \underline{\mathbf{n}}$$
 (image) line $\mathbf{H}^{-\top} = (\mathbf{H}^{-1})^{\top} = (\mathbf{H}^{\top})^{-1}$

• incidence is preserved: $(\underline{\mathbf{m}}')^{\top}\underline{\mathbf{n}}' \simeq \underline{\mathbf{m}}^{\top}\mathbf{H}^{\top}\mathbf{H}^{-\top}\underline{\mathbf{n}} = \underline{\mathbf{m}}^{\top}\underline{\mathbf{n}} = 0$

Mapping a finite 2D point $\mathbf{m}=(u,v)$ to $\underline{\mathbf{m}}=(u',v')$

- 1. extend the Cartesian (pixel) coordinates to homogeneous coordinates, $\underline{\mathbf{m}} = (u,v,\mathbf{1})$
- 2. map by homography, $\mathbf{m}' = \mathbf{H} \mathbf{m}$
- 3. if $m_3' \neq 0$ convert the result $\underline{\mathbf{m}}' = (m_1', m_2', m_3')$ back to Cartesian coordinates (pixels),

$$u' = \frac{m_1'}{m_3'} \mathbf{1}, \qquad v' = \frac{m_2'}{m_3'} \mathbf{1}$$

• note that, typically, $m_3' \neq 1$

 $m_3'=1$ when ${\bf H}$ is affine

• an infinite point $\mathbf{m} = (u, v, 0)$ maps the same way

Some Homographic Tasters

Rectification of camera rotation: \rightarrow 59 (geometry), \rightarrow 128 (homography estimation)

 $\mathbf{H} \simeq \mathbf{K} \mathbf{R}^{\top} \mathbf{K}^{-1}$

maps from image plane to facade plane

Homographic Mouse for Visual Odometry: [Mallis 2007]

illustrations courtesy of AMSL Racing Team, Meiji University and LIBVISO: Library for VISual Odometry

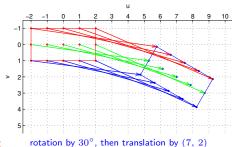
$$\mathbf{H} \simeq \mathbf{K} \left(\mathbf{R} - rac{\mathbf{t} \mathbf{n}^{ op}}{d}
ight) \mathbf{K}^{-1}$$
 [H&Z, p. 327]

► Homography Subgroups: Euclidean Mapping (aka Rigid Motion)

• Euclidean mapping (EM): rotation, translation and their combination

$$\mathbf{H} = \begin{bmatrix} \cos \phi & -\sin \phi & t_x \\ \sin \phi & \cos \phi & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

• eigenvalues $(1, e^{-i\phi}, e^{i\phi})$



EM = The most general homography preserving

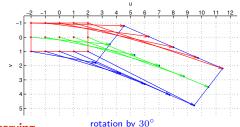
- 1. areas: $\det \mathbf{H} = 1 \Rightarrow \text{unit Jacobian}$
- 2. lengths: Let $\underline{\mathbf{x}}_i' = \mathbf{H}\underline{\mathbf{x}}_i$ (check we can use = instead of \simeq). Let $(x_i)_3 = 1$, Then
 - $\|\underline{\mathbf{x}}_2' \underline{\mathbf{x}}_1'\| = \|\mathbf{H}\underline{\mathbf{x}}_2 \mathbf{H}\underline{\mathbf{x}}_1\| = \|\mathbf{H}(\underline{\mathbf{x}}_2 \underline{\mathbf{x}}_1)\| = \dots = \|\underline{\mathbf{x}}_2 \underline{\mathbf{x}}_1\|$
- 3. angles check the dot-product of normalized differences from a point $(\mathbf{x} \mathbf{z})^{\top}(\mathbf{y} \mathbf{z})$ (Cartesian(!))
- eigenvectors when $\phi \neq k\pi$, k = 0, 1, ... (columnwise)

$$\mathbf{e}_1 \simeq \begin{bmatrix} t_x + t_y \cot \frac{\phi}{2} \\ t_y - t_x \cot \frac{\phi}{2} \\ 2 \end{bmatrix}, \quad \mathbf{e}_2 \simeq \begin{bmatrix} i \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{e}_3 \simeq \begin{bmatrix} -i \\ 1 \\ 0 \end{bmatrix} \qquad \qquad \mathbf{e}_2, \, \mathbf{e}_3 - \text{circular points}, \, i - \text{imaginary unit}$$

- 4. circular points: points at infinity (i, 1, 0), (-i, 1, 0) (preserved even by similarity)
- similarity: scaled Euclidean mapping (does not preserve lengths, areas)

► Homography Subgroups: Affine Mapping

$$\mathbf{H} = \begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$$



AM = The most general homography preserving

then scaling by diag(1, 1.5, 1)then translation by (7, 2)

- parallelism
- ratio of areas
- ratio of lengths on parallel lines
- linear combinations of vectors (e.g. midpoints)
- convex hull
- line at infinity $\underline{\mathbf{n}}_{\infty}$ (not pointwise) does not preserve observe $\mathbf{H}^{\top}\underline{\mathbf{n}}_{\infty}\simeq\begin{bmatrix}a_{11}&a_{21}&0\\a_{12}&a_{22}&0\\t_x&t_y&1\end{bmatrix}\begin{bmatrix}0\\0\\1\end{bmatrix}=\begin{bmatrix}0\\0\\1\end{bmatrix}=\underline{\mathbf{n}}_{\infty}\quad\Rightarrow\quad\underline{\mathbf{n}}_{\infty}\simeq\mathbf{H}^{-\top}\underline{\mathbf{n}}_{\infty}$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} =$$

$$=\begin{bmatrix}0\\0\end{bmatrix}$$

$$_{\infty}$$
 \Rightarrow

$$_{\infty} \simeq \mathbf{H}$$

- angles
- areas
- circular points

Euclidean mappings preserve all properties affine mappings preserve, of course

► Homography Subgroups: General Homography

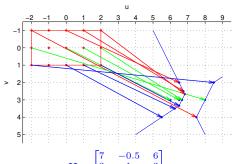
$$\mathbf{H} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$$

preserves only

- incidence and concurrency
- collinearity
- cross-ratio on the line \rightarrow 46

does not preserve

- lengths
- areas
- parallelism
- ratio of areas
- ratio of lengths
- linear combinations of vectors
- (midpoints, etc.)
- convex hull
- line at infinity $\underline{\mathbf{n}}_{\infty}$

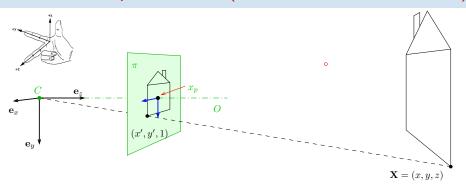


$$\mathbf{H} = \begin{bmatrix} 7 & -0.5 & 6 \\ 3 & 1 & 3 \\ 1 & 0 & 1 \end{bmatrix}$$

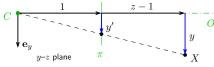
line
$$\underline{\mathbf{n}}=(1,0,1)$$
 is mapped to $\underline{\mathbf{n}}_{\infty}\colon\ \mathbf{H}^{-\top}\underline{\mathbf{n}}\simeq\underline{\mathbf{n}}_{\infty}$

(where in the picture is the line n?)

▶ Canonical Perspective Camera (Pinhole Camera, Camera Obscura)



- 1. in this picture we are looking 'down the street'
- 2. right-handed canonical coordinate system (x,y,z) with unit vectors \mathbf{e}_x , \mathbf{e}_y , \mathbf{e}_z
- 3. origin = center of projection C
- 4. image plane π at unit distance from C
- 5. optical axis O is perpendicular to π
- 6. principal point x_p : intersection of O and π
- 7. perspective camera is given by C and π



projected point in the natural image coordinate system:

$$\frac{y'}{1} = y' = \frac{y}{1+z-1} = \frac{y}{z}, \qquad x' = \frac{x}{z}$$

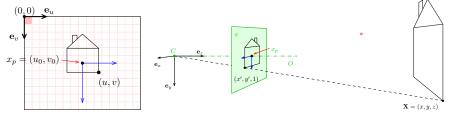
► Natural and Canonical Image Coordinate Systems

projected point in canonical camera ($z \neq 0$)

point in canonical camera
$$(z \neq 0)$$

$$(x',y',1) = \left(\frac{x}{z},\frac{y}{z},1\right) = \frac{1}{z}(x,y,z) \simeq \underbrace{\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}}_{\mathbf{P}_0 = \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix}} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \mathbf{P}_0 \ \underline{\mathbf{X}}$$

projected point in scanned image



$$\begin{aligned} u &= f \frac{x}{z} + u_0 \\ v &= f \frac{y}{z} + v_0 \end{aligned} \qquad \frac{1}{z} \begin{bmatrix} f \, x + z \, u_0 \\ f \, y + z \, v_0 \\ z \end{bmatrix} \simeq \begin{bmatrix} f & 0 & u_0 \\ 0 & f & v_0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \mathbf{K} \mathbf{P}_0 \, \underline{\mathbf{X}} = \mathbf{P} \, \underline{\mathbf{X}}$$

'calibration' matrix ${f K}$ transforms canonical ${f P}_0$ to standard perspective camera ${f P}$

scale by f and translate by $(-u_0, -v_0)$

▶ Computing with Perspective Camera Projection Matrix

$$\underbrace{\begin{bmatrix} f & 0 & u_0 & 0 \\ 0 & f & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}}_{\mathbf{P}} \underbrace{\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}}_{z} = \begin{bmatrix} fx + u_0z \\ fy + v_0z \\ z \end{bmatrix} \simeq \underbrace{\begin{bmatrix} x + \frac{z}{f}u_0 \\ y + \frac{z}{f}v_0 \\ \frac{z}{f} \end{bmatrix}}_{(\mathbf{a})} \simeq \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} = \underline{\mathbf{m}}$$

$$\underbrace{\frac{m_1}{m_3} = \frac{fx}{z} + u_0 = u}_{z}, \qquad \underbrace{\frac{m_2}{m_3} = \frac{fy}{z} + v_0 = v}_{z} \text{ when } m_3 \neq 0$$

$$f$$
 – 'focal length' – converts length ratios to pixels, $[f] = px$, $f > 0$ (u_0, v_0) – principal point in pixels

Perspective Camera:

1. dimension reduction

- since $\mathbf{P} \in \mathbb{R}^{3,4}$
- 2. nonlinear unit change $1 \mapsto 1 \cdot z/f$, see (a) for convenience we use $P_{11} = P_{22} = f$ rather than $P_{33} = 1/f$ and the u_0 , v_0 in relative units
- 3. $m_3=0$ represents points at infinity in image plane π

i.e. points with z=0

▶ Changing The Outer (World) Reference Frame

A transformation of a point from the world to camera coordinate system:

$$\mathbf{X}_c = \mathbf{R} \, \mathbf{X}_w + \mathbf{t}$$

R – camera rotation matrix

$${f t}$$
 – camera translation vector world origin in the camera coordinate frame ${\cal F}_c$

$$\mathbf{P} \, \underline{\mathbf{X}}_{c} = \mathbf{K} \mathbf{P}_{0} \begin{bmatrix} \mathbf{X}_{c} \\ 1 \end{bmatrix} = \mathbf{K} \mathbf{P}_{0} \begin{bmatrix} \mathbf{R} \mathbf{X}_{w} + \mathbf{t} \\ 1 \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \underbrace{\begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{bmatrix}}_{\mathbf{T}} \begin{bmatrix} \mathbf{X}_{w} \\ 1 \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \underline{\mathbf{X}}_{w}$$

 \mathbf{P}_0 (a 3×4 mtx) discards the last row of \mathbf{T}

• \mathbf{R} is rotation, $\mathbf{R}^{\top}\mathbf{R} = \mathbf{I}$, $\det \mathbf{R} = +1$

- $\mathbf{I} \in \mathbb{R}^{3,3}$ identity matrix
- 6 extrinsic parameters: 3 rotation angles (Euler theorem), 3 translation components
- alternative, often used, camera representations

$$P = K \begin{bmatrix} R & t \end{bmatrix} = KR \begin{bmatrix} I & -C \end{bmatrix}$$

 $\mathbf{C}_{\mathbf{q}_3}$ – camera position in the world reference frame \mathcal{F}_w

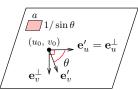
 $\begin{aligned} & \mathbf{t} = -\mathbf{R}\mathbf{C} \\ \text{third row of } \mathbf{R}: \ \mathbf{r}_3 = \mathbf{R}^{-1}[0,0,1]^\top \end{aligned}$

• we can save some conversion and computation by noting that KR[I -C]X = KR(X -C)

► Changing the Inner (Image) Reference Frame

The general form of calibration matrix K includes

- skew angle θ of the digitization raster
- ullet pixel aspect ratio a



$$\mathbf{K} = \begin{bmatrix} a f & -a f \cot \theta & u_0 \\ 0 & f/\sin \theta & v_0 \\ 0 & 0 & 1 \end{bmatrix}$$
 units: $[f] = \mathbf{px}$, $[u_0] = \mathbf{px}$, $[v_0] = \mathbf{px}$, $[a] = 1$

Hints:

- 1. image projects to orthogonal system F^{\perp} , then it maps by skew to F', then by scale af, f to F'', then by translation by u_0 , v_0 to F'''
- 2. Skew: Express point x as

$$\mathbf{x} = u' \mathbf{e}_{u'} + v' \mathbf{e}_{v'} = u^{\perp} \mathbf{e}_{u}^{\perp} + v^{\perp} \mathbf{e}_{v}^{\perp}$$

- e. are unit basis vectors
- 3. **K** maps from F^{\perp} to F''' as

$$w'''[u''', v''', 1]^{\top} = \mathbf{K}[u^{\perp}, v^{\perp}, 1]^{\top}$$

4. figure drawn 'after the transformation' but in F^\perp , pink polygon is a unit square mapped by ${f K}$

▶Summary: Projection Matrix of a General Finite Perspective Camera

$$\underline{\mathbf{m}} \simeq \mathbf{P}\underline{\mathbf{X}}, \qquad \mathbf{P} = \begin{bmatrix} \mathbf{Q} & \mathbf{q} \end{bmatrix} \simeq \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} = \mathbf{K}\mathbf{R} \begin{bmatrix} \mathbf{I} & -\mathbf{C} \end{bmatrix}$$

a recipe for filling ${f P}$

general finite perspective camera has 11 parameters:

- 5 intrinsic parameters: f, u_0 , v_0 , a, heta
- 6 extrinsic parameters: \mathbf{t} , $\mathbf{R}(\alpha, \beta, \gamma)$

finite camera: $\det \mathbf{K} \neq 0$

Representation Theorem: The set of projection matrices $\mathbf P$ of finite perspective cameras is isomorphic to the set of homogeneous 3×4 matrices with the left 3×3 submatrix $\mathbf Q$ non-singular.

random finite camera: Q = rand(3,3); while det(Q)==0, Q = rand(3,3); end, P = [Q, rand(3,1)];

▶ Projection Matrix Decomposition

$$\mathbf{P} = \left[\begin{array}{ccc} \mathbf{Q} & \mathbf{q} \end{array} \right] & \longrightarrow & \mathbf{K} \left[\mathbf{R} & \mathbf{t} \right]$$

 $\mathbf{Q} \in \mathbb{R}^{3,3}$ full rank (if finite perspective camera; see [H&Z, Sec. 6.3] for cameras at infinity) $\mathbf{K} \in \mathbb{R}^{3,3}$ upper triangular with positive diagonal elements

 $\mathbf{R} \in \mathbb{R}^{3,3}$ rotation: $\mathbf{R}^{\mathsf{T}}\mathbf{R} = \mathbf{I}$ and $\det \mathbf{R} = +1$

1. $[\mathbf{Q} \quad \mathbf{q}] = \mathbf{K} [\mathbf{R} \quad \mathbf{t}] = [\mathbf{K} \mathbf{R} \quad \mathbf{K} \mathbf{t}]$

also \rightarrow 35 [H&Z, p. 579]

2. RQ decomposition of Q = KR using three Givens rotations

$$\mathbf{K} = \mathbf{Q} \underbrace{\mathbf{R}_{32} \mathbf{R}_{31} \mathbf{R}_{21}}_{\mathbf{R}^{-1}} \qquad \mathbf{Q} \mathbf{R}_{32} = \begin{bmatrix} \vdots & \vdots \\ \vdots & \vdots \end{bmatrix}, \ \mathbf{Q} \mathbf{R}_{32} \mathbf{R}_{31} = \begin{bmatrix} \vdots & \vdots \\ \vdots & \vdots \end{bmatrix}, \ \mathbf{Q} \mathbf{R}_{32} \mathbf{R}_{31} \mathbf{R}_{21} = \begin{bmatrix} \vdots & \vdots \\ \vdots & \vdots \end{bmatrix}$$

 \mathbf{R}_{ij} zeroes element ij in \mathbf{Q} affecting only columns i and j and the sequence preserves previously zeroed elements, e.g. (see next slide for derivation details)

$$\mathbf{R}_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c \end{bmatrix} \text{ gives } \begin{array}{c} c^2 + s^2 = 1 \\ 0 = k_{32} = c \frac{q_{32}}{q_{32}} + s \frac{q_{33}}{q_{33}} \\ \Rightarrow c = \frac{q_{33}}{\sqrt{q_{32}^2 + q_{33}^2}} \end{array} \quad s = \frac{-q_{32}}{\sqrt{q_{32}^2 + q_{33}^2}}$$

- ⊗ P1; 1pt: Multiply known matrices K, R and then decompose back; discuss numerical errors
 - RQ decomposition nonuniqueness: $KR = KT^{-1}TR$, where T = diag(-1, -1, 1) is also a rotation, we must correct the result so that the diagonal elements of K are all positive 'thin' RQ decomposition
 - care must be taken to avoid overflow, see [Golub & van Loan 2013, sec. 5.2]

RQ Decomposition Step

$$Q = Array \ [q_{s1,s2} \ 6, \ \{3, \ 3\}];$$

$$R32 = \{\{1, \ 0, \ 0\}, \ \{0, \ c, \ -s\}, \ \{0, \ s, \ c\}\}; \ R32 \ // \ MatrixForm$$

$$\begin{pmatrix} q_{1,1} & c & q_{1,2} + s & q_{1,3} & -s & q_{1,2} + c & q_{1,3} \\ q_{2,1} & c & q_{2,2} + s & q_{2,3} & -s & q_{2,2} + c & q_{2,3} \\ q_{3,1} & c & q_{3,2} + s & q_{3,3} & -s & q_{3,2} + c & q_{3,3} \\ \end{pmatrix} ,$$

$$\left\{c \to \frac{q_{3,3}}{\sqrt{q_{3,2}^2 + q_{3,3}^2}}, \ s \to -\frac{q_{3,2}}{\sqrt{q_{3,2}^2 + q_{3,3}^2}}\right\}$$

$$\begin{array}{c} q_{1,1} & \dfrac{ -q_{1,3} \; q_{3,2} + q_{1,2} \; q_{3,3} }{\sqrt{q_{3,2}^2 + q_{3,3}^2}} & \dfrac{q_{1,2} \; q_{3,2} + q_{1,3} \; q_{3,3} }{\sqrt{q_{3,2}^2 + q_{3,3}^2}} \\ q_{2,1} & \dfrac{ -q_{2,3} \; q_{3,2} + q_{2,2} \; q_{3,3} }{\sqrt{q_{3,2}^2 + q_{3,3}^2}} & \dfrac{q_{2,2} \; q_{3,2} + q_{2,3} \; q_{3,3} }{\sqrt{q_{3,2}^2 + q_{3,3}^2}} \\ q_{3,1} & 0 & \sqrt{q_{3,2}^2 + q_{3,3}^2} \end{array}$$

► Center of Projection (Optical Center)

Observation: finite P has a non-trivial right null-space

rank 3 but 4 columns

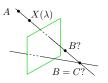
Theorem

Let P be a camera and let there be $\underline{B} \neq 0$ s.t. $P \underline{B} = 0$. Then \underline{B} is equivalent to the projection center \underline{C} (homogeneous, in world coordinate frame).

Proof.

1. Consider spatial line AB (B is given, $A \neq B$). We can write

$$\underline{\mathbf{X}}(\lambda) \simeq \lambda \,\underline{\mathbf{A}} + (1 - \lambda) \,\underline{\mathbf{B}}, \qquad \lambda \in \mathbb{R}$$



П

2. it projects to

$$\mathbf{P}\underline{\mathbf{X}}(\lambda) \simeq \lambda \,\mathbf{P}\,\underline{\mathbf{A}} + (1-\lambda)\,\mathbf{P}\,\underline{\mathbf{B}} \simeq \mathbf{P}\,\underline{\mathbf{A}}$$

- ullet the entire line projects to a single point \Rightarrow it must pass through the projection center of ${f P}$
- this holds for any choice of $A \neq B \Rightarrow$ the only common point of the lines is the C, i.e. $\underline{\mathbf{B}} \simeq \underline{\mathbf{C}}$

Hence

$$\mathbf{0} = \mathbf{P}\, \underline{\mathbf{C}} = egin{bmatrix} \mathbf{Q} & \mathbf{q} \end{bmatrix} egin{bmatrix} \mathbf{C} \ 1 \end{bmatrix} = \mathbf{Q}\, \mathbf{C} + \mathbf{q} \ \Rightarrow \ \mathbf{C} = -\mathbf{Q}^{-1}\mathbf{q}$$

 $\underline{\mathbf{C}} = (c_j)$, where $c_j = (-1)^j \det \mathbf{P}^{(j)}$, in which $\mathbf{P}^{(j)}$ is \mathbf{P} with column j dropped Matlab: \mathbf{C}_{-} homo = null(P); or $\mathbf{C} = -\mathbf{Q} \setminus \mathbf{q}$;

▶Optical Ray

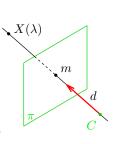
Optical ray: Spatial line that projects to a single image point.

1. consider the following line d unit line direction vector, $\|\mathbf{d}\|=1,\ \lambda\in\mathbb{R}$, Cartesian representation

$$\mathbf{X}(\lambda) = \mathbf{C} + \lambda \, \mathbf{d}$$

2. the projection of the (finite) point $X(\lambda)$ is

$$\begin{split} \underline{\mathbf{m}} &\simeq \begin{bmatrix} \mathbf{Q} & \mathbf{q} \end{bmatrix} \begin{bmatrix} \mathbf{X}(\lambda) \\ 1 \end{bmatrix} = \mathbf{Q}(\mathbf{C} + \lambda \mathbf{d}) + \mathbf{q} = \lambda \, \mathbf{Q} \, \mathbf{d} = \\ &= \lambda \begin{bmatrix} \mathbf{Q} & \mathbf{q} \end{bmatrix} \begin{bmatrix} \mathbf{d} \\ 0 \end{bmatrix} \end{split}$$



 \ldots which is also the image of a point at infinity in \mathbb{P}^3

ullet optical ray line corresponding to image point m is the set

$$\mathbf{X}(\mu) = \mathbf{C} + \mu \mathbf{Q}^{-1} \underline{\mathbf{m}}, \qquad \mu \in \mathbb{R} \qquad (\mu = 1/\lambda)$$

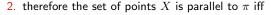
- optical ray direction may be represented by a point at infinity $(\mathbf{d},0)$ in \mathbb{P}^3
- optical ray is expressed in world coordinate frame

▶Optical Axis

Optical axis: Optical ray that is perpendicular to image plane $\boldsymbol{\pi}$

1. points X on a given line N parallel to π project to a point at infinity (u,v,0) in π :

$$\begin{bmatrix} u \\ v \\ 0 \end{bmatrix} \simeq \mathbf{P}\underline{\mathbf{X}} = \begin{bmatrix} \mathbf{q}_1^\top & q_{14} \\ \mathbf{q}_2^\top & q_{24} \\ \mathbf{q}_3^\top & q_{34} \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix}$$



$$\mathbf{q}_3^{\mathsf{T}}\mathbf{X} + q_{34} = 0$$

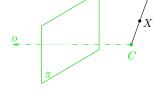
- 4. optical axis direction: substitution $\mathbf{P} \mapsto \lambda \mathbf{P}$ must not change the direction
- 5. we select (assuming $det(\mathbf{R}) > 0$)

$$\mathbf{o} = \det(\mathbf{Q}) \, \mathbf{q}_3$$

if
$$\mathbf{P} \mapsto \lambda \mathbf{P}$$
 then $\det(\mathbf{Q}) \mapsto \lambda^3 \det(\mathbf{Q})$ and $\mathbf{q}_3 \mapsto \lambda \, \mathbf{q}_3$

[H&Z, p. 161]

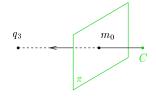
• the axis is expressed in world coordinate frame



▶ Principal Point

Principal point: The intersection of image plane and the optical axis

- 1. as we saw, ${f q}_3$ is the directional vector of optical axis
- 2. we take point at infinity on the optical axis that must project to the principal point $m_{\rm 0}$



3. then

$$\underline{\mathbf{m}}_0 \simeq \begin{bmatrix} \mathbf{Q} & \mathbf{q} \end{bmatrix} \begin{bmatrix} \mathbf{q}_3 \\ 0 \end{bmatrix} = \mathbf{Q} \, \mathbf{q}_3$$

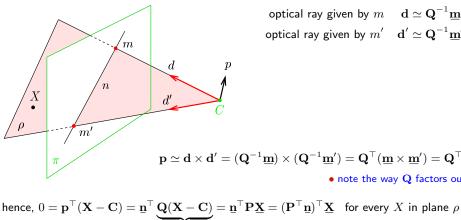
principal point:

 $\underline{\mathbf{m}}_0 \simeq \mathbf{Q} \, \mathbf{q}_3$

• principal point is also the center of radial distortion

▶Optical Plane

A spatial plane with normal p containing the projection center C and a given image line n.



optical ray given by $m extbf{d} \simeq extbf{Q}^{-1} extbf{m}$ optical ray given by $m' \quad \mathbf{d}' \simeq \mathbf{Q}^{-1} \mathbf{m}'$

$$\mathbf{p} \simeq \mathbf{d} \times \mathbf{d}' = (\mathbf{Q}^{-1}\underline{\mathbf{m}}) \times (\mathbf{Q}^{-1}\underline{\mathbf{m}}') = \mathbf{Q}^{\top}(\underline{\mathbf{m}} \times \underline{\mathbf{m}}') = \mathbf{Q}^{\top}\underline{\mathbf{n}}$$

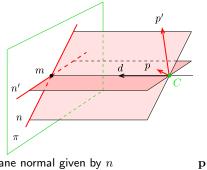
• note the way Q factors out!

optical plane is given by n:

$$ho \simeq \mathbf{P}^{\top} \mathbf{n}$$

 $\rho_1 x + \rho_2 y + \rho_3 z + \rho_4 = 0$

Cross-Check: Optical Ray as Optical Plane Intersection



optical plane normal given by noptical plane normal given by n'

$$\mathbf{p} = \mathbf{Q}^{ op} \mathbf{\underline{n}}$$
 $\mathbf{p}' = \mathbf{Q}^{ op} \mathbf{n'}$

$$\mathbf{d} = \mathbf{p} \times \mathbf{p}' = (\mathbf{Q}^{\top} \underline{\mathbf{n}}) \times (\mathbf{Q}^{\top} \underline{\mathbf{n}}') = \mathbf{Q}^{-1} (\underline{\mathbf{n}} \times \underline{\mathbf{n}}') = \mathbf{Q}^{-1} \underline{\mathbf{m}}$$

▶Summary: Projection Center; Optical Ray, Axis, Plane

General (finite) camera

$$\mathbf{P} = \begin{bmatrix} \mathbf{Q} & \mathbf{q} \end{bmatrix} = \begin{bmatrix} \mathbf{q}_1^\top & q_{14} \\ \mathbf{q}_2^\top & q_{24} \\ \mathbf{q}_3^\top & q_{34} \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} = \mathbf{K} \mathbf{R} \begin{bmatrix} \mathbf{I} & -\mathbf{C} \end{bmatrix}$$

$$\underline{\mathbf{C}} \simeq \text{rnull}(\mathbf{P}), \quad \mathbf{C} = -\mathbf{Q}^{-1}\mathbf{q}$$

projection center (world coords.)
$$ightarrow 35$$

$$\mathbf{d} = \mathbf{Q}^{-1} \, \underline{\mathbf{m}}$$

optical ray direction (world coords.)
$$\rightarrow$$
36

$$\mathbf{o} = \det(\mathbf{Q}) \, \mathbf{q}_3$$
 $\mathbf{m}_0 \simeq \mathbf{Q} \, \mathbf{q}_3$

outward optical axis (world coords.)
$$\rightarrow$$
37 principal point (in image plane) \rightarrow 38

$$\underline{\rho} = \mathbf{P}^{\top} \underline{\mathbf{n}}$$

$$\begin{bmatrix} a f & -a f \cot \theta & u_0 \end{bmatrix}$$

$$\underline{\rho} = \mathbf{P} \cdot \underline{\mathbf{n}}$$
 optical plane (world coords.) \rightarrow 39
$$\mathbf{K} = \begin{bmatrix} a f & -a f \cot \theta & u_0 \\ 0 & f/\sin \theta & v_0 \\ 0 & 0 & 1 \end{bmatrix}$$
 camera (calibration) matrix $(f, u_0, v_0 \text{ in pixels}) \rightarrow 31$

$$\mathbf{K} = \begin{bmatrix} 0 & f/\sin\theta & v_0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R}$$

camera rotation matrix (cam coords.)
$$\rightarrow$$
30 camera translation vector (cam coords.) \rightarrow 30

What Can We Do with An 'Uncalibrated' Perspective Camera?

How far is the engine?

distance between sleepers (ties) 0.806m but we cannot count them, the image resolution is too low

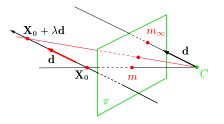
We will review some life-saving theory...
... and build a bit of geometric intuition...

In fact

• 'uncalibrated' = the image contains a 'calibrating object' that suffices for the task at hand

►Vanishing Point

Vanishing point: the limit of the projection of a point that moves along a space line infinitely in one direction. the image of the point at infinity on the line



$$\underline{\mathbf{m}}_{\infty} \simeq \lim_{\lambda \to \pm \infty} \mathbf{P} \begin{bmatrix} \mathbf{X}_0 + \lambda \mathbf{d} \\ 1 \end{bmatrix} = \cdots \simeq \mathbf{Q} \, \mathbf{d} \qquad \text{\circledast P1; 1pt: Prove (use Cartesian coordinates and L'Hôpital's rule)}$$

- ullet the V.P. of a spatial line with directional vector ${f d}$ is ${f m}_{\infty} \simeq {f Q} \, {f d}$
- V.P. is independent on line position X_0 , it depends on its directional vector only
- all parallel (world) lines share the same (image) V.P., including the optical ray defined by m_{∞}

Some Vanishing Point "Applications"

where is the sun?

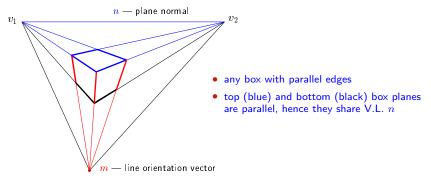
what is the wind direction? (must have video)

fly above the lane, at constant altitude!

▶Vanishing Line

Vanishing line: The set of vanishing points of all lines in a plane

the image of the line at infinity in the plane and in all parallel planes



- V.L. n corresponds to spatial plane of normal vector $\mathbf{p} = \mathbf{Q}^{\top} \underline{\mathbf{n}}$ because this is the normal vector of a parallel optical plane (!) \rightarrow 39
- a spatial plane of normal vector \mathbf{p} has a V.L. represented by $\mathbf{n} = \mathbf{Q}^{-\top} \mathbf{p}$.

▶Cross Ratio

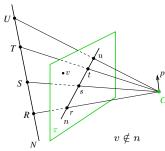
Four distinct collinear spatial points R,S,T,U define cross-ratio

$$[RSTU] = \frac{|\overrightarrow{RT}|}{|\overrightarrow{SR}|} \, \frac{|\overrightarrow{US}|}{|\overrightarrow{TU}|}$$

 $|\overrightarrow{RT}|$ – signed distance from R to T in the arrow direction

6 cross-ratios from four points:

$$[SRUT] = [RSTU], \ [RSUT] = \frac{1}{[RSTU]}, \ [RTSU] = 1 - [RSTU], \ \cdots$$



Obs:
$$[RSTU] = \frac{|\mathbf{r} \ \mathbf{t} \ \mathbf{v}|}{|\mathbf{s} \ \mathbf{r} \ \mathbf{v}|} \cdot \frac{|\mathbf{u} \ \mathbf{s} \ \mathbf{v}|}{|\mathbf{t} \ \mathbf{u} \ \mathbf{v}|}, \quad |\mathbf{r} \ \mathbf{t} \ \mathbf{v}| = \det [\mathbf{r} \ \mathbf{t} \ \mathbf{v}] = (\mathbf{r} \times \mathbf{t})^{\top} \mathbf{v}$$
 (1)

Corollaries:

- cross ratio is invariant under homographies $\underline{\mathbf{x}}' \simeq \mathbf{H}\underline{\mathbf{x}}$ plug $\mathbf{H}\underline{\mathbf{x}}$ in (1): $(\mathbf{H}^{-\top}(\underline{\mathbf{r}} \times \underline{\mathbf{t}}))^{\top}\mathbf{H}\underline{\mathbf{v}}$
- ullet cross ratio is invariant under perspective projection: $[RSTU] = [\, r\, s\, t\, u\,]$
- 4 collinear points: any perspective camera will "see" the same cross-ratio of their images
- we measure the same cross-ratio in image as on the world line
- one of the points R, S, T, U may be at infinity (we take the limit, in effect $\frac{\infty}{\infty} = 1$)

▶1D Projective Coordinates

The 1-D projective coordinate of a point P is defined by the following cross-ratio:

$$[\mathbf{P}] = [P_0 \ P_1 \ \mathbf{P} \ P_\infty] = [p_0 \ p_1 \ \mathbf{p} \ p_\infty] = \frac{|\overline{p_0} \ \mathbf{p}|}{|\overline{p_1} \ \overline{p_0}|} \frac{|\overline{p_\infty} \ \overline{p_1}|}{|\overline{p} \ \overline{p_\infty}|} = [\mathbf{p}]$$

naming convention:

$$P_0$$
 – the origin

$$[P_0] = 0$$

$$P_1$$
 – the unit point

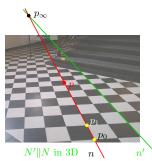
$$[P_1] = 1$$

$$P_{\infty}$$
 – the supporting point $[P_{\infty}]=\pm\infty$

$$[P_{\infty}] = \pm \infty$$

$$[P] = [p]$$

[P] is equal to Euclidean coordinate along N[p] is its measurement in the image plane



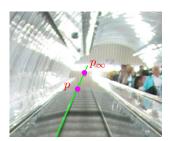
Applications

- Given the image of a 3D line N, the origin, the unit point, and the vanishing point, then the Euclidean coordinate of any point $P \in N$ can be determined \rightarrow 48
- Finding v.p. of a line through a regular object

 \rightarrow 49

Application: Counting Steps

• Namesti Miru underground station in Prague



detail around the vanishing point

Result: [P] = 214 steps (correct answer is 216 steps)

4Mpx camera

Application: Finding the Horizon from Repetitions



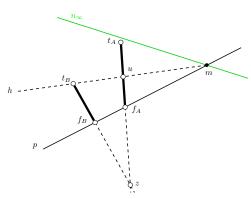
in 3D: $|P_0P| = 2|P_0P_1|$ then

$$[P_0 P_1 P P_\infty] = \frac{|P_0 P|}{|P_1 P_0|} = 2 \quad \Rightarrow \quad x_\infty = \frac{x_0 (2x - x_1) - x x_1}{x + x_0 - 2x_1}$$

- x 1D coordinate along the yellow line, positive in the arrow direction
- could be applied to counting steps (\rightarrow 48) if there was no supporting line
- P1; 1pt: How high is the camera above the floor?

Homework Problem

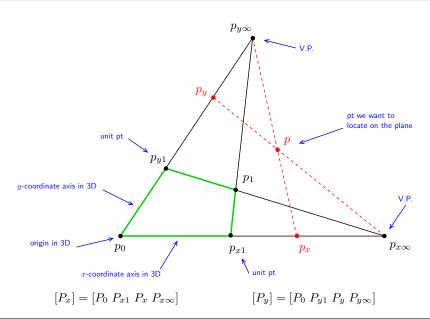
- H2; 3pt: What is the ratio of heights of Building A to Building B?
 - expected: conceptual solution; use notation from this figure
 - deadline: LD+2 weeks



Hints

- 1. What are the interesting properties of line h connecting the top t_B of Building B with the point m at which the horizon intersects the line p joining the foots f_A , f_B of both buildings? [1 point]
- 2. How do we actually get the horizon n_{∞} ? (we do not see it directly, there are some hills there...) [1 point]
- 3. Give the formula for measuring the length ratio. [formula = 1 point]

2D Projective Coordinates



Application: Measuring on the Floor (Wall, etc)

San Giovanni in Laterano, Rome

- measuring distances on the floor in terms of tile units
- what are the dimensions of the seal? Is it circular (assuming square tiles)?
- needs no explicit camera calibration

because we can see the calibrating object (vanishing points)

Module III

Computing with a Single Camera

- Calibration: Internal Camera Parameters from Vanishing Points and Lines
- Camera Resection: Projection Matrix from 6 Known Points
- Exterior Orientation: Camera Rotation and Translation from 3 Known Points
- Relative Orientation Problem: Rotation and Translation between Two Point Sets

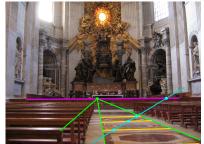
covered by

- [1] [H&Z] Secs: 8.6, 7.1, 22.1
- [2] Fischler, M.A. and Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24(6):381–395, 1981
- [3] [Golub & van Loan 2013, Sec. 2.5]

Obtaining Vanishing Points and Lines

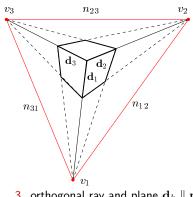
• orthogonal direction pairs can be collected from more images by camera rotation

ullet vanishing line can be obtained from vanishing points and/or regularities (ightarrow49)



▶ Camera Calibration from Vanishing Points and Lines

Problem: Given finite vanishing points and/or vanishing lines, compute K



$$\mathbf{d}_{i} = \lambda_{i} \mathbf{Q}^{-1} \mathbf{y}_{i}, \qquad i = 1, 2, 3 \rightarrow 43$$

$$\mathbf{p}_{ij} = \mu_{ij} \mathbf{Q}^{\top} \underline{\mathbf{n}}_{ij}, \quad i, j = 1, 2, 3, \ i \neq j \rightarrow 39$$
 (2)

ullet simple method: solve (2) after eliminating $\lambda_i, \, \mu_{ij}.$

Special Configurations

1. orthogonal rays $\mathbf{d}_1 \perp \mathbf{d}_2$ in space then

 $0 = \mathbf{d}_1^{\top} \mathbf{d}_2 = \underline{\mathbf{v}}_1^{\top} \mathbf{Q}^{-\top} \mathbf{Q}^{-1} \underline{\mathbf{v}}_2 = \underline{\mathbf{v}}_1^{\top} \underbrace{(\mathbf{K} \mathbf{K}^{\top})^{-1}}_{\omega \text{ (IAC)}} \underline{\mathbf{v}}_2$ 2. orthogonal planes $\mathbf{p}_{ij} \perp \mathbf{p}_{ik}$ in space

$$0 = \mathbf{p}_{ij}^{\top} \mathbf{p}_{ik} = \underline{\mathbf{n}}_{ij}^{\top} \mathbf{Q} \mathbf{Q}^{\top} \underline{\mathbf{n}}_{ik} = \underline{\mathbf{n}}_{ij}^{\top} \boldsymbol{\omega}^{-1} \underline{\mathbf{n}}_{ik}$$

3. orthogonal ray and plane $\mathbf{d}_k \parallel \mathbf{p}_{ij}, \ k \neq i, j$ normal parallel to optical ray $\mathbf{p}_{ij} \simeq \mathbf{d}_k \quad \Rightarrow \quad \mathbf{Q}^\top \underline{\mathbf{n}}_{ij} = \frac{\lambda_i}{\mu_{ij}} \mathbf{Q}^{-1} \underline{\mathbf{y}}_k \quad \Rightarrow \quad \underline{\mathbf{n}}_{ij} = \varkappa \mathbf{Q}^{-\top} \mathbf{Q}^{-1} \underline{\mathbf{y}}_k = \varkappa \boldsymbol{\omega} \, \underline{\mathbf{y}}_k, \quad \varkappa \neq 0$

- ullet n_{ij} may be constructed from non-orthogonal v_i and v_j , e.g. using the cross-ratio
- ω is a symmetric, positive definite 3×3 matrix

 IAC = Image of Absolute Conic

▶cont'd

	configuration	equation	# constraints
(3)	orthogonal v.p.	$\underline{\mathbf{v}}_i^{\top} \boldsymbol{\omega} \underline{\mathbf{v}}_j = 0$	1
(4)	orthogonal v.l.	$\underline{\mathbf{n}}_{ij}^{\top} \boldsymbol{\omega}^{-1} \underline{\mathbf{n}}_{ik} = 0$	1
(5)	v.p. orthogonal to v.l.	$\underline{\mathbf{n}}_{ij} = \boldsymbol{arkappa} \underline{\mathbf{v}}_k$	2
(6)	orthogonal image raster $\theta=\pi/2$	$\omega_{12}=\omega_{21}=0$	1
(7)	unit aspect $a=1$ when $\theta=\pi/2$	$\omega_{11}-\omega_{22}=0$	1
(8)	known principal point $u_0=v_0=0$	$\omega_{13} = \omega_{31} = \omega_{23} = \omega_{32} = 0$) 2

• these are homogeneous linear equations for the 5 parameters in ω in the form $\mathbf{D}\mathbf{w} = \mathbf{0}$ \varkappa can be eliminated from (5)

symmetric 3×3

- ullet we need at least 5 constraints for full ω
- we get \mathbf{K} from $\boldsymbol{\omega}^{-1} = \mathbf{K}\mathbf{K}^{\top}$ by Choleski decomposition the decomposition returns a positive definite upper triangular matrix one avoids solving an explicit set of quadratic equations for the parameters in \mathbf{K}

Examples

Assuming orthogonal raster, unit aspect (ORUA): $\theta = \pi/2$, a = 1

$$\boldsymbol{\omega} \simeq \begin{bmatrix} 1 & 0 & -u_0 \\ 0 & 1 & -v_0 \\ -u_0 & -v_0 & f^2 + u_0^2 + v_0^2 \end{bmatrix}$$

Ex 1:

Assuming ORUA and known $m_0 = (u_0, v_0)$, two finite orthogonal vanishing points give f

$$\mathbf{v}_1^{\mathsf{T}} \boldsymbol{\omega} \, \mathbf{v}_2 = 0 \quad \Rightarrow \quad \boldsymbol{f}^2 = \left| (\mathbf{v}_1 - \mathbf{m}_0)^{\mathsf{T}} (\mathbf{v}_2 - \mathbf{m}_0) \right|$$

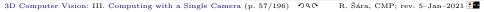
in this formula, \mathbf{v}_i , \mathbf{m}_0 are Cartesian (not homogeneous)!

Ex 2:

Ex 2: Non-orthogonal vanishing points \mathbf{v}_i , \mathbf{v}_j , known angle ϕ : $\cos\phi = \frac{\mathbf{v}_i^\top \boldsymbol{\omega} \mathbf{v}_j}{\sqrt{\mathbf{v}_i^\top \boldsymbol{\omega} \mathbf{v}_i} \sqrt{\mathbf{v}_j^\top \boldsymbol{\omega} \mathbf{v}_j}}$

- leads to polynomial equations
- e.g. ORUA and $u_0 = v_0 = 0$ gives

$$(\mathbf{f}^2 + \mathbf{v}_i^{\top} \mathbf{v}_i)^2 = (\mathbf{f}^2 + ||\mathbf{v}_i||^2) \cdot (\mathbf{f}^2 + ||\mathbf{v}_i||^2) \cdot \cos^2 \phi$$



► Camera Orientation from Two Finite Vanishing Points

Problem: Given K and two vanishing points corresponding to two known orthogonal directions \mathbf{d}_1 , \mathbf{d}_2 , compute camera orientation \mathbf{R} with respect to the plane.

• 3D coordinate system choice, e.g.:

$$\mathbf{d}_1 = (1, 0, 0), \quad \mathbf{d}_2 = (0, 1, 0)$$

we know that

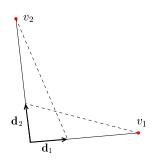
$$\mathbf{d}_i \simeq \mathbf{Q}^{-1} \underline{\mathbf{v}}_i = (\mathbf{K}\mathbf{R})^{-1} \underline{\mathbf{v}}_i = \mathbf{R}^{-1} \underbrace{\mathbf{K}^{-1} \underline{\mathbf{v}}_i}_{\underline{\mathbf{w}}_i}$$

 $\mathbf{Rd}_i \simeq \mathbf{w}_i$

- knowing $\mathbf{d}_{1,2}$ we conclude that $\underline{\mathbf{w}}_i/\|\underline{\mathbf{w}}_i\|$ is the i-th column \mathbf{r}_i of \mathbf{R}
- the third column is orthogonal:
 r₃ ≃ r₁ × r₂

$$\mathbf{R} = \begin{bmatrix} \underline{\mathbf{w}}_1 & \underline{\mathbf{w}}_2 & \underline{\mathbf{w}}_1 \times \underline{\mathbf{w}}_2 \\ \|\underline{\mathbf{w}}_1\| & \|\underline{\mathbf{w}}_2\| & \|\underline{\mathbf{w}}_1 \times \underline{\mathbf{w}}_2\| \end{bmatrix}$$

• in general we have to care about the signs $\pm \underline{\mathbf{w}}_i$ (such that $\det \mathbf{R} = 1$)



some suitable scenes

Application: Planar Rectification

Principle: Rotate camera (image plane) parallel to the plane of interest.

$$\underline{m} \simeq \mathbf{K} \mathbf{R} \begin{bmatrix} \mathbf{I} & -\mathbf{C} \end{bmatrix} \underline{\mathbf{X}}$$

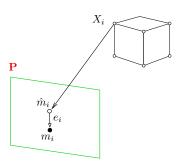
$$\underline{\mathbf{m}}' \simeq \mathbf{K} \begin{bmatrix} \mathbf{I} & -\mathbf{C} \end{bmatrix} \underline{\mathbf{X}}$$

$$\underline{\mathbf{m}}' \simeq \mathbf{K}(\mathbf{K}\mathbf{R})^{-1}\,\underline{\mathbf{m}} = \mathbf{K}\mathbf{R}^{\top}\mathbf{K}^{-1}\,\underline{\mathbf{m}} = \mathbf{H}\,\underline{\mathbf{m}}$$

- H is the rectifying homography
- \bullet both K and R can be calibrated from two finite vanishing points assuming ORUA ${\to}57$
- not possible when one of them is (or both are) infinite
- without ORUA we would need 4 additional views to calibrate ${f K}$ as on ightarrow 54

▶Camera Resection

Camera calibration and orientation from a known set of $k \ge 6$ reference points and their images $\{(X_i, m_i)\}_{i=1}^6$.

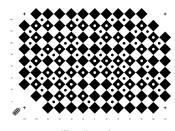


- X_i are considered exact
- m_i is a measurement subject to detection error

$$\mathbf{m}_i = \hat{\mathbf{m}}_i + \mathbf{e}_i$$
 Cartesian

• where $\lambda_i \, \hat{\mathbf{m}}_i = \mathbf{P} \mathbf{X}_i$

Resection Targets



calibration chart

resection target with translation stage



automatic calibration point detection

- target translated at least once
- by a calibrated (known) translation
- ullet X_i point locations looked up in a table based on their code

▶ The Minimal Problem for Camera Resection

Problem: Given k = 6 corresponding pairs $\{(X_i, m_i)\}_{i=1}^k$, find **P**

$$\lambda_{i}\underline{\mathbf{m}}_{i} = \mathbf{P}\underline{\mathbf{X}}_{i}, \qquad \mathbf{P} = \begin{bmatrix} \mathbf{q}_{1}^{\top} & q_{14} \\ \mathbf{q}_{2}^{\top} & q_{24} \\ \mathbf{q}_{3}^{\top} & q_{34} \end{bmatrix} \qquad \underbrace{\underline{\mathbf{X}}_{i} = (x_{i}, y_{i}, z_{i}, 1), \quad i = 1, 2, \dots, k, \ k = 6}_{\underline{\mathbf{m}}_{i} = (u_{i}, v_{i}, 1), \quad \lambda_{i} \in \mathbb{R}, \ \lambda_{i} \neq 0, \ |\lambda_{i}| < \infty}_{i}$$
easily modifiable for infinite points X_{i} but be aware of \rightarrow 64

expanded:
$$\lambda_i u_i = \mathbf{q}_1^\top \mathbf{X}_i + q_{14}, \quad \lambda_i v_i = \mathbf{q}_2^\top \mathbf{X}_i + q_{24}, \quad \lambda_i = \mathbf{q}_3^\top \mathbf{X}_i + q_{34}$$
 after elimination of λ_i : $(\mathbf{q}_3^\top \mathbf{X}_i + q_{34}) u_i = \mathbf{q}_1^\top \mathbf{X}_i + q_{14}, \quad (\mathbf{q}_3^\top \mathbf{X}_i + q_{34}) v_i = \mathbf{q}_2^\top \mathbf{X}_i + q_{24}$

Then

$$\mathbf{A}\mathbf{q} = \begin{bmatrix} \mathbf{X}_{1}^{\top} & 1 & \mathbf{0}^{\top} & 0 & -u_{1}\mathbf{X}_{1}^{\top} & -u_{1} \\ \mathbf{0}^{\top} & 0 & \mathbf{X}_{1}^{\top} & 1 & -v_{1}\mathbf{X}_{1}^{\top} & -v_{1} \\ \vdots & & & & \vdots \\ \mathbf{X}_{k}^{\top} & 1 & \mathbf{0}^{\top} & 0 & -u_{k}\mathbf{X}_{k}^{\top} & -u_{k} \\ \mathbf{0}^{\top} & 0 & \mathbf{X}_{k}^{\top} & 1 & -v_{k}\mathbf{X}_{k}^{\top} & -v_{k} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{q}_{1} \\ \mathbf{q}_{14} \\ \mathbf{q}_{2} \\ \mathbf{q}_{24} \\ \mathbf{q}_{3} \\ \mathbf{q}_{34} \end{bmatrix} = \mathbf{0}$$
(9)

- we need 11 indepedent parameters for P
- $\mathbf{A} \in \mathbb{R}^{2k,12}$, $\mathbf{q} \in \mathbb{R}^{12}$
- 6 points in a general position give rank A = 12 and there is no (non-trivial) null space
- drop one row to get rank-11 matrix, then the basis vector of the null space of A gives q

▶ The Jack-Knife Solution for k = 6

- given the 6 correspondences, we have 12 equations for the 11 parameters
- can we use all the information present in the 6 points?

Jack-knife estimation

- 1. n := 0
- 2. for i = 1, 2, ..., 2k do
 - a) delete *i*-th row from A, this gives A_i
 - b) if dim null $\mathbf{A}_i > 1$ continue with the next i
 - c) n := n + 1
 - d) compute the right null-space \mathbf{q}_i of \mathbf{A}_i
 - e) $\hat{\mathbf{q}}_i := \mathbf{q}_i$ normalized to $q_{34} = 1$ and dimension-reduced assuming finite cam. with $P_{3,4} = 1$
- 3. from all n vectors $\hat{\mathbf{q}}_i$ collected in Step 1d compute

- have a solution + an error estimate, per individual elements of \mathbf{P} (except P_{34})
- at least 5 points must be in a general position (→64)
- large error indicates near degeneracy
- computation not efficient with k > 6 points, needs $\binom{2k}{11}$ draws, e.g. $k = 7 \Rightarrow 364$ draws
- better error estimation method: decompose P_i to K_i , R_i , t_i (\rightarrow 33), represent R_i with 3 parameters (e.g. Euler angles, or in Cayley representation \rightarrow 142) and compute the errors for the parameters
- ullet even better: use the SE(3) Lie group for $(\mathbf{R}_i, \, \mathbf{t}_i)$ and average its Lie-algebra representations

e.g. by 'economy-size' SVD

▶ Degenerate (Critical) Configurations for Camera Resection

Let $\mathcal{X} = \{X_i; i = 1, ...\}$ be a set of points and $\mathbf{P}_1 \not\simeq \mathbf{P}_j$ be two regular (rank-3) cameras. Then two configurations $(\mathbf{P}_1, \mathcal{X})$ and $(\mathbf{P}_i, \mathcal{X})$ are image-equivalent if

$$\mathbf{P}_1 \underline{\mathbf{X}}_i \simeq \mathbf{P}_j \underline{\mathbf{X}}_i$$
 for all $X_i \in \mathcal{X}$

there is a non-trivial set of other cameras that see the same image

Results

arkappa then camera resection is non-unique and all image-equivalent camera centers lie on a spatial line $\mathcal C$ with the $C_\infty=arkappa\cap\mathcal C$ excluded

• importantly: If all calibration points $X_i \in \mathcal{X}$ lie on a plane

- this also means we cannot resect if all X_i are infinite \bullet and more: by adding points $X_i \in \mathcal{X}$ to \mathcal{C} we gain nothing
- there are additional image-equivalent configurations, see next

proof sketch in [H&Z, Sec. 22.1.2]

Note that if \mathbf{Q} , \mathbf{T} are suitable homographies then $\mathbf{P}_1 \simeq \mathbf{Q} \mathbf{P}_0 \mathbf{T}$, where \mathbf{P}_0 is canonical and the analysis can be made with $\hat{\mathbf{P}}_i \simeq \mathbf{Q}^{-1} \mathbf{P}_i$

$$\mathbf{P}_0 \underbrace{\mathbf{T} \underline{\mathbf{X}}_i}_{\mathbf{Y}_i} \simeq \hat{\mathbf{P}}_j \underbrace{\mathbf{T} \underline{\mathbf{X}}_i}_{\mathbf{Y}_i} \quad \text{for all} \quad Y_i \in \mathcal{Y}$$

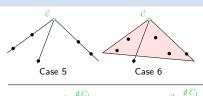
Case 4

cont'd (all cases)

Case 3

Case 2

Case 1



- cameras C_1 , C_2 co-located at point \mathcal{C}
- points on three optical rays or one optical ray and one optical plane
- Case 5: camera sees 3 isolated point images Case 6: cam. sees a line of points and an isolated point
- points lie on C and
 - 1. on two lines meeting \mathcal{C} at C_{∞} , C_{∞}'
 - 2. or on a plane meeting \mathcal{C} at C_{∞}

• cameras lie on a line $\mathcal{C} \setminus \{C_{\infty}, C_{\infty}'\}$

- not necessarily an ellipse ullet points lie on $\mathcal C$ and an additional line meeting the conic at C_{∞}

• cameras lie on a planar conic $\mathcal{C} \setminus \{C_{\infty}\}$

- · Case 2: camera sees 2 lines of points
- ullet cameras and points all lie on a twisted cubic ${\mathcal C}$
- Case 1: camera sees points on a conic dangerous but unlikely

Case 4

3D Computer Vision: III. Computing with a Single Camera (p. 65/196) 999 R. Šára, CMP: rev. 5-Jan-2021

►Three-Point Exterior Orientation Problem (P3P)

<u>Calibrated</u> camera rotation and translation from <u>Perspective images of 3 reference Points.</u>

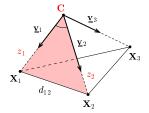
Problem: Given K and three corresponding pairs $\{(m_i, X_i)\}_{i=1}^3$, find R, C by solving

$$\lambda_i \underline{\mathbf{m}}_i = \mathbf{KR} \left(\mathbf{X}_i - \mathbf{C} \right), \qquad i = 1, 2, 3$$
 \mathbf{X}_i Cartesian

1. Transform $\underline{\mathbf{v}}_i \stackrel{\text{def}}{=} \mathbf{K}^{-1}\underline{\mathbf{m}}_i$. Then

$$\lambda_i \underline{\mathbf{v}}_i = \mathbf{R} \left(\mathbf{X}_i - \mathbf{C} \right). \tag{10}$$

2. If there was no rotation in (10), the situation would look like this



- 3. and we could shoot 3 lines from the given points X_i in given directions $\underline{\mathbf{v}}_i$ to get \mathbf{C}
- 4. given C we solve (10) for λ_i , R

If there is rotation R

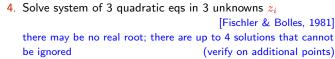
1. Eliminate \mathbf{R} by taking rotation preserves length: $\|\mathbf{R}\mathbf{x}\| = \|\mathbf{x}\|$

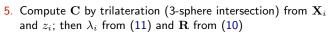
$$|\lambda_i| \cdot ||\underline{\mathbf{v}}_i|| = ||\mathbf{X}_i - \mathbf{C}|| \stackrel{\text{def}}{=} z_i$$
 (11)

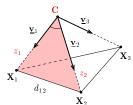
2. Consider only angles among $\underline{\mathbf{v}}_i$ and apply Cosine Law per triangle $(\mathbf{C}, \mathbf{X}_i, \mathbf{X}_j)$ $i, j = 1, 2, 3, i \neq j$

$$d_{ij}^2 = z_i^2 + z_j^2 - 2 z_i z_j c_{ij},$$

$$\mathbf{z}_i = \|\mathbf{X}_i - \mathbf{C}\|, \ d_{ij} = \|\mathbf{X}_j - \mathbf{X}_i\|, \ c_{ij} = \cos(\angle \underline{\mathbf{v}}_i \ \underline{\mathbf{v}}_j)$$

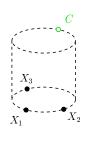






Similar problems (P4P with unknown f) at http://cmp.felk.cvut.cz/minimal/ (with code)

Degenerate (Critical) Configurations for Exterior Orientation



unstable solution

can be detected by error propagation

ullet center of projection C located on the orthogonal circular cylinder with base circumscribing the three points X_i unstable: a small change of X_i results in a large change of C

degenerate

• camera C is coplanar with points (X_1, X_2, X_3) but is not on the circumscribed circle of (X_1, X_2, X_3)

camera sees points on a line

no solution

1. C cocyclic with (X_1, X_2, X_3) camera sees points on a line

additional critical configurations depend on the quadratic equations solver

[Haralick et al. IJCV 1994]

▶ Populating A Little ZOO of Minimal Geometric Problems in CV

problem	given	unknown	slide
camera resection	6 world–img correspondences $\left\{(X_i,m_i) ight\}_{i=1}^6$	P	62
exterior orientation	$oxed{\mathbf{K}}$, 3 world–img correspondences $ig\{(X_i,m_i)ig\}_{i=1}^3$	R, C	66
relative orientation	3 world-world correspondences $\left\{(X_i,Y_i) ight\}_{i=1}^3$	R, t	70

- camera resection and exterior orientation are similar problems in a sense:
 - we do resectioning when our camera is uncalibrated
 - we do orientation when our camera is calibrated
- relative orientation involves no camera (see next)
- more problems to come

The Relative Orientation Problem

Problem: Given point triples (X_1, X_2, X_3) and (Y_1, Y_2, Y_3) in a general position in \mathbf{R}^3 such that the correspondence $X_i \leftrightarrow Y_i$ is known, determine the relative orientation (\mathbf{R}, \mathbf{t}) that maps \mathbf{X}_i to \mathbf{Y}_i , i.e.

$$\mathbf{Y}_i = \mathbf{R}\mathbf{X}_i + \mathbf{t}, \quad i = 1, 2, 3.$$

Applies to:

- 3D scanners
- partial reconstructions from different viewpoints

Obs: Let the centroid be $\bar{\mathbf{X}} = \frac{1}{3} \sum_i \mathbf{X}_i$ and analogically for $\bar{\mathbf{Y}}$. Then $\bar{\mathbf{Y}} = \mathbf{R}\bar{\mathbf{X}} + \mathbf{f}$.

$$\mathbf{Z}_{i} \stackrel{\text{def}}{=} (\mathbf{Y}_{i} - \bar{\mathbf{Y}}) = \mathbf{R}(\mathbf{X}_{i} - \bar{\mathbf{X}}) \stackrel{\text{def}}{=} \mathbf{R} \mathbf{W}_{i}$$

If all dot products are equal, $\mathbf{Z}_i^{\top}\mathbf{Z}_j = \mathbf{W}_i^{\top}\mathbf{W}_j$ for i,j=1,2,3, we have

$$\mathbf{R}^* = \begin{bmatrix} \mathbf{W}_1 & \mathbf{W}_2 & \mathbf{W}_3 \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{Z}_1 & \mathbf{Z}_2 & \mathbf{Z}_3 \end{bmatrix}$$

Otherwise (in practice) we setup a minimization problem

$$\mathbf{R}^* = \arg\min_{\mathbf{R}} \sum_{i=1}^3 \|\mathbf{Z}_i - \mathbf{R}\mathbf{W}_i\|^2 \quad \text{s.t.} \quad \mathbf{R}^{\top}\mathbf{R} = \mathbf{I}, \quad \det\mathbf{R} = 1$$

$$\arg\min_{\mathbf{R}} \sum_{i} \|\mathbf{Z}_{i} - \mathbf{R}\mathbf{W}_{i}\|^{2} = \arg\min_{\mathbf{R}} \sum_{i} \left(\|\mathbf{Z}_{i}\|^{2} - 2\mathbf{Z}_{i}^{\top}\mathbf{R}\mathbf{W}_{i} + \|\mathbf{W}_{i}\|^{2} \right) = \cdots$$

$$\cdots = \arg\max_{\mathbf{R}} \sum_{i} \mathbf{Z}_{i}^{\top}\mathbf{R}\mathbf{W}_{i}$$

cont'd (What is Linear Algebra Telling Us?)

Obs 1: Let $A: B = \sum_{i,j} a_{ij}b_{ij}$ be the dot-product (Frobenius inner product) over real matrices. Then

$$\mathbf{A} : \mathbf{B} = \mathbf{B} : \mathbf{A} = \operatorname{tr}(\mathbf{A}^{\top} \mathbf{B})$$

Obs 2: (cyclic property for matrix trace)

$$tr(\mathbf{ABC}) = tr(\mathbf{CAB})$$

Obs 3: $(\mathbf{Z}_i, \mathbf{W}_i \text{ are vectors})$

$$\mathbf{Z}_{i}^{\top}\mathbf{R}\mathbf{W}_{i} = \operatorname{tr}(\mathbf{Z}_{i}^{\top}\mathbf{R}\mathbf{W}_{i}) = \operatorname{tr}(\mathbf{W}_{i}\mathbf{Z}_{i}^{\top}\mathbf{R}) = (\mathbf{Z}_{i}\mathbf{W}_{i}^{\top}) : \mathbf{R} = \mathbf{R} : (\mathbf{Z}_{i}\mathbf{W}_{i}^{\top})$$

Let the SVD be

$$\sum_i \mathbf{Z}_i \mathbf{W}_i^\top \stackrel{\mathrm{def}}{=} \mathbf{M} = \mathbf{U} \mathbf{D} \mathbf{V}^\top$$

Then

$$\mathbf{R} : \mathbf{M} = \mathbf{R} : (\mathbf{U}\mathbf{D}\mathbf{V}^{\top}) = \operatorname{tr}(\mathbf{R}^{\top}\mathbf{U}\mathbf{D}\mathbf{V}^{\top}) = \operatorname{tr}(\mathbf{V}^{\top}\mathbf{R}^{\top}\mathbf{U}\mathbf{D}) = (\mathbf{U}^{\top}\mathbf{R}\mathbf{V}) : \mathbf{D}$$

cont'd: The Algorithm

We are solving

$$\mathbf{R}^* = \arg\max_{\mathbf{R}} \sum_i \mathbf{Z}_i^{\top} \mathbf{R} \mathbf{W}_i = \arg\max_{\mathbf{R}} \left(\mathbf{U}^{\top} \mathbf{R} \mathbf{V} \right) : \mathbf{D}$$

A particular solution is found as follows:

- $\mathbf{U}^{\mathsf{T}}\mathbf{R}\mathbf{V}$ must be (1) orthogonal, and most similar to (2) diagonal, (3) positive definite
- Since U, V are orthogonal matrices then the solution to the problem is among $\mathbf{R}^* = \mathbf{U}\mathbf{S}\mathbf{V}^{\top}$, where \mathbf{S} is diagonal and orthogonal, i.e. one of

$$\pm \operatorname{diag}(1,1,1), \quad \pm \operatorname{diag}(1,-1,-1), \quad \pm \operatorname{diag}(-1,1,-1), \quad \pm \operatorname{diag}(-1,-1,1)$$

- $oldsymbol{\cdot}$ $oldsymbol{\mathrm{U}}^{ op} oldsymbol{\mathrm{V}}$ is not necessarily positive definite
- We choose S so that $(\mathbf{R}^*)^{\top}\mathbf{R}^* = \mathbf{I}$

Alg:

- 1. Compute matrix $\mathbf{M} = \sum_{i} \mathbf{Z}_{i} \mathbf{W}_{i}^{\top}$.
- 2. Compute SVD $\mathbf{M} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$.
- 3. Compute all $\mathbf{R}_k = \mathbf{U}\mathbf{S}_k\mathbf{V}^{\top}$ that give $\mathbf{R}_k^{\top}\mathbf{R}_k = \mathbf{I}$.
- 4. Compute $\mathbf{t}_k = \bar{\mathbf{Y}} \mathbf{R}_k \bar{\mathbf{X}}$.
- The algorithm can be used for more than 3 points
- Triple pairs can be pre-filtered based on motion invariants (lengths, angles)
- The P3P problem is very similar but not identical

Module IV

Computing with a Camera Pair

- Camera Motions Inducing Epipolar Geometry
- Estimating Fundamental Matrix from 7 Correspondences
- Estimating Essential Matrix from 5 Correspondences
- Triangulation: 3D Point Position from a Pair of Corresponding Points

covered by

- [1] [H&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1
- [2] H. Li and R. Hartley. Five-point motion estimation made easy. In *Proc ICPR* 2006, pp. 630–633

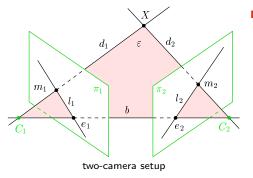
additional references

H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. *Nature*, 293 (5828):133–135, 1981.

▶ Geometric Model of a Camera Pair

Epipolar geometry:

- brings constraints necessary for inter-image matching
- its parametric form encapsulates information about the relative pose of two cameras



Description

baseline b joins projection centers C₁, C₂

$$\mathbf{b} = \mathbf{C}_2 - \mathbf{C}_1$$

• epipole $e_i \in \pi_i$ is the image of C_i :

$$\underline{\mathbf{e}}_1 \simeq \mathbf{P}_1\underline{\mathbf{C}}_2, \quad \underline{\mathbf{e}}_2 \simeq \mathbf{P}_2\underline{\mathbf{C}}_1$$

• $l_i \in \pi_i$ is the image of epipolar plane

$$\varepsilon = (C_2, X, C_1)$$

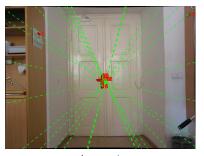
• l_i is the epipolar line in image π_i induced by m_i in image π_i

corresponding d_2 , b, d_1 are coplanar **Epipolar constraint:**

a necessary condition \rightarrow 87

$$\mathbf{P}_i = \begin{bmatrix} \mathbf{Q}_i & \mathbf{q}_i \end{bmatrix} = \mathbf{K}_i \begin{bmatrix} \mathbf{R}_i & \mathbf{t}_i \end{bmatrix} = \mathbf{K}_i \mathbf{R}_i \begin{bmatrix} \mathbf{I} & -\mathbf{C}_i \end{bmatrix} \quad i = 1, 2$$
 $\rightarrow 31$

Epipolar Geometry Example: Forward Motion



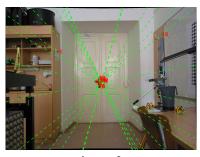


image 1

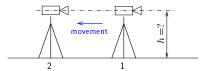
red: correspondences

green: epipolar line pairs per correspondence

image 2

click on the image to see their IDs same ID in both images

How high was the camera above the floor?



▶ Cross Products and Maps by Skew-Symmetric 3×3 Matrices

There is an equivalence $\mathbf{b} \times \mathbf{m} = [\mathbf{b}]_{\times} \mathbf{m}$, where $[\mathbf{b}]_{\times}$ is a 3×3 skew-symmetric matrix

$$\left[\mathbf{b}\right]_{ imes} = egin{bmatrix} 0 & -b_3 & b_2 \\ b_3 & 0 & -b_1 \\ -b_2 & b_1 & 0 \end{bmatrix}, \quad \text{assuming} \quad \mathbf{b} = egin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Some properties

1. $[{\bf b}]_{\vee}^{\top} = -[{\bf b}]_{\vee}$ the general antisymmetry property

2. A is skew-symmetric iff $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = 0$ for all \mathbf{x} skew-sym mtx generalizes cross products

3.
$$[\mathbf{b}]_{\times}^3 = -\|\mathbf{b}\|^2 \cdot [\mathbf{b}]_{\times}$$

Frobenius norm $(\|\mathbf{A}\|_F = \sqrt{\operatorname{tr}(\mathbf{A}^{\top}\mathbf{A})} = \sqrt{\sum_{i,j} |a_{ij}|^2})$

4.
$$\|[\mathbf{b}]_{\times}\|_{F} = \sqrt{2} \|\mathbf{b}\|$$

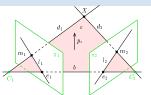
5. $[\mathbf{b}]_{\times} \mathbf{b} = \mathbf{0}$

6. rank $[\mathbf{b}]_{\vee} = 2$ iff $||\mathbf{b}|| > 0$

check minors of [b]

- 7. eigenvalues of $[\mathbf{b}]$ are $(0, \lambda, -\lambda)$
- 8. for any 3×3 regular \mathbf{B} : $\mathbf{B}^{\top}[\mathbf{B}\mathbf{z}] \mathbf{B} = \det \mathbf{B}[\mathbf{z}]$ follows from the factoring on $\rightarrow 39$
- 9. in particular: if $\mathbf{R}\mathbf{R}^{\top} = \mathbf{I}$ then $[\mathbf{R}\mathbf{b}]_{\downarrow} = \mathbf{R}[\mathbf{b}]_{\downarrow}\mathbf{R}^{\top}$
- note that if \mathbf{R}_b is rotation about \mathbf{b} then $\mathbf{R}_b\mathbf{b} = \mathbf{b}$

▶Expressing Epipolar Constraint Algebraically



$$\mathbf{P}_i = \begin{bmatrix} \mathbf{Q}_i & \mathbf{q}_i \end{bmatrix} = \mathbf{K}_i \begin{bmatrix} \mathbf{R}_i & \mathbf{t}_i \end{bmatrix}, \ i = 1, 2$$

 \mathbf{R}_{21} – relative camera rotation, $\mathbf{R}_{21} = \mathbf{R}_2 \mathbf{R}_1^{ op}$

 ${f t}_{21}$ - relative camera translation, ${f t}_{21}={f t}_2-{f R}_{21}{f t}_1=-{f R}_2{f b}$ ightarrow74

 ${f b}\,$ – baseline vector (world coordinate system)

remember:
$$\mathbf{C} = -\mathbf{Q}^{-1}\mathbf{q} = -\mathbf{R}^{\top}\mathbf{t}$$
 \rightarrow 33 and 35

$$0 = \mathbf{d}_{2}^{\top} \mathbf{p}_{\varepsilon} \simeq \underbrace{(\mathbf{Q}_{2}^{-1} \underline{\mathbf{m}}_{2})^{\top}}_{\text{optical ray}} \underbrace{\mathbf{Q}_{1}^{\top} \mathbf{l}_{1}}_{\text{optical plane}} = \underline{\mathbf{m}}_{2}^{\top} \underbrace{\mathbf{Q}_{2}^{-\top} \mathbf{Q}_{1}^{\top} (\underline{\mathbf{e}}_{1} \times \underline{\mathbf{m}}_{1})}_{\text{image of } \varepsilon \text{ in } \pi_{2}} = \underline{\mathbf{m}}_{2}^{\top} \underbrace{\left(\mathbf{Q}_{2}^{-\top} \mathbf{Q}_{1}^{\top} [\underline{\mathbf{e}}_{1}]_{\times}\right)}_{\text{fundamental matrix } \mathbf{F}} \underline{\mathbf{m}}_{1}$$

Epipolar constraint $\underline{\mathbf{m}}_{2}^{\mathsf{T}}\mathbf{F}\,\underline{\mathbf{m}}_{1}=0$ is a point-line incidence constraint

- point m₂ is incident on epipolar line l₂ \(\simeq \mathbf{F} \mathbf{m}_1\)
 point m₁ is incident on epipolar line l₁ \(\simeq \mathbf{F}^\tomm \mathbf{m}_2\)
- $\mathbf{F}\mathbf{e}_1 = \mathbf{F}^{\top}\mathbf{e}_2 = \mathbf{0}$ (non-trivially) • all epipolars meet at the epipole
- $\underline{\mathbf{e}}_1 \simeq \mathbf{Q}_1 \mathbf{C}_2 + \mathbf{q}_1 = \mathbf{Q}_1 \mathbf{C}_2 \mathbf{Q}_1 \mathbf{C}_1 = \mathbf{K}_1 \mathbf{R}_1 \mathbf{b} = -\mathbf{K}_1 \mathbf{R}_1 \mathbf{R}_2^\top \mathbf{t}_{21} = -\mathbf{K}_1 \mathbf{R}_{21}^\top \mathbf{t}_{21}$
- $$\begin{split} \mathbf{F} &= \mathbf{Q}_2^{-\top} \mathbf{Q}_1^{\top} \left[\underline{\mathbf{e}}_1 \right]_{\times} = \mathbf{Q}_2^{-\top} \mathbf{Q}_1^{\top} \left[-\mathbf{K}_1 \mathbf{R}_{21}^{\top} \mathbf{t}_{21} \right]_{\times} = \overset{\circledast}{\cdots} \overset{1}{\simeq} \mathbf{K}_2^{-\top} \left[-\mathbf{t}_{21} \right]_{\times} \mathbf{R}_{21} \mathbf{K}_1^{-1} \text{ fundamental } \\ \mathbf{E} &= \left[-\mathbf{t}_{21} \right]_{\times} \mathbf{R}_{21} = \quad \left[\mathbf{R}_2 \mathbf{b} \right]_{\times} \mathbf{R}_{21} = \mathbf{R}_{21} \left[\mathbf{R}_1 \mathbf{b} \right]_{\times} \quad = \mathbf{R}_{21} \left[-\mathbf{R}_{21}^{\top} \mathbf{t}_{21} \right]_{\times} \quad \text{essential} \end{split}$$

baseline in Cam 2 baseline in Cam 1

▶The Structure and the Key Properties of the Fundamental Matrix

$$\mathbf{F} = (\underbrace{\mathbf{Q}_2 \mathbf{Q}_1^{-1}}_{\text{epipolar homography } \mathbf{H}_e})^{-\top} [\mathbf{e}_1]_{\times} = \underbrace{\mathbf{K}_2^{-\top} \mathbf{R}_{21} \mathbf{K}_1^{\top}}_{\mathbf{H}_e^{-\top}} [\mathbf{e}_1]_{\times} \overset{\rightarrow 76}{\simeq} [\mathbf{H}_e \mathbf{e}_1]_{\times} \mathbf{H}_e = \mathbf{K}_2^{-\top} \underbrace{[-\mathbf{t}_{21}]_{\times} \mathbf{R}_{21}}_{\text{essential matrix } \mathbf{E}} \mathbf{K}_1^{-1}$$

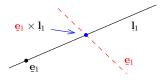
1. E captures relative camera pose only [Longuet-Higgins 1981]

(the change of the world coordinate system does not change ${\bf E}$)

$$\begin{bmatrix} \mathbf{R}_i' & \mathbf{t}_i' \end{bmatrix} = \begin{bmatrix} \mathbf{R}_i & \mathbf{t}_i \end{bmatrix} \cdot \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^\top & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R}_i \mathbf{R} & \mathbf{R}_i \mathbf{t} + \mathbf{t}_i \end{bmatrix},$$
then
$$\mathbf{R}_{21}' = \mathbf{R}_2' {\mathbf{R}_1'}^\top = \dots = \mathbf{R}_{21}$$

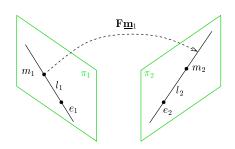
$$\mathbf{t}_{21}' = \mathbf{t}_2' - \mathbf{R}_{21}' \mathbf{t}_1' = \dots = \mathbf{t}_{21}$$

- 2. the translation length \mathbf{t}_{21} is lost since \mathbf{E} is homogeneous
- 3. F maps points to lines and it is not a homography
- 4. \mathbf{H}_e maps epipoles to epipoles, $\mathbf{H}_e^{-\top}$ epipolar lines to epipolar lines: $\mathbf{l}_2 \simeq \mathbf{H}_e^{-\top} \mathbf{l}_1$



- ullet replacement for $\mathbf{H}_e^{- op}$ for epipolar line map: $\mathbf{l}_2 \simeq \mathbf{F}[\mathbf{e}_1]_{\vee} \mathbf{l}_1$
- proof by point/line 'transmutation' (left)
- point $\underline{\mathbf{e}}_1$ does not lie on line $\underline{\mathbf{e}}_1$ (dashed): $\underline{\mathbf{e}}_1^{\top}\underline{\mathbf{e}}_1 \neq 0$
- $\mathbf{F}[\underline{\mathbf{e}}_1]_{\times}$ is not a homography, unlike $\mathbf{H}_e^{-\top}$ but it does the same job for epipolar line mapping

►Summary: Relations and Mappings Involving Fundamental Matrix



$$0 = \mathbf{\underline{m}}_{2}^{\top} \mathbf{F} \, \mathbf{\underline{m}}_{1}$$

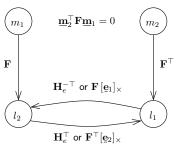
$$\mathbf{\underline{e}}_{1} \simeq \text{null}(\mathbf{F}), \qquad \mathbf{\underline{e}}_{2} \simeq \text{null}(\mathbf{F}^{\top})$$

$$\mathbf{\underline{e}}_{1} \simeq \mathbf{H}_{e}^{-1} \mathbf{\underline{e}}_{2} \qquad \mathbf{\underline{e}}_{2} \simeq \mathbf{H}_{e} \mathbf{\underline{e}}_{1}$$

$$\mathbf{\underline{l}}_{1} \simeq \mathbf{F}^{\top} \mathbf{\underline{m}}_{2} \qquad \mathbf{\underline{l}}_{2} \simeq \mathbf{F} \mathbf{\underline{m}}_{1}$$

$$\mathbf{\underline{l}}_{1} \simeq \mathbf{H}_{e}^{\top} \mathbf{\underline{l}}_{2} \qquad \mathbf{\underline{l}}_{2} \simeq \mathbf{H}_{e}^{-\top} \mathbf{\underline{l}}_{1}$$

$$\mathbf{\underline{l}}_{1} \simeq \mathbf{F}^{\top} [\mathbf{\underline{e}}_{2}]_{\times} \mathbf{\underline{l}}_{2} \qquad \mathbf{\underline{l}}_{2} \simeq \mathbf{F} [\mathbf{\underline{e}}_{1}]_{\times} \mathbf{\underline{l}}_{1}$$



- $\mathbf{F}[\mathbf{e}_1]_{\vee}$ maps lines to lines but it is not a homography
- $\mathbf{H}_e = \mathbf{Q}_2 \mathbf{Q}_1^{-1}$ is the epipolar homography \rightarrow 78 $\mathbf{H}_{e}^{-\top}$ maps epipolar lines to epipolar lines, where

$$\mathbf{H}_e = \mathbf{Q}_2 \mathbf{Q}_1^{-1} = \mathbf{K}_2 \mathbf{R}_{21} \mathbf{K}_1^{-1}$$
 you have seen this $ightarrow$ 59

▶ Representation Theorem for Fundamental Matrices

Def: \mathbf{F} is fundamental when $\mathbf{F} \simeq \mathbf{H}^{-\top}[\underline{e}_1]_{\times}$, where \mathbf{H} is regular and $\underline{e}_1 \simeq \operatorname{null} \mathbf{F} \neq \mathbf{0}$.

Theorem: A 3×3 matrix **A** is fundamental iff it is of rank 2.

Proof.

<u>Direct</u>: By the geometry, **H** is full-rank, $\underline{e}_1 \neq 0$, hence $\mathbf{H}^{-\top}[\underline{e}_1]_{\times}$ is a 3×3 matrix of rank 2.

Converse:

- 1. let $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$ be the SVD of \mathbf{A} of rank 2; then $\mathbf{D} = \operatorname{diag}(\lambda_1, \lambda_2, 0), \ \lambda_1 \geq \lambda_2 > 0$
- 2. we write $\mathbf{D} = \mathbf{BC}$, where $\mathbf{B} = \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3)$, $\mathbf{C} = \operatorname{diag}(1, 1, 0)$, $\lambda_3 = \lambda_2$ (w.l.o.g.)
- 3. then $\mathbf{A} = \mathbf{U}\mathbf{B}\mathbf{C}\mathbf{V}^{\top} = \mathbf{U}\mathbf{B}\mathbf{C}\underbrace{\mathbf{W}\mathbf{W}^{\top}}_{\mathbf{Y}}\mathbf{V}^{\top}$ with \mathbf{W} rotation
- 4. we look for a rotation W that maps C to a skew-symmetric S, i.e. S = CW
- 5. then $\mathbf{W} = \begin{bmatrix} 0 & \alpha & 0 \\ -\alpha & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $|\alpha| = 1$, and $\mathbf{S} = [\mathbf{s}]_{\times}$, $\mathbf{s} = (0, 0, 1)$

6. we write
$$\mathbf{A} = \mathbf{U}\mathbf{B}[\mathbf{s}]_{\times}\mathbf{W}^{\top}\mathbf{V}^{\top} = \overset{\circledast}{\cdots} \overset{1}{=} \underbrace{\overset{\mathbf{v}_{3} - 3rd \text{ column of } \mathbf{V}, \ \mathbf{u}_{3} - 3rd \text{ column of } \mathbf{U}}_{\simeq \mathbf{H}^{-\top}} [\mathbf{v}_{3}]_{\times} \simeq \underbrace{[\mathbf{H}\mathbf{v}_{3}]_{\times}}_{\simeq [\mathbf{u}_{3}]_{\times}} \mathbf{H}, \tag{12}$$

- we also got a (non-unique: $\alpha=\pm 1$) decomposition formula for fundamental matrices
- it follows there is no constraint on F except the rank

7. H regular, $\mathbf{A}\mathbf{v}_3 = \mathbf{0}$, $\mathbf{u}_3\mathbf{A} = \mathbf{0}$ for $\mathbf{v}_3 \neq \mathbf{0}$, $\mathbf{u}_3 \neq \mathbf{0}$

R. Šára, CMP; rev. 5-Jan-2021

► Representation Theorem for Essential Matrices

Theorem

Let ${\bf E}$ be a 3×3 matrix with SVD ${\bf E}={\bf U}{\bf D}{\bf V}^{\top}$. Then ${\bf E}$ is essential iff ${\bf D}\simeq {\rm diag}(1,1,0)$.

Proof.

Direct:

If \mathbf{E} is an essential matrix, then the epipolar homography matrix is a rotation matrix $(\to 78)$, hence $\mathbf{H}^{-\top} \simeq \mathbf{U}\mathbf{B}(\mathbf{V}\mathbf{W})^{\top}$ in (12) must be (λ -scaled) orthogonal, therefore $\mathbf{B} = \lambda \mathbf{I}$.

Converse:

 ${\bf E}$ is fundamental with ${\bf D}=\lambda\,{\rm diag}(1,1,0)$ then we do not need ${\bf B}$ (as if ${\bf B}=\lambda {\bf I})$ in (12) and ${\bf U}({\bf V}{\bf W})^{\top}$ is orthogonal, as required.

▶Essential Matrix Decomposition

We are decomposing \mathbf{E} to $\mathbf{E}\simeq \left[-\mathbf{t}_{21}
ight]_{ imes}\mathbf{R}_{21}=\mathbf{R}_{21}\left[-\mathbf{R}_{21}^{ op}\mathbf{t}_{21}
ight]_{ imes}$

[H&Z, sec. 9.6]

- 1. compute SVD of $\mathbf{E} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$ and verify $\mathbf{D} = \lambda \operatorname{diag}(1, 1, 0)$
- 2. ensure $U,\,V$ are rotation matrices by $U\mapsto \det(U)U,\,V\mapsto \det(V)V$
- 3. compute

$$\mathbf{R}_{21} = \mathbf{U} \underbrace{\begin{bmatrix} 0 & \alpha & 0 \\ -\alpha & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\mathbf{V}^{\top}}, \quad \mathbf{t}_{21} = -\beta \,\mathbf{u}_{3}, \qquad |\alpha| = 1, \quad \beta \neq 0$$
 (13)

Notes

- $\mathbf{E} \simeq \left[\mathbf{u}_{3}
 ight]_{ imes} \mathbf{R}_{21}$
- ullet ${f t}_{21}$ is recoverable up to scale eta and direction ${
 m sign}\,eta$
- ullet the result for ${f R}_{21}$ is unique up to $lpha=\pm 1$ despite non-uniqueness of SVD

• $\mathbf{v}_3 \simeq \mathbf{R}_{21}^{\top} \mathbf{t}_{21}$ by (12), hence $\mathbf{R}_{21} \mathbf{v}_3 \simeq \mathbf{t}_{21} \simeq \mathbf{u}_3$ since it must fall in left null space by

ullet the change of sign in lpha rotates the solution by 180° about ${f t}_{21}$

$$\mathbf{R}(\alpha) = \mathbf{U}\mathbf{W}\mathbf{V}^{\top}, \ \mathbf{R}(-\alpha) = \mathbf{U}\mathbf{W}^{\top}\mathbf{V}^{\top} \Rightarrow \mathbf{T} = \mathbf{R}(-\alpha)\mathbf{R}^{\top}(\alpha) = \cdots = \mathbf{U}\operatorname{diag}(-1, -1, 1)\mathbf{U}^{\top}$$
 which is a rotation by 180° about $\mathbf{u}_3 \simeq \mathbf{t}_{21}$:

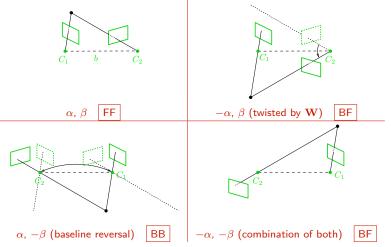
$$\mathbf{U}\operatorname{diag}(-1,-1,1)\mathbf{U}^{\top}\mathbf{u}_{3} = \mathbf{U}\begin{bmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix} = \mathbf{u}_{3}$$

4 solution sets for 4 sign combinations of α , β

see next for geometric interpretation

▶ Four Solutions to Essential Matrix Decomposition

Transform the world coordinate system so that the origin is in Camera 2. Then $\mathbf{t}_{21} = -\mathbf{b}$ and \mathbf{W} rotates about the baseline \mathbf{b} .



- chirality constraint: all 3D points are in front of both cameras
- this singles-out the upper left case

▶7-Point Algorithm for Estimating Fundamental Matrix

 $\mathbf{y}_i^{\mathsf{T}} \mathbf{F} \mathbf{x}_i = (\mathbf{y}_i \mathbf{x}_i^{\mathsf{T}}) : \mathbf{F} = (\operatorname{vec}(\mathbf{y}_i \mathbf{x}_i^{\mathsf{T}}))^{\mathsf{T}} \operatorname{vec}(\mathbf{F}),$

Problem: Given a set $\{(x_i, y_i)\}_{i=1}^k$ of k=7 correspondences, estimate f. m. **F**.

$$\mathbf{y}_{i}^{\top} \mathbf{F} \, \mathbf{x}_{i} = 0, \ i = 1, \dots, k, \quad \underline{\text{known}}: \ \mathbf{x}_{i} = (u_{i}^{1}, v_{i}^{1}, 1), \ \mathbf{y}_{i} = (u_{i}^{2}, v_{i}^{2}, 1)$$

terminology: correspondence = truth, later: match = algorithm's result; hypothesized corresp.

Solution:

$$\mathbf{D} = \begin{bmatrix} \left(\operatorname{vec}(\mathbf{y}_1 \mathbf{x}_1^\top) \right)^\top \\ \left(\operatorname{vec}(\mathbf{y}_2 \mathbf{x}_2^\top) \right)^\top \\ \left(\operatorname{vec}(\mathbf{y}_2 \mathbf{x}_3^\top) \right)^\top \\ \left(\operatorname{vec}(\mathbf{y}_2 \mathbf{x}_3^\top) \right)^\top \\ \vdots \\ \left(\operatorname{vec}(\mathbf{y}_k \mathbf{x}_k^\top) \right)^\top \end{bmatrix} = \begin{bmatrix} u_1^1 u_1^2 & u_1^1 v_1^2 & u_1^1 & u_1^2 v_1^1 & v_1^1 v_1^2 & v_1^1 & u_1^2 & v_1^2 & 1 \\ u_2^1 u_2^2 & u_2^1 v_2^2 & u_2^1 & u_2^2 v_2^1 & v_2^1 v_2^2 & v_2^1 & u_2^2 & v_2^2 & 1 \\ u_3^1 u_3^2 & u_3^1 v_3^2 & u_3^1 & u_3^2 v_3^1 & v_3^1 v_3^2 & v_3^1 & u_3^2 & v_3^2 & 1 \\ \vdots & & & & & \vdots \\ u_k^1 u_k^2 & u_k^1 v_k^2 & u_k^1 & u_k^2 v_k^1 & v_k^1 v_k^2 & v_k^1 & u_k^2 & v_k^2 & 1 \end{bmatrix} \in \mathbb{R}^{k,9}$$

rotation property of matrix trace

 $\mathbf{D} \operatorname{vec}(\mathbf{F}) = \mathbf{0}$

▶7-Point Algorithm Continued

$$\mathbf{D} \operatorname{vec}(\mathbf{F}) = \mathbf{0}, \quad \mathbf{D} \in \mathbb{R}^{k,9}$$

- for k=7 we have a rank-deficient system, the null-space of ${\bf D}$ is 2-dimensional
- but we know that $\det \mathbf{F} = 0$, hence
 - 1. find a basis of the null space of \mathbf{D} : \mathbf{F}_1 , \mathbf{F}_2

by SVD or QR factorization

2. get up to 3 real solutions for α from

$$\det(\alpha \mathbf{F}_1 + (1 - \alpha)\mathbf{F}_2) = 0$$
 cubic equation in α

- 3. get up to 3 fundamental matrices $\mathbf{F} = \alpha_i \mathbf{F}_1 + (1 \alpha_i) \mathbf{F}_2$
- 4. if $rank \mathbf{F} < 2$ then fail
- the result may depend on image (domain) transformations
- normalization improves conditioning

 \rightarrow 92

• this gives a good starting point for the full algorithm

→110

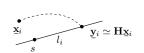
dealing with mismatches need not be a part of the 7-point algorithm

→111

▶ Degenerate Configurations for Fundamental Matrix Estimation

When is F not uniquely determined from any number of correspondences? [H&Z, Sec. 11.9]

- 1. when images are related by homography
 - a) camera centers coincide $\mathbf{t}_{21} = 0$: $\mathbf{H} = \mathbf{K}_2 \mathbf{R}_{21} \mathbf{K}_1^{-1}$ \mathbf{H} as in epipolar homography b) camera moves but all 3D points lie in a plane (\mathbf{n}, d) : $\mathbf{H} = \mathbf{K}_2(\mathbf{R}_{21} - \mathbf{t}_{21}\mathbf{n}^\top/d)\mathbf{K}_1^{-1}$
 - in both cases: epipolar geometry is not defined
 - we get an arbitrary solution from the 7-point algorithm in the form of $\mathbf{F} = [\mathbf{s}] \setminus \mathbf{H}$



- note that $[\mathbf{s}]_{\vee} \mathbf{H} \simeq \mathbf{H}' [\mathbf{s}']_{\vee} \rightarrow 76$ • given (arbitrary, fixed) s
- and correspondence $x_i \leftrightarrow y_i$ • y_i is the image of x_i : $\mathbf{y}_i \simeq \mathbf{H}\mathbf{x}_i$
 - a necessary condition: $y_i \in l_i$, $l_i \simeq \mathbf{s} \times \mathbf{H} \mathbf{x}_i$

$$0 = \mathbf{y}_{i}^{\top}(\mathbf{s} \times \mathbf{H}\mathbf{x}_{i}) = \mathbf{y}_{i}^{\top}[\mathbf{s}] \mathbf{H}\mathbf{x}_{i} \text{ for any } \mathbf{x}_{i}, \mathbf{y}_{i}, \mathbf{s} (!)$$

hyperboloid of one sheet, cones, cylinders, two planes

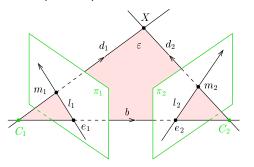
- 2. both camera centers and all 3D points lie on a ruled quadric
 - there are 3 solutions for F

notes

- estimation of **E** can deal with planes: $[\mathbf{s}] \cdot \mathbf{H}$ is essential, then $\mathbf{H} = \mathbf{R} \mathbf{t} \mathbf{n}^{\top}/d$, and $\mathbf{s} \simeq \mathbf{t}$ not arbitrary
- a complete treatment with additional degenerate configurations in [H&Z, sec. 22.2]
- a stronger epipolar constraint could reject some configurations

A Note on Oriented Epipolar Constraint

- a tighter epipolar constraint preserves orientations
- requires all points and cameras be on the same side of the plane at infinity



$$(\underline{\mathbf{e}}_2 \times \underline{\mathbf{m}}_2) \ \overset{\scriptscriptstyle +}{\sim} \ \mathbf{F} \, \underline{\mathbf{m}}_1$$

notation: $\underline{\mathbf{m}} \overset{+}{\sim} \underline{\mathbf{n}}$ means $\underline{\mathbf{m}} = \lambda \underline{\mathbf{n}}$, $\lambda > 0$

- we can read the constraint as $(\mathbf{e}_2 \times \mathbf{m}_2) \stackrel{+}{\sim} \mathbf{H}_e^{-\top} (\mathbf{e}_1 \times \mathbf{m}_1)$
- ullet note that the constraint is not invariant to the change of either sign of ${f m}_i$
- all 7 correspondence in 7-point alg. must have the same sign

this may help reject some wrong matches, see ightarrow 111

[Chum et al. 2004]

see later

• an even more tight constraint: scene points in front of both cameras expensive this is called chirality constraint

▶5-Point Algorithm for Relative Camera Orientation

Problem: Given $\{m_i, m_i'\}_{i=1}^5$ corresponding image points and calibration matrix \mathbf{K} , recover the camera motion \mathbf{R} , \mathbf{t} .

Obs:

- 1. $\mathbf{E} 9$ numbers but 7 DOF rank-deficient 3×3 homogeneous matrix with two equal singular numbers
- 2. $\mathbf{R} 3 \, \mathsf{DOF}$, $\mathbf{t} 2 \, \mathsf{DOF}$ only, in total $5 \, \mathsf{DOF} \to \mathsf{we}$ need 8 5 = 3 constraints on \mathbf{E}
- 3. **E** essential iff it has two equal singular values and the third is zero $\rightarrow 81$

This gives an equation system:

$$\mathbf{\underline{v}}_i^{\mathsf{T}} \mathbf{E} \, \mathbf{\underline{v}}_i' = 0$$
 5 linear constraints $(\mathbf{\underline{v}} \simeq \mathbf{K}^{-1} \mathbf{\underline{m}})$ det $\mathbf{\underline{E}} = 0$ 1 cubic constraint

- 1. estimate **E** by SVD from $\mathbf{v}_i^{\mathsf{T}} \mathbf{E} \mathbf{v}_i' = 0$ by the null-space method 4D null space
- 2. this gives $\mathbf{E} \simeq x\mathbf{E}_1 + y\mathbf{E}_2 + z\mathbf{E}_3 + \mathbf{E}_4$
- 3. at most 10 (complex) solutions for x, y, z from the cubic constraints
- when all 3D points lie on a plane: at most 2 real solutions (twisted-pair) can be disambiguated in 3 views
 or by chirality constraint (→83) unless all 3D points are closer to one camera
 - 6-point problem for unknown f
 - resources at http://cmp.felk.cvut.cz/minimal/5_pt_relative.php

[Kukelova et al. BMVC 2008]

► The Triangulation Problem

Problem: Given cameras P_1 , P_2 and a correspondence $x \leftrightarrow y$ compute a 3D point X projecting to x and y

$$\lambda_1 \, \underline{\mathbf{x}} = \mathbf{P}_1 \underline{\underline{\mathbf{X}}}, \qquad \lambda_2 \, \underline{\mathbf{y}} = \mathbf{P}_2 \underline{\underline{\mathbf{X}}}, \qquad \underline{\mathbf{x}} = \begin{bmatrix} u^1 \\ v^1 \\ 1 \end{bmatrix}, \qquad \underline{\mathbf{y}} = \begin{bmatrix} u^2 \\ v^2 \\ 1 \end{bmatrix}, \qquad \mathbf{P}_i = \begin{bmatrix} (\mathbf{p}_1^i)^\top \\ (\mathbf{p}_2^i)^\top \\ (\mathbf{p}_3^i)^\top \end{bmatrix}$$

Linear triangulation method

$$u^{1} (\mathbf{p}_{3}^{1})^{\top} \underline{\mathbf{X}} = (\mathbf{p}_{1}^{1})^{\top} \underline{\mathbf{X}}, \qquad u^{2} (\mathbf{p}_{3}^{2})^{\top} \underline{\mathbf{X}} = (\mathbf{p}_{1}^{2})^{\top} \underline{\mathbf{X}},$$
$$v^{1} (\mathbf{p}_{3}^{1})^{\top} \underline{\mathbf{X}} = (\mathbf{p}_{2}^{1})^{\top} \underline{\mathbf{X}}, \qquad v^{2} (\mathbf{p}_{3}^{2})^{\top} \underline{\mathbf{X}} = (\mathbf{p}_{2}^{2})^{\top} \underline{\mathbf{X}},$$

Gives

$$\mathbf{D}\underline{\mathbf{X}} = \mathbf{0}, \qquad \mathbf{D} = \begin{bmatrix} u^{1} \left(\mathbf{p}_{3}^{1}\right)^{\top} - \left(\mathbf{p}_{1}^{1}\right)^{\top} \\ v^{1} \left(\mathbf{p}_{3}^{1}\right)^{\top} - \left(\mathbf{p}_{2}^{1}\right)^{\top} \\ u^{2} \left(\mathbf{p}_{3}^{2}\right)^{\top} - \left(\mathbf{p}_{1}^{2}\right)^{\top} \\ v^{2} \left(\mathbf{p}_{3}^{2}\right)^{\top} - \left(\mathbf{p}_{2}^{2}\right)^{\top} \end{bmatrix}, \qquad \mathbf{D} \in \mathbb{R}^{4,4}, \quad \underline{\mathbf{X}} \in \mathbb{R}^{4}$$
(14)

- back-projected rays will generally not intersect due to image error, see next
- ullet using Jack-knife (o 63) not recommended sensitive to small error
- we will use SVD (→90)
- but the result will not be invariant to projective frame replacing $P_1 \mapsto P_1H$, $P_2 \mapsto P_2H$ does not always result in $X \mapsto H^{-1}X$
- note the homogeneous form in (14) can represent points $\underline{\mathbf{X}}$ at infinity

► The Least-Squares Triangulation by SVD

• if D is full-rank we may minimize the algebraic least-squares error

$$\boldsymbol{\varepsilon}^2(\mathbf{X}) = \|\mathbf{D}\mathbf{X}\|^2 \quad \text{s.t.} \quad \|\mathbf{X}\| = 1, \qquad \mathbf{X} \in \mathbb{R}^4$$

• let D_i be the *i*-th row of D, then

$$\|\mathbf{D}\underline{\mathbf{X}}\|^2 = \sum_{i=1}^4 (\mathbf{D}_i \, \underline{\mathbf{X}})^2 = \sum_{i=1}^4 \underline{\mathbf{X}}^\top \mathbf{D}_i^\top \mathbf{D}_i \, \underline{\mathbf{X}} = \underline{\mathbf{X}}^\top \mathbf{Q} \, \underline{\mathbf{X}}, \text{ where } \mathbf{Q} = \sum_{i=1}^4 \mathbf{D}_i^\top \mathbf{D}_i = \mathbf{D}^\top \mathbf{D} \in \mathbb{R}^{4,4}$$

• we write the SVD of \mathbf{Q} as $\mathbf{Q} = \sum_{i=1}^{n} \sigma_j^2 \mathbf{u}_j \mathbf{u}_j^{\mathsf{T}}$, in which [Golub & van Loan 2013, Sec. 2.5]

$$\sigma_1^2 \ge \dots \ge \sigma_4^2 \ge 0$$
 and $\mathbf{u}_l^{\mathsf{T}} \mathbf{u}_m = \begin{cases} 0 & \text{if } l \ne m \\ 1 & \text{otherwise} \end{cases}$

• then $\underline{\mathbf{X}} = \arg\min_{\mathbf{q}} \mathbf{q}^{\mathsf{T}} \mathbf{Q} \mathbf{q} = \mathbf{u}_4$

Proof (by contradiction).

Let $\bar{\mathbf{q}}=\sum_{i=1}^4 a_i\mathbf{u}_i$ s.t. $\sum_{i=1}^4 a_i^2=1$, then $\|\bar{\mathbf{q}}\|=1$, as desired, and

$$\bar{\mathbf{q}}^{\top}\mathbf{Q}\bar{\mathbf{q}} = \sum_{i=1}^{4} \sigma_{j}^{2} \bar{\mathbf{q}}^{\top}\mathbf{u}_{j} \mathbf{u}_{j}^{\top} \bar{\mathbf{q}} = \sum_{i=1}^{4} \sigma_{j}^{2} (\mathbf{u}_{j}^{\top} \bar{\mathbf{q}})^{2} = \dots = \sum_{i=1}^{4} a_{j}^{2} \sigma_{j}^{2} \geq \sum_{i=1}^{4} a_{j}^{2} \sigma_{4}^{2} = \sigma_{4}^{2}$$

• if $\sigma_4 \ll \sigma_3$, there is a unique solution $\underline{\mathbf{X}} = \mathbf{u}_4$ with residual error $(\mathbf{D} \underline{\mathbf{X}})^2 = \sigma_4^2$ the quality (conditioning) of the solution may be expressed as $q = \sigma_3/\sigma_4$ (greater is better)

Matlab code for the least-squares solver:

```
[U,0,V] = svd(D);
X = V(:,end);
q = sqrt(O(end-1,end-1)/O(end,end));
```

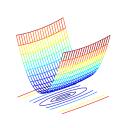
 \circledast P1; 1pt: Why did we decompose **D** and not **Q** = **D**^T**D**?

►Numerical Conditioning

ullet The equation $D\underline{X}=0$ in (14) may be ill-conditioned for numerical computation, which results in a poor estimate for \underline{X} .

Why: on a row of $\mathbf D$ there are big entries together with small entries, e.g. of orders projection centers in mm, image points in px

$$\begin{bmatrix} 10^3 & 0 & 10^3 & 10^6 \\ 0 & 10^3 & 10^3 & 10^6 \\ 10^3 & 0 & 10^3 & 10^6 \\ 0 & 10^3 & 10^3 & 10^6 \end{bmatrix}$$



Quick fix:

1. re-scale the problem by a regular diagonal conditioning matrix $\mathbf{S} \in \mathbb{R}^{4,4}$

$$\mathbf{0} = \mathbf{D}\,\underline{\mathbf{X}} = \mathbf{D}\,\mathbf{S}\,\mathbf{S}^{-1}\underline{\mathbf{X}} = \bar{\mathbf{D}}\,\bar{\underline{\mathbf{X}}}$$

choose ${\bf S}$ to make the entries in $\hat{{\bf D}}$ all smaller than unity in absolute value:

$$S = diag(10^{-3}, 10^{-3}, 10^{-3}, 10^{-6})$$
 $S = diag(1./max(abs(D), 1))$

- 2. solve for $\bar{\mathbf{X}}$ as before
- 3. get the final solution as $\underline{\mathbf{X}} = \mathbf{S} \, \bar{\underline{\mathbf{X}}}$
 - when SVD is used in camera resection, conditioning is essential for success

Algebraic Error vs Reprojection Error

• algebraic error (c – camera index, (u^c, v^c) – image coordinates)

from SVD \rightarrow 91

 $\sigma_4 = 0 \Rightarrow$ non-trivial null space

$$\varepsilon^2(\underline{\mathbf{X}}) = \sigma_4^2 = \sum_{c=1}^2 \left[\left(u^c(\mathbf{p}_3^c)^\top \underline{\mathbf{X}} - (\mathbf{p}_1^c)^\top \underline{\mathbf{X}} \right)^2 + \left(v^c(\mathbf{p}_3^c)^\top \underline{\mathbf{X}} - (\mathbf{p}_2^c)^\top \underline{\mathbf{X}} \right)^2 \right]$$

reprojection error

$$e^{2}(\underline{\mathbf{X}}) = \sum_{c=1}^{2} \left[\left(u^{c} - \frac{(\mathbf{p}_{1}^{c})^{\top} \underline{\mathbf{X}}}{(\mathbf{p}_{3}^{c})^{\top} \underline{\mathbf{X}}} \right)^{2} + \left(v^{c} - \frac{(\mathbf{p}_{2}^{c})^{\top} \underline{\mathbf{X}}}{(\mathbf{p}_{3}^{c})^{\top} \underline{\mathbf{X}}} \right)^{2} \right]$$

- algebraic error zero ⇔ reprojection error zero
- epipolar constraint satisfied ⇒ equivalent results
- in general: minimizing algebraic error is cheap but it gives inferior results
- minimizing reprojection error is expensive but it gives good results
- the midpoint of the common perpendicular to both optical rays gives about 50% greater error in 3D
- the golden standard method deferred to \rightarrow 105

- forward camera motion
- error f/50 in image 2, orthogonal to epipolar plane

 X_T - noiseless ground truth position X_r - reprojection error minimizer

 X_a – algebraic error minimizer m - measurement (m_T with noise in v^2)

 C_2

►We Have Added to The ZOO (cont'd from \rightarrow 69)

problem	given	unknown	slide
camera resection	6 world–img correspondences $\left\{(X_i,m_i) ight\}_{i=1}^6$	P	62
exterior orientation	$\left[\mathbf{K},$ 3 world–img correspondences $\left\{ \left(X_{i},m_{i} ight) ight\} _{i=1}^{3}$	R, t	66
relative pointcloud orientation	3 world-world correspondences $\left\{(X_i,Y_i) ight\}_{i=1}^3$	R, t	70
fundamental matrix	7 img-img correspondences $ig\{(m_i,m_i')ig\}_{i=1}^7$	F	84
relative camera orientation	\mathbf{K} , 5 img-img correspondences $\left\{(m_i,m_i') ight\}_{i=1}^5$	R, t	88
triangulation	${f P}_1$, ${f P}_2$, 1 img-img correspondence (m_i,m_i')	X	89

A bigger ZOO at http://cmp.felk.cvut.cz/minimal/

calibrated problems

- have fewer degenerate configurations
- can do with fewer points (good for geometry proposal generators \rightarrow 118)
- algebraic error optimization (SVD) makes sense in camera resection and triangulation only
- but it is not the best method; we will now focus on 'optimizing optimally'

Module V

Optimization for 3D Vision

- The Concept of Error for Epipolar Geometry
- Levenberg-Marquardt's Iterative Optimization
- 53The Correspondence Problem
- Optimization by Random Sampling

covered by

- [1] [H&Z] Secs: 11.4, 11.6, 4.7
- [2] Fischler, M.A. and Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24(6):381–395, 1981

additional references

P. D. Sampson. Fitting conic sections to 'very scattered' data: An iterative refinement of the Bookstein algorithm. *Computer Vision, Graphics, and Image Processing*, 18:97–108, 1982.

O. Chum, J. Matas, and J. Kittler. Locally optimized RANSAC. In *Proc DAGM*, LNCS 2781:236–243. Springer-Verlag, 2003.

O. Chum, T. Werner, and J. Matas. Epipolar geometry estimation via RANSAC benefits from the oriented epipolar constraint. In *Proc ICPR*, vol 1:112–115, 2004.

▶The Concept of Error for Epipolar Geometry

Background problems: (1) Given at least 8 matched points $x_i \leftrightarrow y_j$ in a general position, estimate the most 'likely' fundamental matrix \mathbf{F} ; (2) given \mathbf{F} triangulate 3D point from $x_i \leftrightarrow y_j$.

$$\mathbf{x}_i = (u_i^1, \, v_i^1), \quad \mathbf{y}_i = (u_i^2, \, v_i^2), \qquad i = 1, 2, \dots, k, \quad k \geq 8$$

- detected points (measurements) x_i , y_i
- we introduce matches $\mathbf{Z}_i = (u_i^1, v_i^1, u_i^2, v_i^2) \in \mathbb{R}^4$; $Z = \left\{\mathbf{Z}_i\right\}_{i=1}^k$
- corrected points $\hat{\boldsymbol{x}}_i$, $\hat{\boldsymbol{y}}_i$; $\hat{\mathbf{Z}}_i = (\hat{u}_i^1, \hat{v}_i^1, \hat{u}_i^2, \hat{v}_i^2)$; $\hat{\boldsymbol{Z}} = \{\hat{\mathbf{Z}}_i\}_{i=1}^k$ are correspondences
- correspondences satisfy the epipolar geometry exactly $\hat{\mathbf{y}}_i^{\mathsf{T}} \mathbf{F} \hat{\mathbf{x}}_i = 0$, $i = 1, \dots, k$
- small correction is more probable
 let e_i(·) be the 'reprojection error' (vector) per match i,

$$\mathbf{e}_{i}(x_{i}, y_{i} \mid \hat{\boldsymbol{x}}_{i}, \hat{\boldsymbol{y}}_{i}, \mathbf{F}) = \begin{bmatrix} \mathbf{x}_{i} - \hat{\mathbf{x}}_{i} \\ \mathbf{y}_{i} - \hat{\mathbf{y}}_{i} \end{bmatrix} = \mathbf{e}_{i}(\mathbf{Z}_{i} \mid \hat{\mathbf{Z}}_{i}, \mathbf{F}) = \mathbf{Z}_{i} - \hat{\mathbf{Z}}_{i}(\mathbf{F})$$

$$\|\mathbf{e}_{i}(\cdot)\|^{2} \stackrel{\text{def}}{=} \mathbf{e}_{i}^{2}(\cdot) = \|\mathbf{x}_{i} - \hat{\mathbf{x}}_{i}\|^{2} + \|\mathbf{y}_{i} - \hat{\mathbf{y}}_{i}\|^{2} = \|\mathbf{Z}_{i} - \hat{\mathbf{Z}}_{i}(\mathbf{F})\|^{2}$$

$$(15)$$

▶cont'd

• the total reprojection error (of all data) then is

$$L(Z \mid \hat{Z}, \mathbf{F}) = \sum_{i=1}^k \mathbf{e}_i^2(x_i, y_i \mid \hat{x}_i, \hat{y}_i, \mathbf{F}) = \sum_{i=1}^k \mathbf{e}_i^2(\mathbf{Z}_i \mid \hat{\mathbf{Z}}_i, \mathbf{F})$$

• and the optimization problem is

$$(\hat{Z}^*, \mathbf{F}^*) = \arg \min_{\substack{\mathbf{F} \\ \text{rank } \mathbf{F} = 2}} \min_{\substack{\hat{\mathbf{y}}_i^{\top} \mathbf{F} \, \hat{\mathbf{x}}_i = 0 \\ }} \sum_{i=1}^{\kappa} \mathbf{e}_i^2(x_i, y_i \mid \hat{\mathbf{x}}_i, \hat{\mathbf{y}}_i, \mathbf{F})$$
(16)

Three possible approaches

- they differ in how the correspondences \hat{x}_i , \hat{y}_i are obtained:
 - 1. direct optimization of reprojection error over all variables \hat{Z} , **F**
 - 2. Sampson optimal correction = partial correction of ${f Z}_i$ towards $\hat{{f Z}}_i$ used in an iterative minimization over ${f F}$
 - 3. removing \hat{x}_i , \hat{y}_i altogether = marginalization of $L(Z, \hat{Z} \mid \mathbf{F})$ over \hat{Z} followed by minimization over \mathbf{F} not covered, the marginalization is difficult

 \rightarrow 98

Method 1: Reprojection Error Optimization

- we need to encode the constraints $\hat{\mathbf{y}}_i \mathbf{F} \hat{\mathbf{x}}_i = 0$, rank $\mathbf{F} = 2$
- idea: reconstruct 3D point via equivalent projection matrices and use reprojection error
- equivalent projection matrices are see [H&Z,Sec. 9.5] for complete characterization

$$\mathbf{P}_1 = \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix}, \quad \mathbf{P}_2 = \begin{bmatrix} \begin{bmatrix} \mathbf{e}_2 \end{bmatrix}_{\mathsf{X}} \mathbf{F} + \mathbf{e}_2 \mathbf{e}_1^{\mathsf{T}} & \mathbf{e}_2 \end{bmatrix}$$
 (17)

 \rightarrow 89

 $\rightarrow 149$

- ⊗ H3; 2pt: Given F, let e

 1, e

 2 be the right and left nullspace basis vectors of F, respectively (i.e. the epipoles). Verify that \mathbf{F} is a fundamental matrix of \mathbf{P}_1 , \mathbf{P}_2 from (17). Hint: \mathbf{A} is skew symmetric iff $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = 0$ for all vectors x.
- 1. compute $\mathbf{F}^{(0)}$ by the 7-point algorithm $\rightarrow 84$; construct camera $\mathbf{P}_2^{(0)}$ from $\mathbf{F}^{(0)}$ using (17)
- 2. triangulate 3D points $\hat{\mathbf{X}}_i^{(0)}$ from matches (x_i, y_i) for all $i = 1, \dots, k$
- 3. starting from $\mathbf{P}_2^{(0)}$, $\hat{\mathbf{X}}^{(0)}$ minimize the reprojection error (15)

$$(\hat{\mathbf{X}}^*, \mathbf{P}_2^*) = \arg\min_{\mathbf{P}_2, \hat{\mathbf{X}}} \sum_{i=1}^k \mathbf{e}_i^2(\mathbf{Z}_i \mid \hat{\mathbf{Z}}_i(\hat{\mathbf{X}}_i, \mathbf{P}_2))$$

where

$$\hat{\mathbf{Z}}_i = (\hat{\mathbf{x}}_i, \hat{\mathbf{y}}_i)$$
 (Cartesian), $\hat{\mathbf{x}}_i \simeq \mathbf{P}_1 \hat{\mathbf{X}}_i$, $\hat{\mathbf{y}}_i \simeq \mathbf{P}_2 \hat{\mathbf{X}}_i$ (homogeneous)

Non-linear, non-convex problem

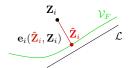
4. compute \mathbf{F} from \mathbf{P}_1 , \mathbf{P}_2^*

- 3k+12 parameters to be found: latent: $\hat{\mathbf{X}}_i$, for all i (correspondences!), non-latent: \mathbf{P}_2
- minimal representation: 3k + 7 parameters, $\mathbf{P_2} = \mathbf{P_2}(\mathbf{F})$
- there are pitfalls; this is essentially bundle adjustment; we will return to this later \rightarrow 137

► Method 2: First-Order Error Approximation

An elegant method for solving problems like (16):

- we will get rid of the latent parameters \hat{X} needed for obtaining the correction [H&Z, p. 287], [Sampson 1982]
- we will recycle the algebraic error $\varepsilon = \mathbf{y}^{\mathsf{T}} \mathbf{F} \, \mathbf{x} \, \text{from} \, \rightarrow \! 84$
- ullet consider matches \mathbf{Z}_i , correspondences $\hat{\mathbf{Z}}_i$, and reprojection error $\mathbf{e}_i = \|\mathbf{Z}_i \hat{\mathbf{Z}}_i\|^2$
- correspondences satisfy $\hat{\mathbf{\underline{y}}}_i^{\mathsf{T}}\mathbf{F}\,\hat{\mathbf{\underline{x}}}_i = 0$, $\hat{\mathbf{\underline{x}}}_i = (\hat{u}^1, \hat{v}^1, 1), \ \hat{\mathbf{\underline{y}}}_i = (\hat{u}^2, \hat{v}^2, 1)$
- this is a manifold $\mathcal{V}_F \in \mathbb{R}^4$: a set of points $\hat{\mathbf{Z}} = (\hat{u}^1,\,\hat{v}^1,\,\hat{u}^2,\,\hat{v}^2)$ consistent with \mathbf{F}
- algebraic error vanishes for $\hat{\mathbf{Z}}_i$: $\mathbf{0} = \boldsymbol{\varepsilon}_i(\hat{\mathbf{Z}}_i) = \hat{\underline{\mathbf{y}}}_i^{\mathsf{T}} \mathbf{F} \, \hat{\underline{\mathbf{x}}}_i$



Sampson's idea: Linearize the algebraic error $\varepsilon(\mathbf{Z})$ at \mathbf{Z}_i (where it is non-zero) and evaluate the resulting linear function at $\hat{\mathbf{Z}}_i$ (where it is zero). The zero-crossing replaces \mathcal{V}_F by a linear manifold \mathcal{L} . The point on \mathcal{V}_F closest to \mathbf{Z}_i is replaced by the closest point on \mathcal{L} .

$$oldsymbol{arepsilon}_i(\mathbf{\hat{Z}}_i) \; pprox \; oldsymbol{arepsilon}_i(\mathbf{Z}_i) + rac{\partial oldsymbol{arepsilon}_i(\mathbf{Z}_i)}{\partial \mathbf{Z}_i} \, (\mathbf{\hat{Z}}_i - \mathbf{Z}_i)$$

►Sampson's Approximation of Reprojection Error

• linearize $oldsymbol{arepsilon}(\mathbf{Z})$ at match \mathbf{Z}_i , evaluate it at correspondence $\hat{\mathbf{Z}}_i$

$$\varepsilon_i(\mathbf{Z}_i) + \underbrace{\frac{\partial \varepsilon_i(\mathbf{Z}_i)}{\partial \mathbf{Z}_i}}_{\mathbf{J}_i(\mathbf{Z}_i)} \underbrace{\frac{(\mathbf{\hat{Z}}_i - \mathbf{Z}_i)}{\mathbf{e}_i(\mathbf{\hat{Z}}_i, \mathbf{Z}_i)}}_{\mathbf{e}_i(\mathbf{\hat{Z}}_i, \mathbf{Z}_i)} \stackrel{\text{def}}{=} \varepsilon_i(\mathbf{Z}_i) + \mathbf{J}_i(\mathbf{Z}_i) \, \mathbf{e}_i(\mathbf{\hat{Z}}_i, \mathbf{Z}_i) = \varepsilon_i(\mathbf{\hat{Z}}_i) \stackrel{!}{=} 0$$

- goal: compute $\underline{\text{function}}\ \mathbf{e}_i(\cdot)$ from $\varepsilon_i(\cdot)$, where $\mathbf{e}_i(\cdot)$ is the distance of $\mathbf{\hat{Z}}_i$ from \mathbf{Z}_i
- ullet we have a linear underconstrained equation for ${f e}_i(\cdot)$
- we look for a minimal $e_i(\cdot)$ per match i

$$\mathbf{e}_i(\cdot)^* = \arg\min_{\mathbf{e}_i(\cdot)} \|\mathbf{e}_i(\cdot)\|^2$$
 subject to $\boldsymbol{\varepsilon}_i(\cdot) + \mathbf{J}_i(\cdot) \, \mathbf{e}_i(\cdot) = 0$

$$\mathbf{e}_{i}^{*}(\cdot) = -\mathbf{J}_{i}^{\top}(\mathbf{J}_{i}\mathbf{J}_{i}^{\top})^{-1}\boldsymbol{\varepsilon}_{i}(\cdot) \qquad \text{pseudo-inverse}$$

$$\|\mathbf{e}_{i}^{*}(\cdot)\|^{2} = \boldsymbol{\varepsilon}_{i}^{\top}(\cdot)(\mathbf{J}_{i}\mathbf{J}_{i}^{\top})^{-1}\boldsymbol{\varepsilon}_{i}(\cdot)$$

$$(18)$$

- this maps $\varepsilon_i(\cdot)$ to an estimate of $\mathbf{e}_i(\cdot)$ per correspondence
- we often do not need \mathbf{e}_i , just $\|\mathbf{e}_i\|^2$ exception: triangulation \rightarrow 105
- the unknown parameters ${f F}$ are inside: ${f e}_i={f e}_i({f F}),\ arepsilon_i=arepsilon_i({f F})$

▶Example: Fitting A Circle To Scattered Points

Problem: Fit an origin-centered circle \mathcal{C} : $\|\mathbf{x}\|^2 - r^2 = 0$ to a set of 2D points $Z = \{x_i\}_{i=1}^k$

- 1. consider radial error as the 'algebraic error' $\varepsilon(\mathbf{x}) = \|\mathbf{x}\|^2 r^2$ 'arbitrary' choice
- 2. linearize it at $\hat{\mathbf{x}}$ we are dropping i in ε_i , e_i etc for clarity

$$\boldsymbol{\varepsilon}(\hat{\mathbf{x}}) \approx \boldsymbol{\varepsilon}(\mathbf{x}) + \underbrace{\frac{\partial \boldsymbol{\varepsilon}(\mathbf{x})}{\partial \mathbf{x}}}_{\mathbf{J}(\mathbf{x}) = 2\mathbf{x}^{\top}} \underbrace{(\hat{\mathbf{x}} - \mathbf{x})}_{\mathbf{e}(\hat{\mathbf{x}}, \mathbf{x})} = \dots = 2 \mathbf{x}^{\top} \hat{\mathbf{x}} - (r^2 + \|\mathbf{x}\|^2) \stackrel{\text{def}}{=} \boldsymbol{\varepsilon}_L(\hat{\mathbf{x}})$$

- $\varepsilon_L(\hat{\mathbf{x}}) = 0$ is a line with normal $\frac{\mathbf{x}}{\|\mathbf{x}\|}$ and intercept $\frac{r^2 + \|\mathbf{x}\|^2}{2\|\mathbf{x}\|}$
- not tangent to C, outside!
- 3. using (18), express error approximation e^* as

 $\varepsilon_{L2}(\mathbf{x}) = 0$

$$\|\mathbf{e}^*\|^2 = oldsymbol{arepsilon}^ op (\mathbf{J}\mathbf{J}^ op)^{-1}oldsymbol{arepsilon} = rac{(\|\mathbf{x}\|^2 - oldsymbol{r}^2)^2}{4\|\mathbf{x}\|^2}$$

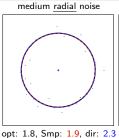
4. fit circle

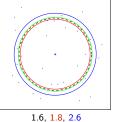
$$\mathbf{x}_{1} = \frac{\mathbf{x}_{1}}{\mathbf{x}_{1}} = \arg\min_{r} \sum_{i=1}^{k} \frac{(\|\mathbf{x}_{i}\|^{2} - \mathbf{r}^{2})^{2}}{4\|\mathbf{x}_{i}\|^{2}} = \dots = \left(\frac{1}{k} \sum_{i=1}^{k} \frac{1}{\|\mathbf{x}_{i}\|^{2}}\right)^{-\frac{1}{2}}$$

- this example results in a convex quadratic optimization problem
- note that

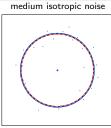
$$\arg\min_{r} \sum_{i=1}^{k} (\|\mathbf{x}_i\|^2 - r^2)^2 = \left(\frac{1}{k} \sum_{i=1}^{k} \|\mathbf{x}_i\|^2\right)^{\frac{1}{2}}$$
3D Computer Vision: V. Optimization for 3D Vision (p. 101/196) 290 R. Śára, CMP; rev. 5-Ja

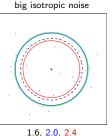
Circle Fitting: Some Results





big radial noise





green - ground truth

red - Sampson error e minimizer

blue – direct radial error ε minimizer

black - optimal estimator for isotropic error

optimal estimator for isotropic error (black, dashed):

$$r \approx \frac{3}{4k} \sum_{i=1}^k \|\mathbf{x}_i\| + \sqrt{\left(\frac{3}{4k} \sum_{i=1}^k \|\mathbf{x}_i\|\right)^2 - \frac{1}{2k} \sum_{i=1}^k \|\mathbf{x}_i\|^2}$$

which method is better?

- error should model noise, radial noise and isotropic noise behave differently
- ground truth: Normally distributed isotropic error, Gamma-distributed radial error
- Sampson: <u>better</u> for the radial distribution model; Direct: better for the isotropic model
- no matter how corrected, the algebraic error minimizer is not an unbiased parameter estimator
 Cramér-Rao bound tells us how close one can get with unbiased estimator and given k

Discussion: On The Art of Probabilistic Model Design...

a few models for fitting zero-centered circle C of radius r to points in \mathbb{R}^2

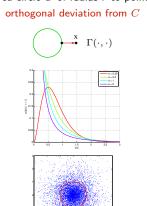
marginalized over C $N(\mathbf{0}, \sigma^2 \mathbf{I})$ mode inside the circle models the inside well

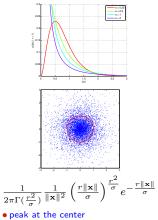
tends to normal distrib.

error model

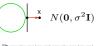
radial p.d.f.

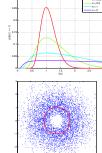
random sample





$$\frac{1}{2\pi\Gamma(\frac{r^2}{\sigma})}\frac{1}{\|\mathbf{x}\|^2}\left(\frac{r\|\mathbf{x}\|}{\sigma}\right)^{\frac{1}{\sigma}}e^{-\frac{r\|\mathbf{x}\|}{\sigma}}$$
• peak at the center
• unusable for small radii
• tends to Dirac distrib.





- mode at the circle hole at the center
- tends to normal distrib.

► Sampson Error for Fundamental Matrix Manifold

The epipolar algebraic error is

$$\varepsilon_i(\mathbf{F}) = \underline{\mathbf{y}}_i^{\mathsf{T}} \mathbf{F} \underline{\mathbf{x}}_i, \quad \mathbf{x}_i = (u_i^1, v_i^1), \quad \mathbf{y}_i = (u_i^2, v_i^2), \qquad \varepsilon_i \in \mathbb{R}$$

$$\text{Let } \mathbf{F} = \begin{bmatrix} \mathbf{F_1} & \mathbf{F_2} & \mathbf{F_3} \end{bmatrix} \text{ (per columns)} = \begin{bmatrix} (\mathbf{F^1})^\top \\ (\mathbf{F^2})^\top \\ (\mathbf{F^3})^\top \end{bmatrix} \text{ (per rows), } \mathbf{S} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \text{, then}$$

Sampson

$$\mathbf{J}_{i}(\mathbf{F}) = \begin{bmatrix} \frac{\partial \varepsilon_{i}(\mathbf{F})}{\partial u_{i}^{1}}, & \frac{\partial \varepsilon_{i}(\mathbf{F})}{\partial v_{i}^{1}}, & \frac{\partial \varepsilon_{i}(\mathbf{F})}{\partial u_{i}^{2}}, & \frac{\partial \varepsilon_{i}(\mathbf{F})}{\partial v_{i}^{2}} \end{bmatrix} \qquad \mathbf{J}_{i} \in \mathbb{R}^{1,4} \qquad \text{derivatives over point coordinates}$$

$$= \begin{bmatrix} (\mathbf{F}_{1})^{\top} \underline{\mathbf{y}}_{i}, & (\mathbf{F}_{2})^{\top} \underline{\mathbf{y}}_{i}, & (\mathbf{F}^{1})^{\top} \underline{\mathbf{x}}_{i}, & (\mathbf{F}^{2})^{\top} \underline{\mathbf{x}}_{i} \end{bmatrix} = \begin{bmatrix} \mathbf{S} \mathbf{F}^{\top} \underline{\mathbf{y}}_{i} \\ \mathbf{S} \mathbf{F} \mathbf{x}_{i} \end{bmatrix}^{\top}$$

$$\mathbf{e}_i(\mathbf{F}) = -\frac{\mathbf{J}_i(\mathbf{F})\,\varepsilon_i(\mathbf{F})}{\|\mathbf{J}_i(\mathbf{F})\|^2}$$

$$e_i(\mathbf{F}) \stackrel{\text{def}}{=} \|\mathbf{e}_i(\mathbf{F})\| = \frac{\varepsilon_i(\mathbf{F})}{\|\mathbf{J}_i(\mathbf{F})\|} = \frac{\underline{\mathbf{y}}_i^{\top} \mathbf{F} \underline{\mathbf{x}}_i}{\sqrt{\|\mathbf{S} \mathbf{F} \underline{\mathbf{x}}_i\|^2 + \|\mathbf{S} \mathbf{F}^{\top} \underline{\mathbf{y}}_i\|^2}}$$
• Sampson error 'normalizes' the algebraic error

Sampson error $\mathbf{e}_i(\mathbf{F}) \in \mathbb{R}^4$ vector scalar

Sampson error

 $e_i(\mathbf{F}) \in \mathbb{R}$

- automatically copes with multiplicative factors $\mathbf{F} \mapsto \lambda \mathbf{F}$

actual optimization not vet covered →109

► Back to Triangulation: The Golden Standard Method

Given P_1 , P_2 and a correspondence $x \leftrightarrow y$, look for 3D point X projecting to x and $y \rightarrow 89$

Idea:

- 1. if not given, compute F from P_1 , P_2 , e.g. $F = (\mathbf{Q}_1 \mathbf{Q}_2^{-1})^{\top} [\mathbf{q}_1 (\mathbf{Q}_1 \mathbf{Q}_2^{-1}) \mathbf{q}_2]_{\times}$
- 2. correct the measurement by the linear estimate of the correction vector

$$\begin{bmatrix} \hat{\mathbf{u}}^1 \\ \hat{\mathbf{v}}^1 \\ \hat{\mathbf{u}}^2 \\ \hat{\mathbf{v}}^2 \end{bmatrix} \approx \begin{bmatrix} u^1 \\ v^1 \\ u^2 \\ v^2 \end{bmatrix} - \frac{\varepsilon}{\|\mathbf{J}\|^2} \, \mathbf{J}^\top = \begin{bmatrix} u^1 \\ v^1 \\ u^2 \\ v^2 \end{bmatrix} - \frac{\underline{\mathbf{y}}^\top \mathbf{F} \underline{\mathbf{x}}}{\|\mathbf{S} \mathbf{F} \underline{\mathbf{x}}\|^2 + \|\mathbf{S} \mathbf{F}^\top \underline{\mathbf{y}}\|^2} \, \begin{bmatrix} (\mathbf{F}_1)^\top \underline{\mathbf{y}} \\ (\mathbf{F}_2)^\top \underline{\mathbf{y}} \\ (\mathbf{F}^1)^\top \underline{\mathbf{x}} \\ (\mathbf{F}^2)^\top \underline{\mathbf{x}} \end{bmatrix}$$

3. use the SVD triangulation algorithm with numerical conditioning

→90

 $\rightarrow 100$

Ex (cont'd from \rightarrow 93):

 C_1 m_a m_s e_1 $m_T = m$

- X_T noiseless ground truth position
- reprojection error minimizer
 S Sampson-corrected algebraic error minimizer
- X_a algebraic error minimizer m measurement (m_T with noise in v^2)

▶Back to Fundamental Matrix Estimation

Goal: Given a set $X = \{(x_i, y_i)\}_{i=1}^k$ of $k \gg 7$ inlier correspondences, compute a statistically efficient estimate for fundamental matrix \mathbf{F} .

What we have so far

- \bullet 7-point algorithm for ${\bf F}$ (5-point algorithm for ${\bf E})$ ${\rightarrow} 84$
- definition of Sampson error per correspondence $e_i(\mathbf{F} \mid x_i, y_i) \rightarrow 104$
- ullet triangulation requiring an $\underline{\mathsf{optimal}}\ \mathbf{F}$

What we need

• an optimization algorithm for

$$\mathbf{F}^* = \arg\min_{\mathbf{F}} \sum_{i=1}^k e_i^2(\mathbf{F} \mid X)$$

ullet the 7-point estimate is a good starting point ${f F}_0$

Levenberg-Marquardt (LM) Iterative Estimation in a Nutshell

Consider error function $\mathbf{e}_i(\boldsymbol{\theta}) = f(\mathbf{x}_i, \mathbf{y}_i, \boldsymbol{\theta}) \in \mathbb{R}^m$, with $\mathbf{x}_i, \mathbf{y}_i$ given, $\boldsymbol{\theta} \in \mathbb{R}^q$ unknown $\boldsymbol{\theta} = \mathbf{F}, \ q = 9, \ m = 1$ for f.m. estimation

Our goal: $\theta^* = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^{\kappa} \|\mathbf{e}_i(\boldsymbol{\theta})\|^2$

Idea 1 (Gauss-Newton approximation): proceed iteratively for $s=0,1,2,\ldots$

$$\theta^{s+1} := \theta^s + \mathbf{d}_s, \quad \text{where} \quad \mathbf{d}_s = \arg\min_{\mathbf{d}} \sum_{i=1}^k \|\mathbf{e}_i(\theta^s + \mathbf{d})\|^2$$

$$\mathbf{e}_i(\theta^s + \mathbf{d}) \approx \mathbf{e}_i(\theta^s) + \mathbf{L}_i \mathbf{d},$$
(19)

$$(\mathbf{L}_i)_{jl}=rac{\partialig(\mathbf{e}_i(m{ heta})ig)_j}{\partial(m{ heta})_l}, \qquad \mathbf{L}_i\in\mathbb{R}^{m,q} \qquad ext{typically a long matrix, } m\ll q$$

Then the solution to Problem (19) is a set of 'normal' eqs
$$-\underbrace{\sum_{i=1}^{k}\mathbf{L}_{i}^{\top}\mathbf{e}_{i}(\boldsymbol{\theta}^{s})}_{\mathbf{e}\in\mathbb{R}^{q,1}} = \underbrace{\left(\sum_{i=1}^{k}\mathbf{L}_{i}^{\top}\mathbf{L}_{i}\right)}_{\mathbf{L}\in\mathbb{R}^{q,q}}\mathbf{d}_{s}, \tag{20}$$

• \mathbf{d}_s can be solved for by Gaussian elimination using Choleski decomposition of \mathbf{L} L symmetric PSD \Rightarrow use Choleski, almost $2\times$ faster than Gauss-Seidel, see bundle adjustment $\rightarrow 1^o$

such updates do not lead to stable convergence → ideas of Levenberg and Marquardt

LM (cont'd)

Idea 2 (Levenberg): replace $\sum_i \mathbf{L}_i^{\top} \mathbf{L}_i$ with $\sum_i \mathbf{L}_i^{\top} \mathbf{L}_i + \lambda \mathbf{I}$ for some damping factor $\lambda \geq 0$ Idea 3 (Marquardt): replace $\lambda \mathbf{I}$ with $\lambda \sum_i \operatorname{diag}(\mathbf{L}_i^{\top} \mathbf{L}_i)$ to adapt to local curvature:

$$-\sum_{i=1}^k \mathbf{L}_i^{\top} \mathbf{e}_i(\boldsymbol{\theta}^s) = \left(\sum_{i=1}^k \left(\mathbf{L}_i^{\top} \mathbf{L}_i + \lambda \operatorname{diag}(\mathbf{L}_i^{\top} \mathbf{L}_i)\right)\right) \frac{\mathbf{d}_s}{}$$

- - 2. if $\sum_i \|\mathbf{e}_i(\boldsymbol{\theta}^s + \mathbf{d}_s)\|^2 < \sum_i \|\mathbf{e}_i(\boldsymbol{\theta}^s)\|^2$ then accept \mathbf{d}_s and set $\lambda := \lambda/10$, s := s+1
 - 3. otherwise set $\lambda:=10\lambda$ and recompute \mathbf{d}_s

ullet note that $\mathbf{L}_i \in \mathbb{R}^{m,q}$ (long matrix) but each contribution $\mathbf{L}_i^ op \mathbf{L}_i$ is a square singular q imes q

- \bullet sometimes different constants are needed for the 10 and 10^{-3}
- matrix (always singular for k < q)
- ullet error can be made robust to outliers, see the trick ightarrow 112
- we have approximated the least squares Hessian by ignoring second derivatives of the error function (Gauss-Newton approximation)
 See [Triggs et al. 1999, Sec. 4.3]
- λ helps avoid the consequences of gauge freedom \rightarrow 142
- modern variants of LM are Trust Region methods

1. choose $\lambda \approx 10^{-3}$ and compute \mathbf{d}_s

LM with Sampson Error for Fundamental Matrix Estimation

Sampson (derived by linearization over point coordinates u^1, v^1, u^2, v^2)

$$e_i(\mathbf{F}) = \frac{\boldsymbol{\varepsilon}_i}{\|\mathbf{J}_i\|} = \frac{\underline{\mathbf{y}}_i^{\top} \mathbf{F} \underline{\mathbf{x}}_i}{\sqrt{\|\mathbf{S} \mathbf{F} \underline{\mathbf{x}}_i\|^2 + \|\mathbf{S} \mathbf{F}^{\top} \underline{\mathbf{y}}_i\|^2}} \quad \text{where} \quad \mathbf{S} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

LM (by linearization over parameters F)

 $\mathbf{L}_{i} = \frac{\partial e_{i}(\mathbf{F})}{\partial \mathbf{F}} = \dots = \frac{1}{2\|\mathbf{J}_{i}\|} \left[\left(\underline{\mathbf{y}}_{i} - \frac{2e_{i}}{\|\mathbf{J}_{i}\|} \mathbf{S} \mathbf{F} \underline{\mathbf{x}}_{i} \right) \underline{\mathbf{x}}_{i}^{\top} + \underline{\mathbf{y}}_{i} \left(\underline{\mathbf{x}}_{i} - \frac{2e_{i}}{\|\mathbf{J}_{i}\|} \mathbf{S} \mathbf{F}^{\top} \underline{\mathbf{y}}_{i} \right)^{\top} \right]$ (21)

- L_i in (21) is a 3×3 matrix, must be reshaped to dimension-9 vector $\text{vec}(\mathbf{L}_i)$ to be used in LM
- $\underline{\mathbf{x}}_i$ and $\underline{\mathbf{y}}_i$ in Sampson error are normalized to unit homogeneous coordinate (21) relies on this
- reinforce ${\rm rank}\,{\bf F}=2$ after each LM update to stay in the fundamental matrix manifold and $\|{\bf F}\|=1$ to avoid gauge freedom by SVD \to 110
- LM linearization could be done by numerical differentiation (we have a small dimension here)

► Local Optimization for Fundamental Matrix Estimation

Summary so far

- Given a set $X = \{(x_i, y_i)\}_{i=1}^k$ of $k \gg 7$ inlier correspondences, compute a statistically efficient estimate for fundamental matrix \mathbf{F} .
 - 1. Find the conditioned (\rightarrow 92) 7-point \mathbf{F}_0 (\rightarrow 84) from a suitable 7-tuple
 - 2. Improve the \mathbf{F}_0^* using the LM optimization (\rightarrow 107–108) and the Sampson error (\rightarrow 109) on all inliers, reinforce rank-2, unit-norm \mathbf{F}_k^* after each LM iteration using SVD

Partial conceptualization

- inlier = correspondence
- outlier = non-correspondence
- binary inlier/outlier labels are hidden
- we can get a likely estimate only, with respect to a model

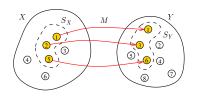
We are not yet done

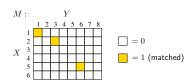
- if there are no wrong correspondences (mismatches, outliers), this gives a <u>local</u> optimum given the 7-point initial estimate
- the algorithm breaks under contamination of (inlier) correspondences by outliers
- the full problem involves finding the inliers!
- in addition, we need a mechanism for jumping out of local minima (and exploring the space of all fundamental matrices)

► The Full Problem of Matching and Fundamental Matrix Estimation

Problem: Given image point sets $X = \{x_i\}_{i=1}^m$ and $Y = \{y_j\}_{j=1}^n$ and their descriptors D, find the most probable

- 1. inlier keypoints $S_X \subseteq X$, $S_Y \subseteq Y$
- 2. one-to-one perfect matching $M: S_X \to S_Y$
- 3. fundamental matrix \mathbf{F} such that rank $\mathbf{F} = 2$
- 4. such that for each $x_i \in S_X$ and $y_j = M(x_i)$ it is probable that
 - a) the image descriptor $D(x_i)$ is similar to $D(y_j)$, and b) the total reprojection error $E=\sum_{ij}e_{ij}^2(\mathbf{F})$ is small
- b) the total reprojection error $E = \sum_{ij} e_{ij}^2(\mathbf{F})$ is small 5. inlier-outlier and outlier-outlier matches are improbable





perfect matching: 1-factor of the bipartite graph

note a slight change in notation: e_{ij}

$$(M^*, \mathbf{F}^*) = \arg\max_{M, \mathbf{F}} p(E, D, \mathbf{F} \mid M) P(M)$$

- probabilistic model: an efficient language for problem formulation it also unifies 4.a and 4.b
- the (22) is a Bayesian probabilistic model there is a constant number of random variables! binary matching table $M_{ij} \in \{0,1\}$ of fixed size $m \times n$
 - each row/column contains at most one unity
 - \bullet zero rows/columns correspond to unmatched point x_i/y_j

(22)

Deriving A Robust Matching Model by Approximate Marginalization

For algorithmic efficiency, instead of $(M^*, \mathbf{F}^*) = \arg \max_{M, \mathbf{F}} p(E, D, \mathbf{F} \mid M) P(M)$ solve

$$\mathbf{F}^* = \arg\max_{\mathbf{F}} p(E, D, \mathbf{F}) \tag{23}$$

by <u>marginalization</u> of $p(E, D, \mathbf{F} \mid M) P(M)$ over M this changes the problem! drop the assumption that M are 1:1 matchings, assume correspondence-wise independence:

$$p(E, D, \mathbf{F} \mid \mathbf{M})P(\mathbf{M}) = \prod_{i=1}^{m} \prod_{j=1}^{n} p_e(e_{ij}, d_{ij}, \mathbf{F} \mid \mathbf{m}_{ij})P(\mathbf{m}_{ij})$$

- e_{ij} represents (reprojection) error for match $x_i \leftrightarrow y_i$: $e_{ij}(x_i, y_i, \mathbf{F})$
- d_{ij} represents descriptor similarity for match $x_i \leftrightarrow y_i$: $d_{ij} = \|\mathbf{d}(x_i) \mathbf{d}(y_i)\|$

Approximate marginalization:

take all the 2^{mn} terms in place of M

$$p(E, D, \mathbf{F}) \approx \sum_{m_{11} \in \{0,1\}} \sum_{m_{12}} \cdots \sum_{m_{mn}} p(E, D, \mathbf{F} \mid M) P(M) =$$

$$= \sum_{m_{11}} \cdots \sum_{m_{mn}} \prod_{i=1}^{m} \prod_{j=1}^{n} p_e(e_{ij}, d_{ij}, \mathbf{F} \mid m_{ij}) P(m_{ij}) = \stackrel{\circledast}{\cdots} \stackrel{1}{=} \prod_{j=1}^{m} \prod_{m_{ij}} \sum_{m_{ij}} p_e(e_{ij}, d_{ij}, \mathbf{F} \mid m_{ij}) P(m_{ij})$$

we will continue with this term

 $i=1, j=1, m_{i,j} \in \{0,1\}$

Robust Matching Model (cont'd)

$$\sum_{\substack{\mathbf{m}_{ij} \in \{0,1\} \\ = \underbrace{p_e(e_{ij}, d_{ij}, \mathbf{F} \mid m_{ij}) P(\mathbf{m}_{ij}) = \\ p_1(e_{ij}, d_{ij}, \mathbf{F})}} \underbrace{p_e(m_{ij} = 1) + \underbrace{p_e(e_{ij}, d_{ij}, \mathbf{F} \mid m_{ij} = 0)}_{p_0(e_{ij}, d_{ij}, \mathbf{F})} \underbrace{P(m_{ij} = 1)}_{P_0} = \underbrace{(1 - P_0) p_1(e_{ij}, d_{ij}, \mathbf{F}) + P_0 p_0(e_{ij}, d_{ij}, \mathbf{F})}_{P_0}$$

• the $p_0(e_{ij},d_{ij},\mathbf{F})$ is a penalty for 'missing a correspondence' but it should be a p.d.f. (cannot be a constant) (\rightarrow 114 for a simplification)

choose
$$P_0 o 1$$
, $p_0(\cdot) o 0$ so that $\frac{P_0}{1-P_0} \, p_0(\cdot) \approx {\rm const}$

(24)

• the $p_1(e_{ij}, d_{ij}, \mathbf{F})$ is typically an easy-to-design term: assuming independence of reprojection error and descriptor similarity:

$$p_1(e_{ij}, d_{ij}, \mathbf{F}) = p_1(e_{ij} \mid \mathbf{F}) p_F(\mathbf{F}) p_1(d_{ij})$$

• we choose, e.g.

we choose, e.g.
$$p_{1}(e_{ij} \mid \mathbf{F}) = \frac{1}{T_{e}(\sigma_{1})} e^{-\frac{e_{ij}^{2}(\mathbf{F})}{2\sigma_{1}^{2}}}, \quad p_{1}(d_{ij}) = \frac{1}{T_{d}(\sigma_{d}, \dim \mathbf{d})} e^{-\frac{\|\mathbf{d}(x_{i}) - \mathbf{d}(y_{j})\|^{2}}{2\sigma_{d}^{2}}}$$
(25)

- F is a random variable and σ_1 , σ_d , P_0 are parameters
- the form of $T(\sigma_1)$ depends on error definition, it may depend on x_i, y_i but not on **F**
- we will continue with the result from (24)

► Simplified Robust Energy (Error) Function

assuming the choice of p_1 as in (25), we are simplifying

$$p(E, D, \mathbf{F}) = p(E, D \mid \mathbf{F}) p_F(\mathbf{F}) = p_F(\mathbf{F}) \prod_{i=1}^m \prod_{j=1}^n \left[(1 - P_0) p_1(e_{ij}, d_{ij} \mid \mathbf{F}) + P_0 p_0(e_{ij}, d_{ij} \mid \mathbf{F}) \right]$$

we choose $\sigma_0 \gg \sigma_1$ and omit d_{ij} for simplicity; then the square-bracket term is

$$\frac{1 - P_0}{T_e(\sigma_1)} e^{-\frac{e_{ij}^2(\mathbf{F})}{2\sigma_1^2}} + \frac{P_0}{T_e(\sigma_0)} e^{-\frac{e_{ij}^2(\mathbf{F})}{2\sigma_0^2}}$$

we define the 'potential function' as: $V(x) = -\log p(x)$, then

$$V(E, D \mid \mathbf{F}) = \sum_{i=1}^{m} \sum_{j=1}^{n} \left[-\log \frac{1 - P_0}{T_e(\sigma_1)} - \log \left(e^{-\frac{e_{ij}^2(\mathbf{F})}{2\sigma_1^2}} + \underbrace{\frac{P_0}{1 - P_0} \frac{T_e(\sigma_1)}{T_e(\sigma_0)} e^{-\frac{e_{ij}^2(\mathbf{F})}{2\sigma_0^2}}}_{t \approx \text{const}} \right) \right] =$$

$$= m n \Delta + \sum_{i=1}^{m} \sum_{j=1}^{n} -\log \left(e^{-\frac{e_{ij}^2(\mathbf{F})}{2\sigma_1^2}} + t \right)$$
(26)

- note we are summing over all m n matches (m, n are constant!)
- when t=0 we have quadratic error function $\hat{V}(e_{ij})=e_{ij}^2(\mathbf{F})/(2\sigma_1^2)$

▶The Action of the Robust Matching Model on Data

Example for
$$\hat{V}(e_{ij})$$
 from (26):

 $\sigma_1 = 1$

V when $t = 0$
 $\sigma_1 = 1$

V when $t = 0.25$
 $\sigma_1 = 1$
 σ

 ${\sf red}$ — the (non-robust) quadratic error blue — the rejected match penalty t

blue – the rejected match penalty
$$t$$
 green – robust $\hat{V}(e_{ij})$ from (26)

 $\hat{V}(e_{ij})$ when t=0

- if the error of a correspondence exceeds a limit, it is ignored
- then $\hat{V}(e_{ij}) = \mathrm{const}$ and we just count outliers in (26) • t controls the 'turn-off' point
- the inlier/outlier threshold is e_T the error for which $(1-P_0)\,p_1(e_T)=P_0\,p_0(e_T)$: note that $t\approx 0$

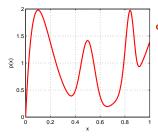
$$e_T=\sigma_1\sqrt{-\log t^2},\quad t=e^{-\frac{1}{2}\left(\frac{e_T}{\sigma_1}\right)^2}\text{ e.g. }e_T=4\sigma_1\text{ (27)}$$

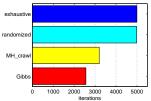
The full optimization problem (23) uses (26):

$$\mathbf{F}^* = \arg\max_{\mathbf{F}} \ \frac{\overbrace{p(E,D \mid \mathbf{F})}^{\text{data model}} \cdot \overbrace{p(\mathbf{F})}^{\text{prior}}}{\underbrace{p(E,D)}_{\text{evidence}}} \approx \arg\min_{\mathbf{F}} \left[V(\mathbf{F}) + \sum_{i=1}^m \sum_{j=1}^n \log \left(e^{-\frac{e_{ij}^2(\mathbf{F})}{2\sigma_1^2}} + t \right) \right]$$

- $\pi(\mathbf{F})$ a shorthand for the argument of the maximization
- typically we take $V({\bf F})=-\log p({\bf F})=0$ unless we need to stabilize a computation, e.g. when video camera moves smoothly (on a high-mass vehicle) and we have a prediction for ${\bf F}$
- evidence is not needed unless we want to compare different models (e.g. homography vs. epipolar geometry)

How To Find the Global Maxima (Modes) of a PDF?





- averaged over 10^4 trials
- number of proposals before $|x - x_{\rm true}| < {\rm step}$

- given the function p(x) at left consider several methods:
 - 1. exhaustive search

```
step = 1/(iterations-1):
for x = 0:step:1
 if p(x) > bestp
  bestx = x; bestp = p(x);
 end
end
```

(definite quantization) fast to implement

p.d.f. on [0, 1], mode at 0.1

slow algorithm

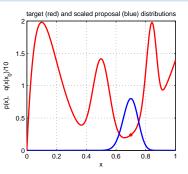
2. randomized search with uniform sampling

```
while t < iterations
 x = rand(1):
 if p(x) > bestp
 bestx = x; bestp = p(x);
 end
 t = t+1; % time
end
```

- equally slow algorithm
- fast to implement

- random sampling from p(x) (Gibbs sampler)
 - faster algorithm fast to implement but often infeasible (e.g. when p(x) is data dependent (our case in correspondence prob.))
- 4. Metropolis-Hastings sampling
 - almost as fast (with care) not so fast to implement
 - rarely infeasible RANSAC belongs here

How To Generate Random Samples from a Complex Distribution?



• red: probability density function $\pi(x)$ of the toy distribution on the unit interval target distribution

$$\pi(x) = \sum_{i=1}^{4} \gamma_i \operatorname{Be}(x; \alpha_i, \beta_i), \quad \sum_{i=1}^{4} \gamma_i = 1, \ \gamma_i \ge 0$$

$$Be(x; \alpha, \beta) = \frac{1}{B(\alpha, \beta)} \cdot x^{\alpha - 1} (1 - x)^{\beta - 1}$$

- alg. for generating samples from $Be(x; \alpha, \beta)$ is known • \Rightarrow we can generate samples from $\pi(x)$ how?
- suppose we cannot sample from $\pi(x)$ but we can sample from some 'simple' <u>proposal</u> <u>distribution</u> $q(x\mid x_0)$, given the previous sample x_0 (blue)

$$q(x\mid x_0) = \begin{cases} \mathrm{U}_{0,1}(x) & \text{(independent) uniform sampling} \\ \mathrm{Be}(x; \frac{x_0}{T} + 1, \frac{1-x_0}{T} + 1) & \text{`beta' diffusion (crawler)} \quad T - \text{temperature} \\ \pi(x) & \text{(independent) Gibbs sampler} \end{cases}$$

- note we have unified all the random sampling methods from the previous slide
- how to redistribute proposal samples $q(x \mid x_0)$ to target distribution $\pi(x)$ samples?

► Metropolis-Hastings (MH) Sampling

$$C, S$$
 – configurations (of all variable values) e.g. $C = x$ and $\pi(C) = \pi(x)$ from $\to 117$

Goal: Generate a sequence of random samples $\{C_t\}$ from target distribution $\pi(C)$ setup a Markov chain with a suitable transition probability to generate the sequence

Sampling procedure

1. given current config. C_t , draw a random config. sample S from $q(S \mid C_t)$ q may use some information from C_t (Hastings)

2. compute acceptance probability the evidence term drops out

$$a=\min\left\{1,\ \frac{\pi(S)}{\pi(C_t)}\cdot\frac{q(C_t\mid S)}{q(S\mid C_t)}\right\}$$
 3. draw a random number u from unit-interval uniform distribution $U_{0.1}$

4. if u < a then $C_{t+1} := S$ else $C_{t+1} := C_t$

'Programming' an MH sampler

- 1. design a proposal distribution (mixture) q and a sampler from q
- 2. write functions $q(C_t \mid S)$ and $q(S \mid C_t)$ that are proper distributions

not always simple

R. Šára, CMP: rev. 5-Jan-2021

very slow

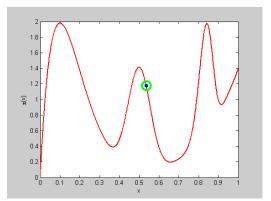
Finding the mode use simulated annealing

remember the best sample

fast implementation but must wait long to hit the mode

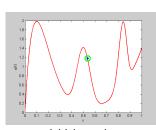
 start local optimization from the best sample good trade-off between speed and accuracy an optimal algorithm does not use just the best sample: a Stochastic EM Algorithm (e.g. SAEM)

MH Sampling Demo

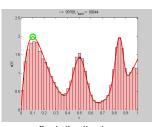


sampling process (video, 7:33, 100k samples)

- blue point: current sample
- ullet green circle: best sample so far ${
 m quality}=\pi(x)$
- histogram: current distribution of visited states
 - the vicinity of modes are the most often visited states



initial sample



final distribution of visited states

Demo Source Code (Matlab)

```
function x = proposal_gen(x0)
% proposal generator q(x | x0)
T = 0.01; % temperature
x = betarnd(x0/T+1,(1-x0)/T+1);
end
function p = proposal q(x, x0)
% proposal distribution q(x | x0)
T = 0.01:
 p = betapdf(x, x0/T+1, (1-x0)/T+1);
end
function p = target_p(x)
% target distribution p(x)
 % shape parameters:
 a = [2 	 40 	 100 	 6]:
 b = [10 \ 40 \ 20 \ 1]:
 % mixing coefficients:
 w = [1 \ 0.4 \ 0.253 \ 0.50]; w = w/sum(w);
p = 0:
for i = 1:length(a)
 p = p + w(i)*betapdf(x,a(i),b(i));
 end
end
```

```
%% DEMO script
k = 10000: % number of samples
X = NaN(1,k); % list of samples
x0 = proposal_gen(0.5);
for i = 1 \cdot k
x1 = proposal_gen(x0);
 a = target p(x1)/target p(x0) * ...
     proposal q(x0,x1)/proposal q(x1,x0):
 if rand(1) < a
 X(i) = x1; x0 = x1;
 else
 X(i) = x0;
 end
end
figure(1)
x = 0:0.001:1:
plot(x, target_p(x), 'r', 'linewidth',2);
hold on
binw = 0.025: % histogram bin width
n = histc(X, 0:binw:1):
h = bar(0:binw:1, n/sum(n)/binw, 'histc');
set(h, 'facecolor', 'r', 'facealpha', 0.3)
xlim([0 1]); ylim([0 2.5])
xlabel 'x'
ylabel 'p(x)'
title 'MH demo'
hold off
```

200

► The Nine Elements of a Data-Driven MH Sampler

data-driven = proposals are derived from data

Then

- 1. **primitives** = elementary measurements
 - points in line fitting
 - matches in epipolar geometry or homography estimation
- 2. configuration = s-tuple of primitives minimal subsets necessary for parameter estimate

the minimization will be over a discrete set:

- of point pairs in line fitting (left)
- of match 7-tuples in epipolar geometry estimation
- 3. a map from configuration C to parameters $\theta = \theta(C)$ by solving the minimal problem
 line parameters \mathbf{n} from two points
 - Ine parameters n from two points
 fundamental matrix F from seven matches
 - homography H from four matches, etc
- 4. target likelihood $p(E, D \mid \boldsymbol{\theta}(C))$ is represented by $\pi(C)$
 - can use log-likelihood: then it is the sum of robust errors $\hat{V}(e_{ij})$ given ${\bf F}$ (26)
 - robustified point distance from the line θ = n
 robustified Sampson error for θ = F, etc

• robustified Sampson error for $\theta = \mathbf{F}$, etc • posterior likelihood $p(E, D \mid \theta)p(\theta)$ can be used MAPSAC $(\pi(S)$ includes the prior)

▶cont'd

5. parameter distribution follows the **empirical distribution** of *s*-tuples. Since the proposal is done via the minimal problem solver, it is 'data-driven',

- pairs of points define line distribution $p(\mathbf{n} \mid X)$ (left)
- random correspondence 7-tuples define epipolar geometry distribution $q(\mathbf{F}\mid M)$
- 6. **proposal distribution** $q(\cdot)$ is just a constant(!) distribution of the s-tuples:
 - a) q uniform, independent $q(S \mid C_t) = q(S) = {mn \choose s}^{-1}$, then $a = \min\left\{1, \frac{p(S)}{p(C_t)}\right\}$
 - b) q dependent on descriptor similarity PROSAC (similar pairs are proposed more often)
 - c) q dependent on the current configuration C_t e.g. 'not far from C_t '
- 7. (optional) hard inlier/outlier discrimination by the threshold (27)

$$\hat{V}(e_{ij}) < e_T, \qquad e_T = \sigma_1 \sqrt{-\log t^2}$$

- 8. local optimization from promising proposals
 - can use the hard inliers or just the robust error (26) (more expensive but more stable)
 - ullet cannot be used to replace C_t (it would violate 'detailed balance' required for the MH scheme)
- 9. stopping based on the probability of proposing an all-inlier configuration

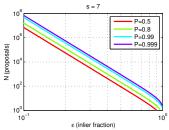
▶Data-Driven Sampler Stopping

- ullet The number of proposals N needed to hit the "true parameters" = an all-inlier config? this will tell us nothing about the accuracy of the result
 - P ... probability that at least one proposal is all-inlier 1-P ... all previous N proposals were bad ε ... the fraction of inliers among primitives, $\varepsilon \leq 1$
 - $s \dots$ minimal configuration size 2 in line fitting, 7 in 7-point algorithm, 4 in homography fitting,...

$$N \ge \frac{\log(1-P)}{\log(1-\varepsilon^s)}$$

- ullet $arepsilon^s$... proposal does not contain an outlier
- $1-\varepsilon^s$... proposal contains at least one outlier
- ullet $(1-arepsilon^s)^N$ $\dots N$ previous proposals contained an outlier =1-P

N for $s=7$				
	P			
ε	0.8	0.99		
0.5	205	590		
0.2	$1.3 \cdot 10^5$	$3.5 \cdot 10^{5}$		
0.1	$1.6 \cdot 10^7$	$4.6 \cdot 10^{7}$		



- N can be re-estimated using the current estimate for ε (if there is LO, then after LO) the quasi-posterior estimate for ε is the average over all samples generated so far
- this shows we have a good reason to limit all possible matches to tentative matches only
- for $\varepsilon \to 0$ we gain nothing over the standard MH-sampler stopping rule

▶ Stripping MH Down To Get RANSAC [Fischler & Bolles 1981]

• when we are interested in the best config only...and we need fast data exploration...

Simplified sampling procedure

- 1. given C_t , draw a random sample S from $q(S \mid C_t)$ q(S) independent sampling no use of information from C_t
- 2. compute acceptance probability

$$a=\min\left\{1,\ \frac{\pi(S)}{\pi(C_t)}\cdot\frac{q(C_t\mid S)}{q(S\mid C_t)}\right\}$$
 3. draw a random number u from unit-interval uniform distribution $U_{0,1}$

- 4. if $u \leq a$ then $C_{t+1} := S$ else $C_{t+1} := C_t$
- 5. if $\pi(S) > \pi(C_{\text{best}})$ then remember $C_{\text{best}} \coloneqq S$ Steps 2–4 make no difference when waiting for the best sample configuration
 - ...but getting a good accuracy configuration might take very long this way
 - ullet good overall exploration but slow convergence in the vicinity of a mode where C_t could serve as an attractor
 - cannot use the past generated configurations to estimate any parameters
 - we will fix these problems by (possibly robust) 'local optimization'

► RANSAC with Local Optimization and Early Stopping

- 1. initialize the best configuration as empty $C_{\text{best}} := \emptyset$ and time t := 0
- estimate the number of needed proposals as $N := \binom{n}{s} n$ No. of primitives, s minimal config size
- while $t \leq N$:
 - while $t \leq n$: a) propose a minimal random config S of size s from q(S) .
 - b) if $\pi(S) > \pi(C_{\text{best}})$ then
 - i) update the best config $C_{\text{best}} := S$ $\pi(S)$ marginalized as in (26); $\pi(S)$ includes a prior \Rightarrow MAP
 - ii) threshold-out inliers using e_T from (27)...

iii) start local optimization from the inliers of $C_{
m best}$ LM optimization with robustified (ightarrow114) Sampson error possibly weighted by posterior $\pi(m_{ij})$ [Chum et al. 2003] \perp LO($C_{
m best}$)

iv) update C_{best} , update inliers using (27), re-estimate N from inlier counts

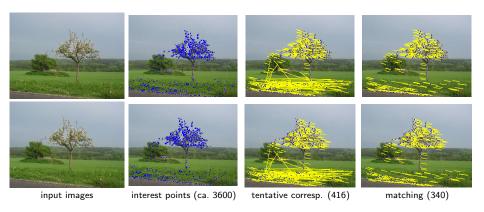
$$N = \frac{\log(1 - P)}{\log(1 - \varepsilon^s)}, \quad \varepsilon = \frac{|\operatorname{inliers}(C_{\operatorname{best}})|}{m n},$$

- c) t := t + 1
- 4. output C_{best}
- see MPV course for RANSAC details

see also [Fischler & Bolles 1981], [25 years of RANSAC]

→123 for derivation

Example Matching Results for the 7-point Algorithm with RANSAC



- notice some wrong matches (they have wrong depth, even negative)
- they cannot be rejected without additional constraints or scene knowledge
- without local optimization the minimization is over a <u>discrete set</u> of epipolar geometries proposable from 7-tuples

Beyond RANSAC

By marginalization in (23) we have lost constraints on M (e.g. uniqueness). One can choose a better model when not marginalizing:

$$\pi(M,\mathbf{F},E,D) = \underbrace{p(E \mid M,\mathbf{F})}_{\text{reprojection error}} \cdot \underbrace{p(D \mid M)}_{\text{similarity}} \cdot \underbrace{p(\mathbf{F})}_{\text{prior}} \cdot \underbrace{P(M)}_{\text{constraint}}$$

this is a global model: decisions on m_{ij} are no longer independent!

In the MH scheme

- one can work with full $p(M, \mathbf{F} \mid E, D)$, then configuration C = M **F** computable from M
 - ullet explicit labeling m_{ij} can be done by, e.g. sampling from

$$q(m_{ij} | \mathbf{F}) \sim ((1 - P_0) p_1(e_{ij} | \mathbf{F}), P_0 p_0(e_{ij} | \mathbf{F}))$$

when P(M) uniform then always accepted, a=1

* derive

- we can compute the posterior probability of each match $p(m_{ij})$ by histogramming m_{ij} from $\{C_i\}$
- ullet local optimization can then use explicit inliers and $p(m_{ij})$
- ullet error can be estimated for elements of ${f F}$ from $\{C_i\}$ does not work in RANSAC!
- large error indicates problem degeneracy

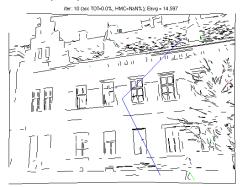
this is not directly available in RANSAC

good conditioning is not a requirement

- we work with the entire distribution $p(\mathbf{F})$
- one can find the most probable number of epipolar geometries by reversible jump MCMC (homographies or other models) and Bayesian model selection if there are multiple models explaning data, RANSAC will return one of them randomly

Example: MH Sampling for a More Complex Problem

Task: Find two vanishing points from line segments detected in input image. Principal point is known, square pixel.



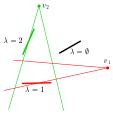
video

simplifications

- vanishing points restricted to the set of all pairwise segment intersections
- mother lines fixed by segment centroid, then θ_L uniquely given by λ_i , and the configuration is

$$C = \{v_1, v_2, \Lambda\}$$

- primitives = line segments
- latent variables
 - 1. each line has a vanishing point label $\lambda_i \in \{\emptyset, 1, 2\}, \ \emptyset$ represents an outlier
 - 2. 'mother line' parameters θ_L (they pass through their vanishing points)
- explicit variables
 - 1. two unknown vanishing points v_1 , v_2
- ullet marginal proposals $(v_i \ {\sf fixed}, \ v_j \ {\sf proposed})$
- minimal configuration s=2



arg
$$\min_{\Lambda} V(v_1, v_2, \Lambda, \theta_L)$$

Module VI

3D Structure and Camera Motion

- Reconstructing Camera System
- 62Bundle Adjustment

covered by

- [1] [H&Z] Secs: 9.5.3, 10.1, 10.2, 10.3, 12.1, 12.2, 12.4, 12.5, 18.1
- [2] Triggs, B. et al. Bundle Adjustment—A Modern Synthesis. In Proc ICCV Workshop on Vision Algorithms. Springer-Verlag. pp. 298–372, 1999.

additional references

D. Martinec and T. Pajdla. Robust Rotation and Translation Estimation in Multiview Reconstruction. In *Proc CVPR*, 2007

M. I. A. Lourakis and A. A. Argyros. SBA: A Software Package for Generic Sparse Bundle Adjustment. ACM Trans Math Software 36(1):1–30, 2009.

▶ Reconstructing Camera System by Stepwise Gluing

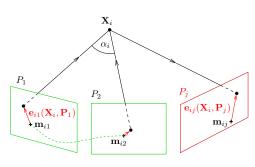
Given: Calibration matrices \mathbf{K}_i and tentative correspondences per camera triples.

Initialization

- 1. initialize camera cluster \mathcal{C} with P_1 , P_2 ,
- 2. find essential matrix \mathbf{E}_{12} and matches M_{12} by the 5-point algorithm
- 3. construct camera pair

$$\mathbf{P}_1 = \mathbf{K}_1 \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix}, \; \mathbf{P}_2 = \mathbf{K}_2 \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}$$

- 4. triangulate $\{X_i\}$ per match from M_{12} $\rightarrow 105$
- 5. initialize point cloud \mathcal{X} with $\{X_i\}$ satisfying chirality constraint $z_i > 0$ and apical angle constraint $|\alpha_i| > \alpha_T$



Attaching camera $P_i \notin \mathcal{C}$

- 1. select points \mathcal{X}_i from \mathcal{X} that have matches to P_i
- 2. estimate P_i using \mathcal{X}_i , RANSAC with the 3-pt alg. (P3P), projection errors e_{ij} in \mathcal{X}_i
- 3. reconstruct 3D points from all tentative matches from P_i to all P_l , $l \neq k$ that are not in \mathcal{X} 4. filter them by the chirality and apical angle constraints and add them to ${\mathcal X}$
- 5. add P_i to \mathcal{C}
- 6. perform bundle adjustment on \mathcal{X} and \mathcal{C}

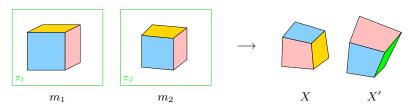
coming next \rightarrow 137

▶The Projective Reconstruction Theorem

Observation: Unless P_i are constrained, then for any number of cameras $i=1,\ldots,k$

$$\underline{\mathbf{m}}_i \simeq \mathbf{P}_i \underline{\mathbf{X}} = \underbrace{\mathbf{P}_i \mathbf{H}^{-1}}_{\mathbf{P}_i'} \underbrace{\mathbf{H} \underline{\mathbf{X}}}_{\underline{\mathbf{X}}'} = \mathbf{P}_i' \, \underline{\mathbf{X}}'$$

• when P_i and \underline{X} are both determined from correspondences (including calibrations K_i), they are given up to a common 3D homography H (translation, rotation, scale, shear, pure perspectivity)



• when cameras are internally calibrated (\mathbf{K}_i known) then \mathbf{H} is restricted to a <u>similarity</u> since it must preserve the calibrations \mathbf{K}_i [H&Z, Secs. 10.2, 10.3], [Longuet-Higgins 1981] (translation, rotation, scale)

▶ Analyzing the Camera System Reconstruction Problem

Problem: Given a set of p decomposed pairwise essential matrices $\hat{\mathbf{E}}_{ij} = [\hat{\mathbf{t}}_{ij}]_{\times} \hat{\mathbf{R}}_{ij}$ and calibration matrices \mathbf{K}_i reconstruct the camera system \mathbf{P}_i , $i=1,\ldots,k$ $\rightarrow 81$ and $\rightarrow 149$ on representing \mathbf{E}

$$\hat{\mathbf{E}}_{78}$$
 $\hat{\mathbf{E}}_{18}$
 $\hat{\mathbf{E}}_{82}$
 $\hat{\mathbf{P}}_{1}$
 $\hat{\mathbf{E}}_{12}$
 $\hat{\mathbf{P}}_{2}$
 $\hat{\mathbf{P}}_{3}$
 $\hat{\mathbf{P}}_{4}$

We construct calibrated camera pairs $\hat{\mathbf{P}}_{ij} \in \mathbb{R}^{6,4}$ see (17)

$$\hat{\mathbf{P}}_{ij} = \begin{bmatrix} \mathbf{K}_i^{-1} \hat{\mathbf{P}}_i \\ \mathbf{K}_j^{-1} \hat{\mathbf{P}}_j \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \hat{\mathbf{R}}_{ij} & \hat{\mathbf{t}}_{ij} \end{bmatrix} \in \mathbb{R}^{6,4}$$

- ullet singletons $i,\ j$ correspond to graph nodes k nodes
- ullet pairs ij correspond to graph edges p edges

$$\hat{\mathbf{P}}_{ij}$$
 are in different coordinate systems but these are related by similarities $\hat{\mathbf{P}}_{ij}\mathbf{H}_{ij}=\mathbf{P}_{ij}$

$$\underbrace{\begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \hat{\mathbf{R}}_{ij} & \hat{\mathbf{t}}_{ij} \end{bmatrix}}_{\mathbf{p}6.4} \underbrace{\begin{bmatrix} \mathbf{R}_{ij} & \mathbf{t}_{ij} \\ \mathbf{0}^{\top} & s_{ij} \end{bmatrix}}_{\mathbf{p}6.4} \stackrel{!}{=} \underbrace{\begin{bmatrix} \mathbf{R}_{i} & \mathbf{t}_{i} \\ \mathbf{R}_{j} & \mathbf{t}_{j} \end{bmatrix}}_{\mathbf{p}6.4} \tag{28}$$

- (28) is a linear system of 24p eqs. in 7p+6k unknowns $7p \sim (\mathbf{t}_{ij}, \mathbf{R}_{ij}, s_{ij}), \, 6k \sim (\mathbf{R}_i, \mathbf{t}_i)$
- each P_i appears on the right side as many times as is the degree of node P_i eg. P_5 3-times

▶cont'd

$$\begin{bmatrix} \mathbf{R}_{ij} \\ \hat{\mathbf{R}}_{ij} \mathbf{R}_{ij} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_i \\ \mathbf{R}_j \end{bmatrix} \qquad \begin{bmatrix} \mathbf{t}_{ij} \\ \hat{\mathbf{R}}_{ij} \mathbf{t}_{ij} + s_{ij} \hat{\mathbf{t}}_{ij} \end{bmatrix} = \begin{bmatrix} \mathbf{t}_i \\ \mathbf{t}_j \end{bmatrix}$$

R_{ij} and t_{ij} can be eliminated:

$$\hat{\mathbf{R}}_{ij}\mathbf{R}_i = \mathbf{R}_j, \qquad \hat{\mathbf{R}}_{ij}\mathbf{t}_i + s_{ij}\hat{\mathbf{t}}_{ij} = \mathbf{t}_j, \qquad s_{ij} > 0$$
(29)

note transformations that do not change these equations

assuming no error in $\hat{\mathbf{R}}_{ij}$ 1. $\mathbf{R}_i \mapsto \mathbf{R}_i \mathbf{R}$, 2. $\mathbf{t}_i \mapsto \sigma \mathbf{t}_i$ and $s_{ij} \mapsto \sigma s_{ij}$, 3. $\mathbf{t}_i \mapsto \mathbf{t}_i + \mathbf{R}_i \mathbf{t}$

the global frame is fixed, e.g. by selecting

$$\mathbf{R}_1 = \mathbf{I}, \qquad \sum_{i=1}^k \mathbf{t}_i = \mathbf{0}, \qquad \frac{1}{p} \sum_{i,j} s_{ij} = 1$$
 (30)

- rotation equations are decoupled from translation equations
- ullet in principle, s_{ij} could correct the sign of $\hat{f t}_{ij}$ from essential matrix decomposition \rightarrow 81 but \mathbf{R}_i cannot correct the α sign in $\hat{\mathbf{R}}_{ij}$

 \Rightarrow therefore make sure all points are in front of cameras and constrain $s_{ij}>$ 0; \to 83

- + pairwise correspondences are sufficient
- suitable for well-distributed cameras only (dome-like configurations)

otherwise intractable or numerically unstable

Finding The Rotation Component in Eq. (29): A Global Algorithm

Task: Solve $\hat{\mathbf{R}}_{ij}\mathbf{R}_i = \mathbf{R}_i$, $i, j \in V$, $(i, j) \in E$ where \mathbf{R} are a 3×3 rotation matrix each. Per columns c = 1, 2, 3 of \mathbf{R}_i :

$$\hat{\mathbf{R}}_{ij}\mathbf{r}_i^c - \mathbf{r}_j^c = 0, \qquad \text{for all } i, j$$

$$\mathbf{r}_{ij}^c \mathbf{r}_i^c - \mathbf{r}_j^c = 0, \qquad \mathbf{r}_i^c \mathbf{r}_i^c = 0$$

- fix c and denote $\mathbf{r}^c = \begin{bmatrix} \mathbf{r}_1^c, \mathbf{r}_2^c, \dots, \mathbf{r}_k^c \end{bmatrix}^{ op}$ c-th columns of all rotation matrices stacked; $\mathbf{r}^c \in \mathbb{R}^{3k}$
- then (31) becomes $\mathbf{D} \mathbf{r}^c = \mathbf{0}$ in a 1-connected graph we have to fix $\mathbf{r}_1^c = [1, 0, 0]$ • 3p equations for 3k unknowns $\rightarrow p \geq k$

Ex: (k = p = 3)

$$\hat{\mathbf{E}}_{13} \xrightarrow{\hat{\mathbf{F}}_{12}} \hat{\mathbf{E}}_{23} \xrightarrow{\hat{\mathbf{F}}_{12}} \hat{\mathbf{F}}_{10} \xrightarrow{\hat{\mathbf{F}}_{10}} \hat{\mathbf{F}}_{10} \hat{\mathbf{F$$

must hold for any c

- Idea: [Martinec & Pajdla CVPR 2007]
- 1. find the space of all $\mathbf{r}^c \in \mathbb{R}^{3k}$ that solve (31) \mathbf{D} is sparse, use [V,E] = eigs(D,*D,3,0); (Matlab)
- choose 3 unit orthogonal vectors in this space 3 smallest eigenvectors because $\|\mathbf{r}^c\|=1$ is necessary but insufficient 3. find closest rotation matrices per cam. using SVD
 - $\mathbf{R}_i^{"} = \mathbf{U}\mathbf{V}^{ op}$, where $\mathbf{R}_i = \mathbf{U}\mathbf{D}\mathbf{V}^{ op}$ global world rotation is arbitrary

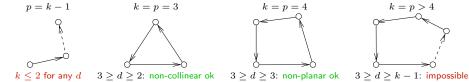
Finding The Translation Component in Eq. (29)

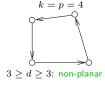
From (29) and (30): $0 < d \le 3$ – rank of camera center set, p – #pairs, k – #cameras

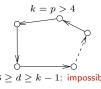
$$\hat{\mathbf{R}}_{ij}\mathbf{t}_i + s_{ij}\hat{\mathbf{t}}_{ij} - \mathbf{t}_j = \mathbf{0}, \qquad \sum_{i=1}^k \mathbf{t}_i = \mathbf{0}, \qquad \sum_{i,j} s_{ij} = p, \qquad s_{ij} > 0, \qquad \mathbf{t}_i \in \mathbb{R}^d$$

• in rank d: $d \cdot p + d + 1$ indep. eqns for $d \cdot k + p$ unknowns $\rightarrow p \ge \frac{d(k-1)-1}{d-1} \stackrel{\text{def}}{=} Q(d,k)$

Ex: Chains and circuits construction from sticks of known orientation and unknown length?







collinear cameras

- equations insufficient for chains, trees, or when d=1
- 3-connectivity implies sufficient equations for d=3cams. in general pos. in 3D
- s-connected graph has $p \geq \lceil \frac{sk}{2} \rceil$ edges for $s \geq 2$, hence $p \geq \lceil \frac{3k}{2} \rceil \geq Q(3,k) = \frac{3k}{2} 2$ • 4-connectivity implies sufficient eqns. for any k when d=2coplanar cams

 - since $p \geq \lceil 2k \rceil \geq Q(2,k) = 2k-3$
 - maximal planar tringulated graphs have p = 3k 6and give a solution for $k \geq 3$ maximal planar triangulated graph example:

Linear equations in (29) and (30) can be rewritten to

$$\mathbf{Dt} = \mathbf{0}, \qquad \mathbf{t} = \begin{bmatrix} \mathbf{t}_1^\top, \mathbf{t}_2^\top, \dots, \mathbf{t}_k^\top, s_{12}, \dots, s_{ij}, \dots \end{bmatrix}^\top$$

assuming measurement errors $\mathbf{Dt} = \boldsymbol{\epsilon}$ and d = 3, we have

$$\mathbf{t} \in \mathbb{R}^{3k+p}, \quad \mathbf{D} \in \mathbb{R}^{3p,3k+p}$$
 sparse

and

$$\mathbf{t}^* = \underset{\mathbf{t}, s_{ij} > 0}{\operatorname{arg\,min}} \ \mathbf{t}^\top \mathbf{D}^\top \mathbf{D} \mathbf{t}$$

• this is a quadratic programming problem (mind the constraints!)

```
z = zeros(3*k+p,1);
t = quadprog(D.'*D, z, diag([zeros(3*k,1); -ones(p,1)]), z);
```

but check the rank first!

▶Bundle Adjustment

Goal: Use a good (and expensive) error model and improve all estimated parameters

Given:

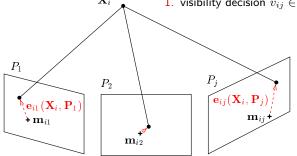
- 1. set of 3D points $\{X_i\}_{i=1}^p$
- 2. set of cameras $\{\mathbf{P}_i\}_{i=1}^c$
- 3. fixed tentative projections \mathbf{m}_{ij}

Required:

- 1. corrected 3D points $\{X_i'\}_{i=1}^p$
- 2. corrected cameras $\{\mathbf{P}_i'\}_{i=1}^c$

Latent:

 \mathbf{X}_{i} 1. visibility decision $v_{ij} \in \{0,1\}$ per \mathbf{m}_{ij}



- for simplicity, X, m are considered Cartesian (not homogeneous)
- ullet we have projection error ${f e}_{ij}({f X}_i,{f P}_j)={f x}_i-{f m}_i$ per image feature, where ${f x}_i={f P}_i{f X}_i$
- for simplicity, we will work with scalar error $e_{ij} = ||\mathbf{e}_{ij}||$

Robust Objective Function for Bundle Adjustment

The data model is

constructed by marginalization over v_{ij} , as in the Robust Matching Model \rightarrow 113

$$p(\{\mathbf{e}\} \mid \{\mathbf{P}, \mathbf{X}\}) = \prod_{\mathsf{pts}: i=1}^p \prod_{\mathsf{cams}: j=1}^c \Big((1-P_0) p_1(e_{ij} \mid \mathbf{X}_i, \mathbf{P}_j) + P_0 \, p_0(e_{ij} \mid \mathbf{X}_i, \mathbf{P}_j) \Big)$$

marginalized negative log-density is $(\rightarrow 114)$

nalized negative log-density is () 114)
$$-\log p(\{\mathbf{e}\} \mid \{\mathbf{P}, \mathbf{X}\}) = \sum_{i} \sum_{j} \underbrace{-\log \left(e^{-\frac{e_{ij}^2(\mathbf{X}_i, \mathbf{P}_j)}{2\sigma_1^2}} + t\right)}_{\rho(e_{ij}^2(\mathbf{X}_i, \mathbf{P}_j)) = \nu_{ij}^2(\mathbf{X}_i, \mathbf{P}_j)} \overset{\text{def}}{=} \sum_{i} \sum_{j} \nu_{ij}^2(\mathbf{X}_i, \mathbf{P}_j)$$

- we can use LM, e_{ij} is the projection error (not Sampson error)
- ν_{ij} is a 'robust' error fcn.; it is non-robust $(\nu_{ij} = e_{ij})$ when t = 0• $\rho(\cdot)$ is a 'robustification function' we often find in M-estimation
- ullet the ${f L}_{ij}$ in Levenberg-Marquardt changes to vector

$$(\mathbf{L}_{ij})_{l} = \frac{\partial \nu_{ij}}{\partial \theta_{l}} = \underbrace{\frac{1}{1 + t e^{e_{ij}^{2}(\theta)/(2\sigma_{1}^{2})}} \cdot \frac{1}{\nu_{ij}(\theta)} \cdot \frac{1}{4\sigma_{1}^{2}} \cdot \frac{\partial e_{ij}^{2}(\theta)}{\partial \theta_{l}}$$
(32)

2

 $\sigma = 1$. t = 0.02

but the LM method stays the same as before \rightarrow 107–108

outliers (wrong v_{ij}): almost no impact on \mathbf{d}_s in normal equations because the red term in (32) scales contributions to both sums down for the particular ij

$$-\sum_{i,j} \mathbf{L}_{ij}^{\top} \nu_{ij}(\theta^s) = \left(\sum_{i,j}^k \mathbf{L}_{ij}^{\top} \mathbf{L}_{ij}\right) \mathbf{d}_s$$

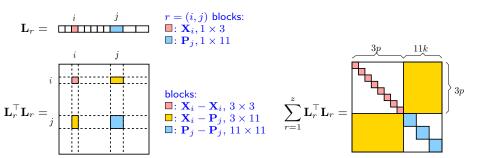
► Sparsity in Bundle Adjustment

We have q=3p+11k parameters: $\theta=(\mathbf{X}_1,\mathbf{X}_2,\ldots,\mathbf{X}_p;\mathbf{P}_1,\mathbf{P}_2,\ldots,\mathbf{P}_k)$ points, cameras

We will use a multi-index $r=1,\dots,z$, $z=p\cdot k$. Then each r corresponds to some $i,\ j$

$$\theta^* = \arg\min_{\theta} \sum_{r=1}^z \nu_r^2(\theta), \; \boldsymbol{\theta}^{s+1} \coloneqq \boldsymbol{\theta}^s + \mathbf{d}_s, \; -\sum_{r=1}^z \mathbf{L}_r^\top \nu_r(\theta^s) = \left(\sum_{r=1}^z \mathbf{L}_r^\top \mathbf{L}_r + \lambda \; \mathrm{diag}(\mathbf{L}_r^\top \mathbf{L}_r)\right) \mathbf{d}_s$$

The block form of \mathbf{L}_r in Levenberg-Marquardt (\rightarrow 107) is zero except in columns i and j: r-th error term is $\nu_r^2 = \rho(e_{ij}^2(\mathbf{X}_i, \mathbf{P}_j))$



• "points first, then cameras" parameterization scheme

► Choleski Decomposition for B. A.

The most expensive computation in B. A. is solving the normal eqs:

$$\text{find } \mathbf{x} \text{ such that } -\sum_{r=1}^{z} \mathbf{L}_{r}^{\top} \nu_{r}(\boldsymbol{\theta}^{s}) = \Big(\sum_{r=1}^{z} \mathbf{L}_{r}^{\top} \mathbf{L}_{r} + \lambda \, \operatorname{diag} \big(\mathbf{L}_{r}^{\top} \mathbf{L}_{r} \big) \Big) \mathbf{x}$$

- A is very large approx. $3 \cdot 10^4 \times 3 \cdot 10^4$ for a small problem of 10000 points and 5 cameras
- ullet A is sparse and symmetric, ${f A}^{-1}$ is dense direct matrix inversion is prohibitive

Choleski: symmetric positive definite matrix ${\bf A}$ can be decomposed to ${\bf A}={\bf L}{\bf L}^{\top}\!,$ where ${\bf L}$ is lower triangular. If ${\bf A}$ is sparse then ${\bf L}$ is sparse, too.

1. decompose $\mathbf{A} = \mathbf{L}\mathbf{L}^{\top}$

transforms the problem to $\ \mathbf{L} \underbrace{\mathbf{L}^{\top} \mathbf{x}}_{} = \mathbf{b}$

2. solve for x in two passes:

$$\mathbf{L} \mathbf{c} = \mathbf{b} \quad \mathbf{c}_i \coloneqq \mathbf{L}_{ii}^{-1} \Big(\mathbf{b}_i - \sum_{j < i} \mathbf{L}_{ij} \mathbf{c}_j \Big)$$
 forward substitution, $i = 1, \dots, q$ (params)

$$\mathbf{L}^{\top}\mathbf{x} = \mathbf{c} \quad \mathbf{x}_i := \mathbf{L}_{ii}^{-1} \Big(\mathbf{c}_i - \sum_{j>i} \mathbf{L}_{ji} \mathbf{x}_j \Big)$$

back-substitution

- Choleski decomposition is fast (does not touch zero blocks) non-zero elements are $9p + 121k + 66pk \approx 3.4 \cdot 10^6$; ca. $250 \times$ fewer than all elements
- it can be computed on single elements or on entire blocks
- use profile Choleski for sparse A and diagonal pivoting for semi-definite A see above; [Triggs et al. 1999]
- λ controls the definiteness

Profile Choleski Decomposition is Simple

```
function L = pchol(A)
% PCHOL profile Choleski factorization.
    L = PCHOL(A) returns lower-triangular sparse L such that A = L*L'
     for sparse square symmetric positive definite matrix A,
     especially efficient for arrowhead sparse matrices.
% (c) 2010 Radim Sara (sara@cmp.felk.cvut.cz)
 [p,q] = size(A);
 if p ~= q, error 'Matrix A is not square'; end
 L = sparse(q,q);
 F = ones(q,1);
 for i=1:q
 F(i) = find(A(i,:),1); % 1st non-zero on row i; we are building F gradually
 for j = F(i):i-1
  k = max(F(i),F(j));
  a = A(i,j) - L(i,k:(j-1))*L(j,k:(j-1));
  L(i,j) = a/L(j,j);
 end
  a = A(i,i) - sum(full(L(i,F(i):(i-1))).^2);
  if a < 0, error 'Matrix A is not positive definite'; end
 L(i,i) = sqrt(a);
 end
end
```

▶Gauge Freedom

1. The external frame is not fixed: See Projective Reconstruction Theorem \to 131 $\underline{\mathbf{m}}_{ij} \simeq \mathbf{P}_j \underline{\mathbf{X}}_i = \mathbf{P}_j \mathbf{H}^{-1} \mathbf{H} \underline{\mathbf{X}}_i = \mathbf{P}_j' \underline{\mathbf{X}}_i'$

- 2. Some representations are not minimal, e.g.
 - ullet P is 12 numbers for 11 parameters
 - \bullet we may represent P in decomposed form $K,\,R,\,t$
- ullet but ${f R}$ is 9 numbers representing the 3 parameters of rotation

As a result

Solutions

- there is no unique solution
- matrix $\sum_r \mathbf{L}_r^{\top} \mathbf{L}_r$ is singular

1. fixing the external frame (e.g. a selected camera frame) explicitly or by constraints

- 2. fixing the scale (e.g. $s_{12} = 1$)
- 2. Tixing the scale (e.g. $s_{12} = 1$)
- 3a. either imposing constraints on projective entities
 - cameras, e.g. $P_{3,4} = 1$ • points, e.g. $\|X_i\|^2 = 1$

this excludes affine cameras this way we can represent points at infinity

- 3b. or using minimal representations
 - ullet points in their Euclidean representation $old X_i$ but finite points may be an unrealistic model
- rotation matrix can be represented by skew-symmetric matrix →147

Implementing Simple Linear Constraints

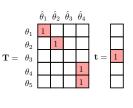
What for?

- 1. fixing external frame as in $\theta_i = \mathbf{t}_i$, $s_{kl} = 1$ for some i, k, l'trivial gauge'
- 2. representing additional knowledge as in $\theta_i = \theta_i$ e.g. cameras share calibration matrix K

Introduce reduced parameters $\hat{\theta}$ and replication matrix T: $\theta = \mathbf{T} \, \hat{\theta} + \mathbf{t}, \quad \mathbf{T} \in \mathbb{R}^{p,\hat{p}}, \quad \hat{p} \leq p$

then L_r in LM changes to L_r T and

everything else stays the same \rightarrow 107



these T, t represent $\theta_1 = \hat{\theta}_1$ no change $\theta_2 = \hat{\theta}_2$ no change $\theta_3 = t_3$ constancy $\theta_4 = \theta_5 = \hat{\theta}_4$ equality

- T deletes columns of L_r that correspond to fixed parameters it reduces the problem size
- consistent initialisation: $\theta^0 = \mathbf{T} \hat{\theta}^0 + \mathbf{t}$ or filter the init by pseudoinverse $\theta^0 \to \mathbf{T}^\dagger \theta^0$ • no need for computing derivatives for θ_i corresponding to all-zero rows of T fixed θ
- constraining projective entities →147–149
- more complex constraints tend to make normal equations dense
- implementing constraints is safer than explicit renaming of the parameters, gives a flexibility to experiment
- other methods are much more involved, see [Triggs et al. 1999]
- BA resource: http://www.ics.forth.gr/~lourakis/sba/ [Lourakis 2009]

Matrix Exponential: A path to Minimal Parameterizations

• for any square matrix we define

$$\operatorname{expm}(\mathbf{A}) = \sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^k$$
 note: $\mathbf{A}^0 = \mathbf{I}$

some properties:

$$\begin{aligned} \exp \mathbf{m} \, \mathbf{0} &= \mathbf{I}, \quad \exp \mathbf{m} (-\mathbf{A}) = \left(\exp \mathbf{m} \, \mathbf{A} \right)^{-1} \,, \\ \exp \mathbf{m} (a \mathbf{A} + b \mathbf{A}) &= \exp \mathbf{m} (a \, \mathbf{A}) \exp \mathbf{m} (b \, \mathbf{A}), \quad \exp \mathbf{m} (\mathbf{A} + \mathbf{B}) \neq \exp \mathbf{m} (\mathbf{A}) \exp \mathbf{m} (\mathbf{B}) \\ \exp \mathbf{m} (\mathbf{A}^\top) &= \left(\exp \mathbf{m} \, \mathbf{A} \right)^\top \quad \text{hence if } \mathbf{A} \text{ is skew symmetric then } \exp \mathbf{m} \, \mathbf{A} \text{ is orthogonal:} \\ \left(\exp \mathbf{m} (\mathbf{A}) \right)^\top &= \exp \mathbf{m} (\mathbf{A}^\top) = \exp \mathbf{m} (-\mathbf{A}) = \left(\exp \mathbf{m} (\mathbf{A}) \right)^{-1} \\ \det \left(\exp \mathbf{m} \, \mathbf{A} \right) &= e^{\operatorname{tr} \, \mathbf{A}} \end{aligned}$$

Some consequences

- traceless matrices map to unit-determinant matrices ⇒ we can represent homogeneous representatives
- ullet skew-symmetric matrices map to orthogonal matrices \Rightarrow we can represent rotations
- matrix exponential provides the exponential map from the powerful Lie group theory

Lie Groups Useful in 3D Vision

group		matrix	represent
special linear	$\mathrm{SL}(3,\mathbb{R})$	real 3×3 , unit determinant ${\bf H}$	2D homography
special linear	$\mathrm{SL}(4,\mathbb{R})$	real 4×4 , unit determinant	3D homography
orthogonal	SO(3)	real 3×3 orthogonal ${f R}$	3D rotation
special Euclidean	SE(3)	$4 \times 4 \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ 0 & 1 \end{bmatrix}$, $\mathbf{R} \in \mathrm{SO}(3)$, $\mathbf{t} \in \mathbb{R}^3$	3D rigid motion
similarity	Sim(3)	$4 \times 4 \left[egin{array}{cc} \mathbf{R} & \mathbf{t} \\ 0 & s^{-1} \end{array} ight]$, $s \in \mathbb{R} \setminus 0$	$rigid \; motion \; + \; scale$

- ullet Lie group G= topological group that is also a smooth manifold with nice properties
- \bullet Lie algebra $\mathfrak{g}=\text{vector}$ space associated with a Lie group (tangent space of the manifold)
- group: this is where we need to work
- algebra: this is how to represent group elements with a minimal number of parameters
- ullet Exponential map = map between algebra and its group $\exp\colon \mathfrak{g} o G$
- for matrices exp = expm
- in most of the above groups we have a closed-form formula for the exponential and for its principal inverse
- also Jacobians are readily available

Homography

$$\mathbf{H} = \operatorname{expm} \mathbf{Z}$$

• $SL(3,\mathbb{R})$ group element

$$\mathbf{H} = \begin{vmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{vmatrix} \quad \text{s.t.} \quad \det \mathbf{H} = 1$$

• $\mathfrak{sl}(3,\mathbb{R})$ algebra element

$$\mathbf{Z} = egin{bmatrix} z_{11} & z_{12} & z_{13} \ z_{21} & z_{22} & z_{23} \ z_{21} & z_{22} & -(z_{11} + z_{22}) \end{bmatrix}$$

8 parameters

• note that $tr \mathbf{Z} = 0$

▶Rotation in 3D

$$\mathbf{R} = \operatorname{expm} \left[\boldsymbol{\phi} \right]_{\times}, \quad \boldsymbol{\phi} = (\phi_1, \phi_2, \phi_3) = \varphi \, \mathbf{e}_{\varphi}, \quad 0 \le \varphi < \pi, \quad \|\mathbf{e}_{\varphi}\| = 1$$

• SO(3) group element

$$\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \quad \text{s.t.} \quad \mathbf{R}^{-1} = \mathbf{R}^{\top}$$

• $\mathfrak{so}(3)$ algebra element

$$[\phi]_{\times} = egin{bmatrix} 0 & -\phi_3 & \phi_2 \ \phi_3 & 0 & -\phi_1 \ -\phi_2 & \phi_1 & 0 \end{bmatrix}$$

exponential map in closed form

$$\mathbf{R} = \operatorname{expm}\left[\boldsymbol{\phi}\right]_{\times} = \sum_{n=0}^{\infty} \frac{\left[\boldsymbol{\phi}\right]_{\times}^{n}}{n!} = \stackrel{\circledast}{\cdots} \stackrel{1}{\cdot} = \mathbf{I} + \frac{\sin\varphi}{\varphi} \left[\boldsymbol{\phi}\right]_{\times} + \frac{1 - \cos\varphi}{\varphi^{2}} \left[\boldsymbol{\phi}\right]_{\times}^{2}$$

(principal) logarithm

Rodrigues' formula

3 parameters

- $oldsymbol{\phi}$ is rotation axis vector $oldsymbol{\mathrm{e}}_{arphi}$ scaled by rotation angle arphi in radians
- finite limits for $\varphi \to 0$ exist: $\sin(\varphi)/\varphi \to 1$, $(1-\cos\varphi)/\varphi^2 \to 1/2$
- 3D Computer Vision: VI. 3D Structure and Camera Motion (p. 147/196) *990 R. Šára, CMP; rev. 5-Jan-2021

 $0 \le \varphi < \pi$, $\cos \varphi = \frac{1}{2} (\operatorname{tr}(\mathbf{R}) - 1)$, $[\phi]_{\times} = \frac{\varphi}{2 \sin \varphi} (\mathbf{R} - \mathbf{R}^{\top})$,

3D Rigid Motion

$$\mathbf{M} = \operatorname{expm}\left[\boldsymbol{\nu}\right]_{\wedge}$$

• SE(3) group element

$$\mathbf{M} = \begin{vmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{vmatrix}$$
 s.t. $\mathbf{R} \in SO(3), \ \mathbf{t} \in \mathbb{R}^3$

 4×4 matrix

 4×4 matrix

• $\mathfrak{se}(3)$ algebra element

$$[\boldsymbol{\nu}]_{\wedge} = \begin{bmatrix} [\boldsymbol{\phi}]_{\times} & \boldsymbol{\rho} \\ \mathbf{0} & 0 \end{bmatrix} \quad \text{s.t.} \quad \boldsymbol{\phi} \in \mathbb{R}^3, \; \boldsymbol{\varphi} = \|\boldsymbol{\phi}\| < \pi, \; \boldsymbol{\rho} \in \mathbb{R}^3$$

exponential map in closed form

$$\mathbf{R} = \operatorname{expm}\left[\boldsymbol{\phi}\right]_{\times}, \quad \mathbf{t} = \operatorname{dexpm}\left(\left[\boldsymbol{\phi}\right]_{\times}\right) \boldsymbol{\rho}$$

$$\operatorname{dexpm}\left(\left[\boldsymbol{\phi}\right]_{\times}\right) = \sum_{n=0}^{\infty} \frac{\left[\boldsymbol{\phi}\right]_{\times}^{n}}{(n+1)!} = \mathbf{I} + \frac{1 - \cos\varphi}{\varphi^{2}} \left[\boldsymbol{\phi}\right]_{\times} + \frac{\varphi - \sin\varphi}{\varphi^{3}} \left[\boldsymbol{\phi}\right]_{\times}^{2}$$

$$\operatorname{dexpm}^{-1}\left(\left[\boldsymbol{\phi}\right]_{\times}\right) = \mathbf{I} - \frac{1}{2} \left[\boldsymbol{\phi}\right]_{\times} + \frac{1}{\varphi^{2}} \left(1 - \frac{\varphi}{2} \cot\frac{\varphi}{2}\right) \left[\boldsymbol{\phi}\right]_{\times}^{2}$$

- (principal) logarithm via a similar trick as in SO(3)
- finite limits exist: $(\varphi \sin \varphi)/\varphi^3 \to 1/6$
- this form is preferred to $SO(3) \times \mathbb{R}^3$

► Minimal Representations for Other Entities

• fundamental matrix via $SO(3) \times SO(3) \times \mathbb{R}$

$$\mathbf{F} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}, \quad \mathbf{D} = \text{diag}(1, d^2, 0), \quad \mathbf{U}, \mathbf{V} \in SO(3), \quad 3 + 1 + 3 = 7 \text{ DOF}$$

• essential matrix via $SO(3) \times \mathbb{R}^3$

$$\mathbf{E} = [-\mathbf{t}]_{\times} \mathbf{R}, \quad \mathbf{R} \in SO(3), \quad \mathbf{t} \in \mathbb{R}^3, \ \|\mathbf{t}\| = 1, \qquad 3+2=5 \ \mathsf{DOF}$$

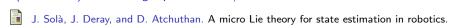
• camera via $SO(3) \times \mathbb{R}^3$ or SE(3)

$$P = K \begin{bmatrix} R & t \end{bmatrix} = \begin{bmatrix} K & 0 \end{bmatrix} M, \qquad 5+3+3=11 \text{ DOF}$$

- Sim(3) useful for SfM without scale
- closed-form formulae still exist but are a bit messy

arXiv:1812.01537v7 [cs.RO], August 2020.

• a (bit too brief) intro to Lie groups in 3D vision/robotics and SW:



Module VII

Stereovision

- Introduction
- Epipolar Rectification
- Binocular Disparity and Matching Table
- MImage Similarity
- 75 Marroquin's Winner Take All Algorithm
- Maximum Likelihood Matching
- Uniqueness and Ordering as Occlusion Models

mostly covered by

Šára, R. How To Teach Stereoscopic Vision. Proc. ELMAR 2010

referenced as [SP]

additional references

C. Geyer and K. Daniilidis. Conformal rectification of omnidirectional stereo pairs. In *Proc Computer Vision and Pattern Recognition Workshop*, p. 73, 2003.

J. Gluckman and S. K. Nayar. Rectifying transformations that minimize resampling effects. In *Proc IEEE CS Conf on Computer Vision and Pattern Recognition*, vol. 1:111–117. 2001.

M. Pollefeys, R. Koch, and L. V. Gool. A simple and efficient rectification method for general motion. In *Proc Int Conf on Computer Vision*, vol. 1:496–501, 1999.

What Are The Relative Distances?

• monocular vision already gives a rough 3D sketch because we understand the scene

What Are The Relative Distances?

Centrum för teknikstudier at Malmö Högskola, Sweden

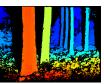
The Vyšehrad Fortress, Prague

- left: we have no help from image interpretation
- right: ambiguous interpretation due to a combination of missing texture and occlusion

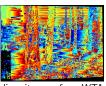
► How Difficult Is Stereo?

- when we <u>do not recognize</u> the scene and cannot use high-level constraints the problem seems difficult (right, less so in the center)
- most stereo matching algorithms do not require scene understanding prior to matching
- the success of a model-free stereo matching algorithm is unlikely:

left image



a good disparity map



disparity map from WTA

WTA Matching:

for every left-image pixel find the most similar right-image pixel along the corresponding epipolar line [Marroquin 83]

A Summary of Our Observations and an Outlook

- 1. simple matching algorithms do not work
- 2. stereopsis requires image interpretation in sufficiently complex scenes

or another-modality measurement

we have a tradeoff: model strength \leftrightarrow universality

Outlook:

- 1. represent the occlusion constraint: correspondences are not independent due to occlusions
 - epipolar rectification
 - disparity
 - uniqueness as an occlusion constraint
- 2. represent piecewise continuity the weakest of interpretations; piecewise: object boundaries
 - ordering as a weak continuity model
- 3. use a consistent framework
 - finding the most probable solution (MAP)

►Linear Epipolar Rectification for Easier Correspondence Search

Obs:

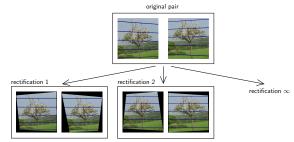
- if we map epipoles to infinity, epipolar lines become parallel
- we then rotate them to become horizontal
- we then scale the images to make correspoding epipolar lines colinear
- this can be achieved by a pair of (non-unique) homographies applied to the images

Problem: Given fundamental matrix F or camera matrices P_1 , P_2 , compute a pair of homographies that maps epipolar lines to horizontal with the same row coordinate.

Procedure:

- 1. find a pair of rectification homographies \mathbf{H}_1 and \mathbf{H}_2 .
- 2. warp images using \mathbf{H}_1 and \mathbf{H}_2 and transform the fundamental matrix

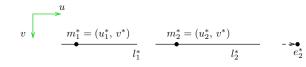
 $\mathbf{F} \mapsto \mathbf{H}_2^{-\top} \mathbf{F} \mathbf{H}_1^{-1}$ or the cameras $\mathbf{P}_1 \mapsto \mathbf{H}_1 \mathbf{P}_1$, $\mathbf{P}_2 \mapsto \mathbf{H}_2 \mathbf{P}_2$.



► Rectification Homographies

Assumption: Cameras (P_1, P_2) are rectified by a homography pair (H_1, H_2) :

$$\mathbf{P}_{i}^{*} = \mathbf{H}_{i}\mathbf{P}_{i} = \mathbf{H}_{i}\mathbf{K}_{i}\mathbf{R}_{i}\begin{bmatrix}\mathbf{I} & -\mathbf{C}_{i}\end{bmatrix}, \quad i = 1, 2$$



rectified entities: \mathbf{F}^* , \mathbf{l}_2^* , \mathbf{l}_1^* , etc:

- the rectified location difference $d = u_1^* u_2^*$ is called disparity
- corresponding epipolar lines must be:
 - 1. parallel to image rows \Rightarrow epipoles become $e_1^* = e_2^* = (1,0,0)$
 - $2. \text{ equivalent } l_2^* = l_1^*: \quad \mathbf{l}_1^* \simeq \underline{\mathbf{e}}_1^* \times \underline{\mathbf{m}}_1 = [\underline{\mathbf{e}}_1^*]_{\times} \underline{\mathbf{m}}_1, \quad \underline{\mathbf{l}}_2^* \simeq \mathbf{F}^* \underline{\mathbf{m}}_1 \quad \Rightarrow \quad \mathbf{F}^* = [\underline{\mathbf{e}}_1^*]_{\times}$
 - therefore the canonical fundamental matrix is

$$\mathbf{F}^* \simeq \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

A two-step rectification procedure

- 1. find some pair of primitive rectification homographies $\hat{\mathbf{H}}_1$, $\hat{\mathbf{H}}_2$
- 2. upgrade to a pair of optimal rectification homographies while preserving \mathbf{F}^*

▶ Geometric Interpretation of Linear Rectification

What pair of physical cameras is compatible with F^* ?

- we know that $\mathbf{F} = (\mathbf{Q}_1 \mathbf{Q}_2^{-1})^{\top} [\mathbf{e}_1]_{\sim}$
 - we choose $\mathbf{Q}_1^* = \mathbf{K}_1^*$, $\mathbf{Q}_2^* = \mathbf{K}_2^* \mathbf{R}^*$; then

$$(\mathbf{Q}_1^*\mathbf{Q}_2^{*-1})^{\top}[\underline{\mathbf{e}}_1^*]_{\times} = (\mathbf{K}_1^*\mathbf{R}^{*\top}\mathbf{K}_2^{*-1})^{\top}\mathbf{F}^*$$

• we look for \mathbb{R}^* , \mathbb{K}_1^* , \mathbb{K}_2^* compatible with

$$(\mathbf{K}_1^*\mathbf{R}^{*\top}\mathbf{K}_2^{*-1})^{\top}\mathbf{F}^* = \lambda\mathbf{F}^*, \qquad \mathbf{R}^*\mathbf{R}^{*\top} = \mathbf{I}, \qquad \mathbf{K}_1^*, \mathbf{K}_2^* \text{ upper triangular}$$

- we also want \mathbf{b}^* from $\mathbf{e}_1^* \simeq \mathbf{P}_1^* \mathbf{C}_2^* = \mathbf{K}_1^* \mathbf{b}^*$
- b* in cam. 1 frame
- result:

$$\mathbf{R}^* = \mathbf{I}, \quad \mathbf{b}^* = \begin{bmatrix} b \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{K}_1^* = \begin{bmatrix} k_{11} & k_{12} & k_{13} \\ 0 & f & v_0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{K}_2^* = \begin{bmatrix} k_{21} & k_{22} & k_{23} \\ 0 & f & v_0 \\ 0 & 0 & 1 \end{bmatrix}$$
(33)

rectified cameras are in canonical relative pose

not rotated, canonical baseline

 \rightarrow 79

- rectified calibration matrices can differ in the first row only • when $\mathbf{K}_1^* = \mathbf{K}_2^*$ then the rectified pair is called the standard stereo pair and the
- homographies standard rectification homographies standard rectification homographies: points at infinity have zero disparity

$$\mathbf{P}_{i}^{*}\mathbf{X}_{\infty} = \mathbf{K}\begin{bmatrix} \mathbf{I} & -\mathbf{C}_{i} \end{bmatrix}\mathbf{X}_{\infty} = \mathbf{K}\mathbf{X}_{\infty} \qquad i = 1, 2$$

this does not mean that the images are not distorted after rectification

▶Primitive Rectification

Goal: Given fundamental matrix ${f F}$, derive some simple rectification homographies ${f H}_1,\,{f H}_2$

- 1. Let the SVD of \mathbf{F} be $\mathbf{U}\mathbf{D}\mathbf{V}^{\top} = \mathbf{F}$, where $\mathbf{D} = \operatorname{diag}(1, d^2, 0)$, $1 \ge d^2 > 0$
- 2. Write **D** as $\mathbf{D} = \mathbf{A}^{\top} \mathbf{F}^* \mathbf{B}$ for some regular **A**, **B**. For instance $(\mathbf{F}^* \text{ is given } \rightarrow 156)$

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -d & 0 \\ 1 & 0 & 0 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & d & 0 \end{bmatrix}$$

3. Then

$$\mathbf{F} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top} = \underbrace{\mathbf{U}\mathbf{A}^{\top}}_{\hat{\mathbf{H}}_{2}^{\top}} \mathbf{F}^{*} \underbrace{\mathbf{B}\mathbf{V}^{\top}}_{\hat{\mathbf{H}}_{1}}$$

and the primitive rectification homographies are

$$\hat{\mathbf{H}}_2 = \mathbf{A}\mathbf{U}^{\top}, \qquad \hat{\mathbf{H}}_1 = \mathbf{B}\mathbf{V}^{\top}$$

- ® P1: 1pt: derive some other admissible A. B
- rectification homographies do exist →156
- there are other primitive rectification homographies, these suggested are just simple to obtain

▶The Set of All Rectification Homographies

Proposition 1 Homographies A_1 and A_2 are rectification-preserving if the images stay rectified, i.e. if $A_2^{-\top} \mathbf{F}^* \mathbf{A}_1^{-1} \simeq \mathbf{F}^*$, which gives

$$\mathbf{A}_{1} = \begin{bmatrix} l_{1} & l_{2} & l_{3} \\ 0 & s_{v} & t_{v} \\ 0 & q & 1 \end{bmatrix}, \qquad \mathbf{A}_{2} = \begin{bmatrix} r_{1} & r_{2} & r_{3} \\ 0 & s_{v} & t_{v} \\ 0 & q & 1 \end{bmatrix}, \qquad v$$

where $s_v \neq 0$, t_v , $l_1 \neq 0$, l_2 , l_3 , $r_1 \neq 0$, r_2 , r_3 , q are $\underline{9}$ free parameters.

general	transformation	standard
l_1 , r_1	horizontal scales	$l_1 = r_1$
l_2 , r_2	horizontal shears	$l_2 = r_2$
l_3 , r_3	horizontal shifts	$l_3 = r_3$
q	common special projective	
s_v	common vertical scale	
t_v	common vertical shift	
9 DoF		9-3=6DoF

- q is due to a rotation about the baseline proof: find a rotation G that brings K to upper triangular form via RQ decomposition: $A_1K_1^* = \hat{K}_1G$ and $A_2K_2^* = \hat{K}_2G$
- 3D Computer Vision: VII. Stereovision (p. 159/196)

The Rectification Group

Corollary for Proposition 1 Let $\bar{\mathbf{H}}_1$ and $\bar{\mathbf{H}}_2$ be (primitive or other) rectification homographies. Then $\mathbf{H}_1 = \mathbf{A}_1\bar{\mathbf{H}}_1$, $\mathbf{H}_2 = \mathbf{A}_2\bar{\mathbf{H}}_2$ are also rectification homographies.

Proposition 2 Pairs of rectification-preserving homographies (A_1, A_2) form a group with group operation $(A'_1, A'_2) \circ (A_1, A_2) = (A'_1 A_1, A'_2 A_2)$.

Proof:

- closure by Proposition 1
- associativity by matrix multiplication
- identity belongs to the set
- inverse element belongs to the set by $\mathbf{A}_2^{\top} \mathbf{F}^* \mathbf{A}_1 \simeq \mathbf{F}^* \Leftrightarrow \mathbf{F}^* \simeq \mathbf{A}_2^{-\top} \mathbf{F}^* \mathbf{A}_1^{-1}$

▶ Primitive Rectification Suffices for Calibrated Cameras

Obs: calibrated cameras: $d=1\Rightarrow\hat{\mathbf{H}}_1$, $\hat{\mathbf{H}}_2$ (\rightarrow 158) are orthonormal

- 1. determine primitive rectification homographies $(\hat{\mathbf{H}}_1, \hat{\mathbf{H}}_2)$ from the <u>essential</u> matrix
- 2. choose a suitable common calibration matrix K, e.g.

$$\mathbf{K} = \begin{bmatrix} f & 0 & u_0 \\ 0 & f & v_0 \\ 0 & 0 & 1 \end{bmatrix}, \quad f = \frac{1}{2}(f^1 + f^2), \quad u_0 = \frac{1}{2}(u_0^1 + u_0^2), \quad \text{etc.}$$

3. the final rectification homographies applied as $\mathbf{P}_i \mapsto \mathbf{H}_i \, \mathbf{P}_i$ are

$$\mathbf{H}_1 = \mathbf{K}\mathbf{\hat{H}}_1\mathbf{K}_1^{-1}, \quad \mathbf{H}_2 = \mathbf{K}\mathbf{\hat{H}}_2\mathbf{K}_2^{-1}$$

• we got a standard stereo pair (\rightarrow 157) and non-negative disparity: let $\mathbf{K}_{i}^{-1}\mathbf{P}_{i} = \mathbf{R}_{i} \begin{bmatrix} \mathbf{I} & -\mathbf{C}_{i} \end{bmatrix}$, i = 1, 2 note we started from \mathbf{E}_{i} , not \mathbf{F}_{i}

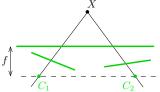
$$\mathbf{H}_1\mathbf{P}_1 = \mathbf{K}\mathbf{\hat{H}}_1\mathbf{K}_1^{-1}\mathbf{P}_1 = \mathbf{K}\underbrace{\mathbf{B}\mathbf{V}^{\top}\mathbf{R}_1}_{\mathbf{R}^*}\begin{bmatrix}\mathbf{I} & -\mathbf{C}_1\end{bmatrix} = \mathbf{K}\mathbf{R}^*\begin{bmatrix}\mathbf{I} & -\mathbf{C}_1\end{bmatrix}$$

$$\mathbf{H}_{2}\mathbf{P}_{2} = \mathbf{K}\hat{\mathbf{H}}_{2}\mathbf{K}_{2}^{-1}\mathbf{P}_{2} = \mathbf{K}\underbrace{\mathbf{A}\mathbf{U}^{\top}\mathbf{R}_{2}}_{\mathbf{R}^{*}}\begin{bmatrix}\mathbf{I} & -\mathbf{C}_{2}\end{bmatrix} = \mathbf{K}\mathbf{R}^{*}\begin{bmatrix}\mathbf{I} & -\mathbf{C}_{2}\end{bmatrix}$$

- ullet one can prove that $\mathbf{BV}^{ op}\mathbf{R}_1 = \mathbf{AU}^{ op}\mathbf{R}_2$ with the help of essential matrix decomposition (13)
- points at infinity project by \mathbf{KR}^* in both cameras \Rightarrow they have zero disparity

► Summary & Remarks: Linear Rectification

standard rectification homographies reproject onto a common image plane parallel to the baseline



 $\rightarrow 155$

 $\rightarrow 157$

 $\rightarrow 157$

 \rightarrow 161

- rectification is done with a pair of homographies (one per image)
 - ⇒ rectified camera centers are equal to the original ones
 - binocular rectification: a 9-parameter family of rectification homographies
 - trinocular rectification: has 9 or 6 free parameters (depending on additional constrains) in general, linear rectification is not possible for more than three cameras
- rectified cameras are in canonical orientation
 - rectified image projection planes are coplanar
- equal rectified calibration matrices give standard rectification rectified image projection planes are equal
- primitive rectification is standard in calibrated cameras
- known F used alone does not allow standardization of rectification homographies
- for that we need either of these:
 - 1. projection matrices, or calibrated cameras, or
 - 2. a few points at infinity calibrating k_{1i} , k_{2i} , i=1,2,3 in (33)

Optimal and Non-linear Rectification

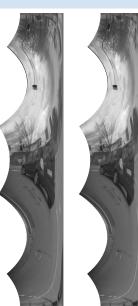
Optimal choice for the free parameters

 by minimization of residual image distortion, eg. [Gluckman & Nayar 2001]

$$\mathbf{A}_{1}^{*} = \arg\min_{\mathbf{A}_{1}} \iint_{\Omega} (\det J(\mathbf{A}_{1}\hat{\mathbf{H}}_{1}\underline{\mathbf{x}}) - 1)^{2} d\mathbf{x}$$

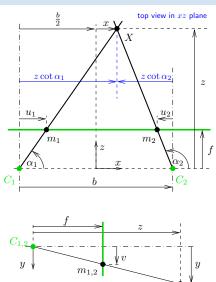
- by minimization of image information loss [Matoušek, ICIG 2004]
- non-linear rectification suitable for forward motion non-parametric: [Pollefeys et al. 1999]
 analytic: [Geyer & Daniilidis 2003]

forward egomotion



rectified images, Pollefeys' method

▶Binocular Disparity in Standard Stereo Pair



Assumptions: single image line, standard camera pair

$$b = z \cot \alpha_1 - z \cot \alpha_2$$

$$u_1 = f \cot \alpha_1$$

$$u_2 = f \cot \alpha_2$$

$$b = \frac{b}{2} + x - z \cot \alpha_2$$

$$X = (x, y, z)$$
 from disparity $d = u_1 - u_2$:

$$z = \frac{bf}{d}$$
, $x = \frac{b}{d} \frac{u_1 + u_2}{2}$, $y = \frac{bv}{d}$

f, d, u, v in pixels, b, x, y, z in meters

Observations

- constant disparity surface is a frontoparallel plane
- distant points have small disparity
- ullet relative error in z is large for small disparity

$$\frac{1}{z}\frac{\mathrm{d}z}{\mathrm{d}d} = -\frac{1}{d}$$

 increasing the baseline or the focal length increases disparity and reduces the error

side view in uz plane

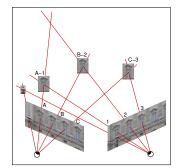
Structural Ambiguity in Stereovision

- suppose we can recognize local matches independently but have no scene model
- lack of an occlusion model
- lack of a continuity model

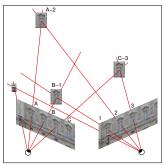
structural ambiguity in the presence of repetitions (or lack of texture)

left image

right image

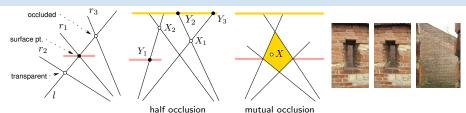


interpretation 1



interpretation 2

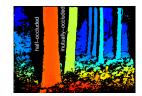
▶Understanding Basic Occlusion Types



• surface point at the intersection of rays l and r_1 occludes a world point at the intersection (l,r_3) and implies the world point (l,r_2) is transparent, therefore

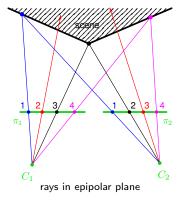
$$(l,r_3)$$
 and (l,r_2) are excluded by (l,r_1)

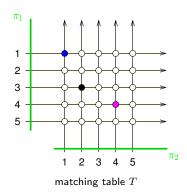
- in half-occlusion, every world point such as X_1 or X_2 is excluded by a binocularly visible surface point such as Y_1 , Y_2 , Y_3 \Rightarrow decisions on correspondences are not independent
- in mutual occlusion this is no longer the case: any X in the yellow zone is not excluded \Rightarrow decisions in the zone are independent on the rest



► Matching Table

Based on scene opacity and the observation on mutual exclusion we expect each pixel to match at most once.



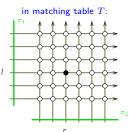


matching table

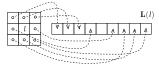
- rows and columns represent optical rays
- nodes: possible correspondence pairs
- full nodes: matches
- numerical values associated with nodes: descriptor similarities

▶ Constructing An Image Similarity Cost

• let $p_i = (l, r)$ and $\mathbf{L}(l)$, $\mathbf{R}(r)$ be (left, right) image descriptors (vectors) constructed from local image neighborhood windows



'block' in the left image → 'signal sample':



- a simple block similarity is $SAD(l,r) = \|\mathbf{L}(l) \mathbf{R}(r)\|_1$ L_1 metric (sum of absolute differences)
- a scaled-descriptor similarity is $\sin(l,r) = \frac{\|\mathbf{L}(l) \mathbf{R}(r)\|^2}{\sigma_z^2(l,r)}$ smaller is better
- σ_I^2 the difference scale; a suitable (plug-in) estimate is $\frac{1}{2} \left[\text{var} (\mathbf{L}(l)) + \text{var} (\mathbf{R}(r)) \right]$, giving

$$\sin(l,r) = 1 - \underbrace{\frac{2 \, \cos(\mathbf{L}(l), \mathbf{R}(r))}{\operatorname{var}(\mathbf{L}(l)) + \operatorname{var}(\mathbf{R}(r))}}_{\rho(\mathbf{L}(l), \mathbf{R}(r))} \qquad \frac{\operatorname{var}(\cdot), \, \operatorname{cov}(\cdot) \text{ is sample (co-)variance, not invariant to scale difference}}{\operatorname{var}(\mathbf{L}(l), \mathbf{R}(r))}$$

(34)

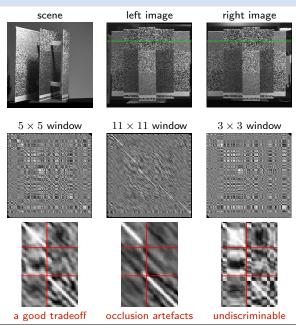
ρ – MNCC – Moravec's Normalized Cross-Correlation statistic

bigger is better [Moravec 1977]

 $\rho^2 \in [0,1], \quad \operatorname{sign} \rho \sim \text{'phase'}$

R. Šára, CMP: rev. 5-Jan-2021

How A Scene Looks in The Filled-In Matching Table



- MNCC ρ used $(\alpha = 1.5, \beta = 1) \rightarrow 175$
- high-correlation structures correspond to scene objects

constant disparity

- a diagonal in matching table
- zero disparity is the main diagonal nonstd rectification

depth discontinuity

 horizontal or vertical jump in matching table

large image window

- better correlation
- worse occlusion localization

repeated texture

 horizontal and vertical block repetition

Image Point Descriptors And Their Similarity

Descriptors: Image points are tagged by their (viewpoint-invariant) physical properties:

texture window

[Moravec 77]

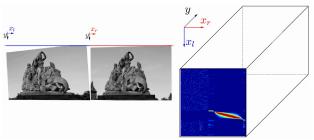
[Wolff & Angelopoulou 93-94]

a descriptor like DAISY

[Tola et al. 2010]

[Ikeuchi 87]

- learned descriptors
- reflectance profile under a moving illuminant
- photometric ratios
- dual photometric stereo
- polarization signature
- similar points are more likely to match
- image similarity values for all 'match candidates' give the 3D matching table

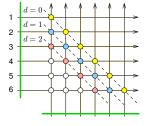


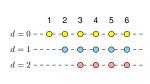
video

► Marroquin's Winner Take All (WTA) Matching Algorithm

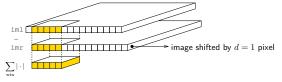
Alg: Per left-image pixel: The most SAD-similar pixel along the right epipolar line \rightarrow 168

- 1. select disparity range this is a critical weak point
- 2. represent the matching table diagonals in a compact form





3. use an 'image sliding & cost aggregation algorithm'



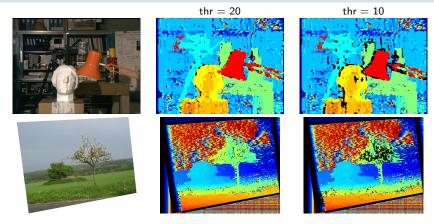
- 4. take the maximum over disparities d
- 5. threshold results by maximal allowed SAD dissimilarity

A Matlab Code for WTA

```
function dmap = marroquin(iml, imr, disparityRange)
        iml, imr - rectified gray-scale images
% disparityRange - non-negative disparity range
% (c) Radim Sara (sara@cmp.felk.cvut.cz) FEE CTU Prague, 10 Dec 12
 thr = 20:
                                                 % bad match rejection threshold
 r = 2:
 winsize = 2*r+[1 1]:
                                                 % 5x5 window (neighborhood) for r=2
 N = boxing(ones(size(iml)), winsize):
                                                 % the size of each local patch is
                                                 % N = (2r+1)^2 except for boundary pixels
 % --- compute dissimilarity per pixel and disparity --->
 for d = 0:disparityRange
                                                 % cycle over all disparities
  slice = abs(imr(:,1:end-d) - iml(:,d+1:end));  % pixelwise dissimilarity (unscaled SAD)
 V(:,d+1:end,d+1) = boxing(slice, winsize)./N; % window aggregation
 end
 % --- collect winners, threshold, output disparity map --->
 [cmap,dmap] = min(V,[],3);
                                                 % collect winners and their dissimilarities
 dmap(cmap > thr) = NaN;
                                                 % mask-out high dissimilarity pixels
end % of marroquin
function c = boxing(im, wsz)
 % if the mex is not found, run this slow version:
 c = conv2(ones(1, wsz(1)), ones(wsz(2), 1), im, 'same');
```

end % of boxing

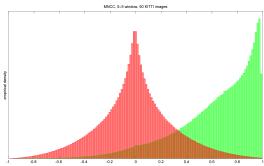
WTA: Some Results



- results are fairly bad
- false matches in textureless image regions and on repetitive structures (book shelf)
- ullet a more restrictive threshold (thr =10) does not work as expected
- we searched the true disparity range, results get worse if the range is set wider
- chief failure reasons:
 - unnormalized image dissimilarity does not work well
 - ullet no occlusion model (it just ignores the occlusion structure we have discussed ightarrow 166)

► A Principled Approach to Similarity

Empirical Distribution of MNCC ρ for Matches (green) and Non-Matches (red)



- histograms of ρ computed from 5×5 correlation window
- KITTI dataset
 - $4.2 \cdot 10^6$ ground-truth (LiDAR) matches for $p_1(\rho)$ (green),
 - $4.2 \cdot 10^6$ random non-matches for $p_0(\rho)$ (red)

Obs:

- ullet non-matches (red) may have arbitrarily large ho
- matches (green) may have arbitrarily low ρ
- $\rho = 1$ is improbable for matches

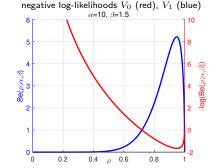
 ρ : bigger is better

Match Likelihood

- ρ is just a normalized measurement
- we need a probability distribution on [0,1], e.g. Beta distribution

$$p_1(\rho) = \frac{1}{B(\alpha, \beta)} |\rho|^{\alpha - 1} (1 - |\rho|)^{\beta - 1}$$

- note that uniform distribution is obtained for $\alpha=\beta=1$
- when $\alpha=2$ and $\beta=1$ then $p_1(\cdot)=2|\rho|$



- the mode is at $\sqrt{\frac{\alpha-1}{\alpha+\beta-2}} \approx 0.9733$ for $\alpha=10,\ \beta=1.5$
- if we chose $\beta=1$ then the mode was at $\rho=1$
- perfect similarity is 'suspicious' (depends on expected camera noise level)
- from now on we will work with negative log-likelihood cost

$$V_1(\rho(l,r)) = -\log p_1(\rho(l,r))$$
 smaller is better (35)

ullet we should also define similarity (and negative log-likelihood $V_0(
ho(l,r)))$ for non-matches

► A Principled Approach to Matching

- ullet given matching M what is the likelihood of observed data D?
- data all cost pairs (V_0, V_1) in the matching table T
- matches pairs $p_i = (l_i, r_i), i = 1, \ldots, n$
- ullet matching: partitioning matching table T to matched M and excluded E pairs

$$T = M \cup E$$
, $M \cap E = \emptyset$

• matching cost (negative log-likelihood, smaller is better)

$$V(D \mid M) = \sum_{p \in M} V_1(D \mid p) + \sum_{p \in E} V_0(D \mid p)$$

$$V_1(D \mid p)$$
 — negative log-probability of data D at $\underline{\mathsf{matched}}$ pixel p (35) $V_0(D \mid p)$ — ditto at unmatched pixel p \longrightarrow 174 and \longrightarrow 175

matching problem

$$M^* = \arg\min_{M \in \mathcal{M}(T)} V(D \mid M)$$

 $\mathcal{M}(T)$ – the set of all matchings in table T

symmetric: formulated over pairs, invariant to left ↔ right image swap unlike in WTA

►(cont'd) Log-Likelihood Ratio

- we need to reduce matching to a standard polynomial-complexity problem
- convert the matching cost to an 'easier' sum

$$V(D \mid M) = \sum_{p \in M} V_1(D \mid p) + \sum_{p \in E} V_0(D \mid p) + \sum_{p \in M} V_0(D \mid p) - \sum_{p \in M} V_0(D \mid p)$$

$$= \sum_{p \in M} \underbrace{\left(V_1(D \mid p) - V_0(D \mid p)\right)}_{-L(D \mid p)} + \underbrace{\sum_{p \in E} V_0(D \mid p) + \sum_{p \in M} V_0(D \mid p)}_{p \in M}$$

$$= \sum_{p \in M} \underbrace{\left(V_1(D \mid p) - V_0(D \mid p)\right)}_{-L(D \mid p)} + \underbrace{\sum_{p \in E} V_0(D \mid p) + \sum_{p \in M} V_0(D \mid p)}_{p \in M}$$

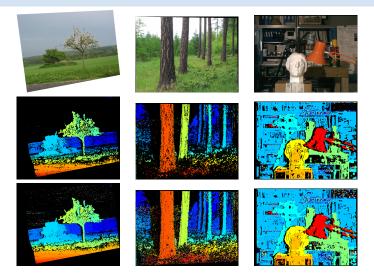
hence

$$\arg \min_{M \in \mathcal{M}(T)} V(D \mid M) = \arg \max_{M \in \mathcal{M}(T)} \sum_{p \in M} L(D \mid p)$$
(36)

 $L(D \mid p)$ – logarithm of matched-to-unmatched likelihood ratio (bigger is better) why this way: we want to use maximum-likelihood but our measurement is all data D

- (36) is max-cost matching (maximum assignment) for the maximum-likelihood (ML) matching problem
 - use Hungarian (Munkres) algorithm and threshold the result with T: $L(D \mid p) > T \ge 0$
 - or step back: sacrifice symmetry to speed and use dynamic programming

Some Results for the Maximum-Likelihood (ML) Matching



- unlike the WTA we can efficiently control the density/accuracy tradeoff black = no match
- ullet middle row: threshold T for $L(D\mid p)$ set to achieve error rate of 3% (and 61% density results)
- ullet bottom row: threshold T set to achieve density of 76% (and 4.3% error rate results)

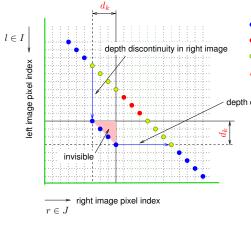
▶Basic Stereoscopic Matching Models

- notice many small isolated errors in the ML matching
- Q: how to reduce the noisiness? A: a stronger model

Potential models for M (from weaker to stronger)

- 1. Uniqueness: Every image point matches at most once
 - excludes semi-transparent objects
 - used in the ML matching algorithm (but not by the WTA algorithm)
 - 2. Monotonicity: Matched pixel ordering is preserved →180
 - for all $(i, j) \in M, (k, l) \in M, k > i \Rightarrow l > j$
 - Notation: $(i,j) \in M$ or j = M(i) left-image pixel i matches right-image pixel j
 - excludes thin objects close to the cameras used in 3-Label Dynamic Programming (3LDP) [SP]
 - 3. Coherence: Objects occupy well-defined 3D volumes
 - concept by [Prazdny 85]
 - algorithms are based on image/disparity map segmentation
 - a popular model (segment-based, bilateral filtering and their successors)
 - used in Stable Segmented 3LDP [Aksoy et al. PRRS 2008]
 - 4. (Piecewise) binocular continuity: The scene images continuously w/o self-occlusions
 - disparities do not differ much in neighboring pixels (except at object boundaries)
 - full binocular continuity too strong, except in some applications
 - piecewise binocular continuity is combined with monotonicity in 3LDP

Binocular Discontinuities in Matching Table

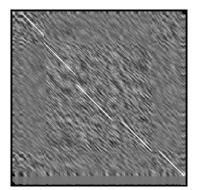


this leads to the concept of 'forbidden zone'

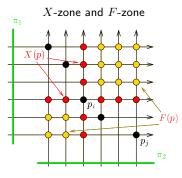
- binocularly visible foreground points
- binocularly visible background pts violating ordering
- monocularly visible points

 d_k critical disparity

depth discontinuity in left image



▶ Formally: Uniqueness and Ordering in Matching Table T



$$p_j \notin X(p_i), \quad p_j \notin F(p_i)$$

Uniqueness Constraint:

A set of pairs $M=\left\{p_i\right\}_{i=1}^n,\,p_i\in T$ is a matching iff $\forall p_i,p_j\in M:\,p_j\notin X(p_i).$

X-zone, $p_i \not\in X(p_i)$

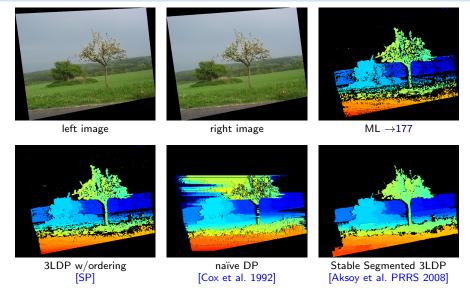
Ordering Constraint:

Matching M is monotonic iff $\forall p_i, p_i \in M : p_i \notin F(p_i)$.

F-zone, $p_i \not\in F(p_i)$

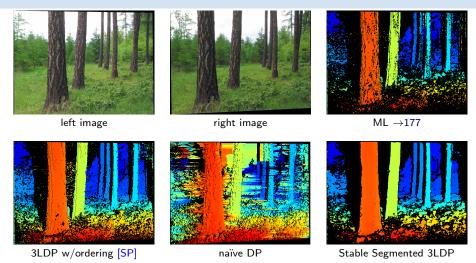
- ordering constraint: matched points form a monotonic set in both images
- ordering is a powerful constraint: in $n\times n$ table we have monotonic matchings $O(4^n)\ll O(n!)$ all matchings
- \circledast 2: how many are there $\underline{\text{maximal}}$ monotonic matchings? (e.g. 27 for n=4; hard!)
- uniqueness constraint is a basic occlusion model
- ordering constraint is a weak continuity model an
- and partly also an occlusion model
- monotonic matching can be found by dynamic programming

Some Results: AppleTree



ullet 3LDP parameters $lpha_i,~V_{
m e}$ learned on Middlebury stereo data ${
m http://vision.middlebury.edu/stereo/}$

Some Results: Larch



- naïve DP: no mutual occlusion model, ignores symmetry, has no similarity distribution model
- but even 3LDP has errors in mutually occluded region
- Stable Segmented 3LDP: few errors in mutually occluded region since it uses a coherence model

Algorithm Comparison

Marroquin's Winner-Take-All (WTA \rightarrow 171)

- the ur-algorithm very weak model
- dense disparity map
- $O(N^3)$ algorithm, simple but it rarely works

Maximum Likelihood Matching (ML →177)

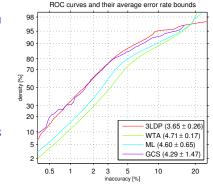
- semi-dense disparity map
- many small isolated errors
- models basic occlusion
- $O(N^3 \log(NV))$ algorithm max-flow by cost scaling

MAP with Min-Cost Labeled Path (3LDP)

- semi-dense disparity map
- models occlusion in flat, piecewise binocularly continuous scenes
- has 'illusions' if ordering does not hold
- $O(N^3)$ algorithm

Stable Segmented 3LDP

- better than 3LDP fewer errors at any given density
- O(N³ log N) algorithm
- requires image segmentation itself a difficult task



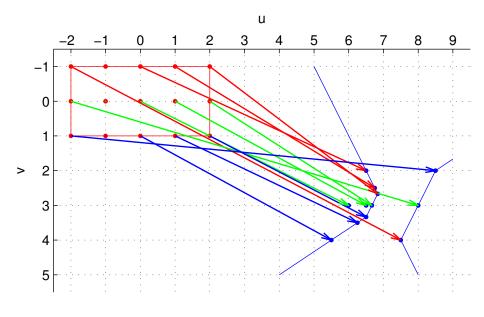
- ROC-like curve captures the density/accuracy tradeoff
- numbers: AUC (smaller is better)
 - GCS is the one used in the exercises
- more algorithms at http://vision.middlebury.edu/ stereo/ (good luck!)

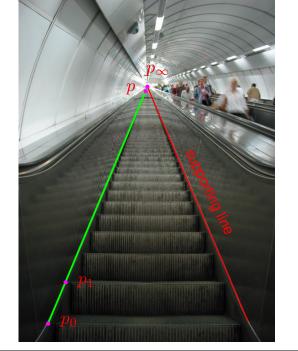
A Summary of This Course Highlights

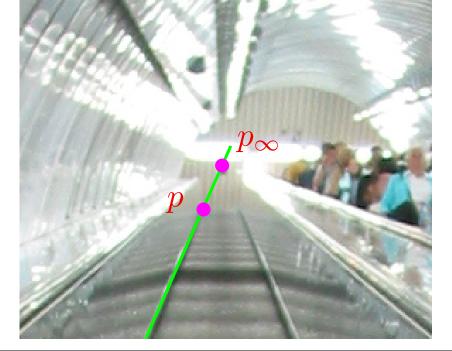
- homography as a two-image model
- epipolar geometry as a two-image model
- core algorithms for 3D vision:
 - simple intrinsic calibration methods
 - 6-pt alg for camera resection and 3-pt alg for exterior orientation (calibrated resection)
 - 7-pt alg for fundamental matrix, 5-pt alg for essential matrix
 - essential matrix decomposition to rotation and translation
 - efficient accurate triangulation
 - robust matching by RANSAC sampling
 - camera system reconstruction
 - efficient bundle adjustment
 - stereoscopic matching
- statistical robustness as a way to work with partially unknown information

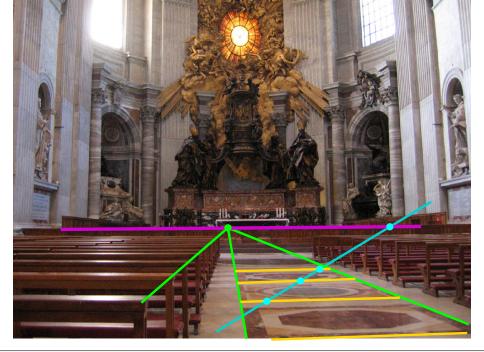
What can we do with these tools?

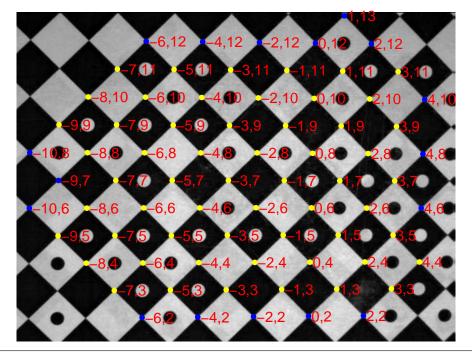
- 3D scene reconstruction
- visual odometry
- motion capture
- self-localization and mapping (not covered: 3D aggregation in scene maps)
- 3D scene measurement for robot motion planning
- automatic extrinsic calibration from motion (hand-eye calibration)

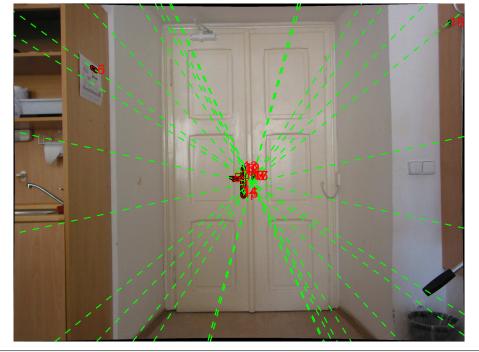


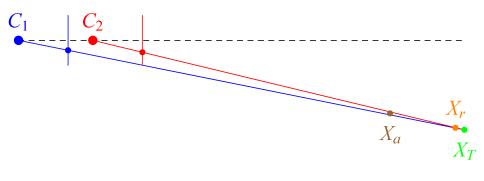


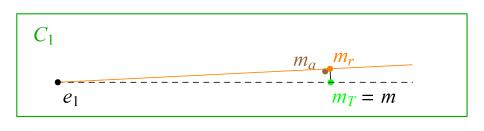


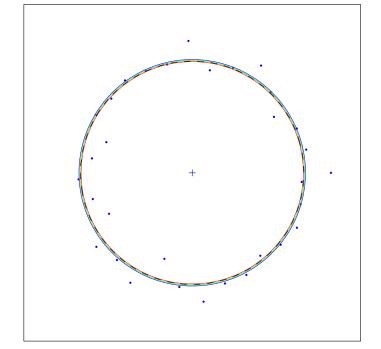




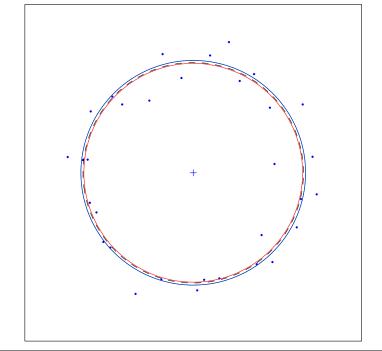


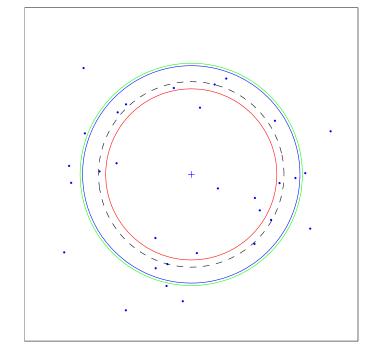


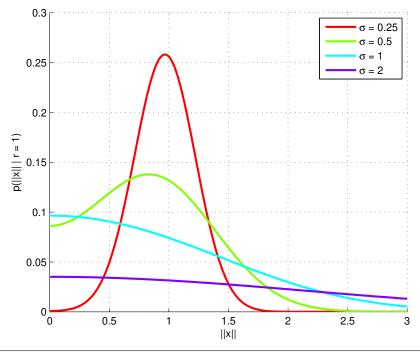


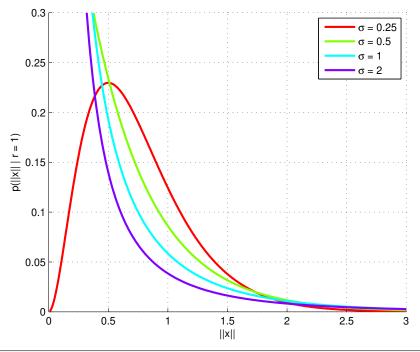


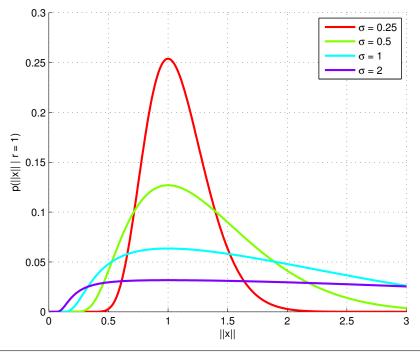


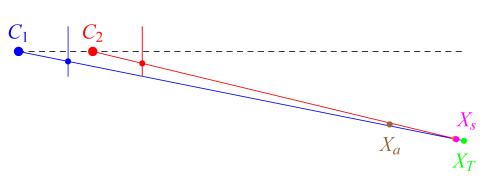


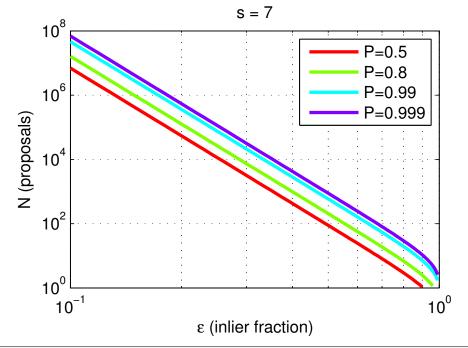


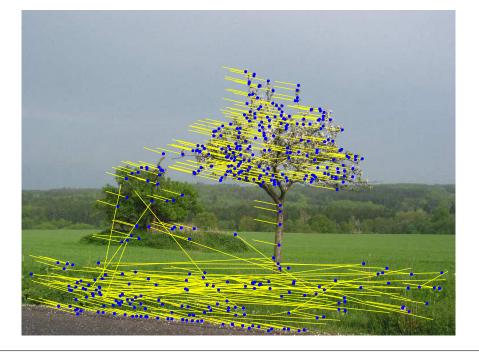






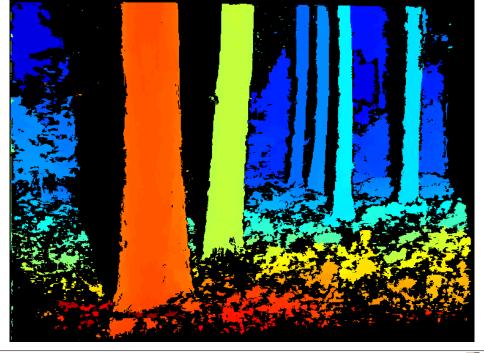


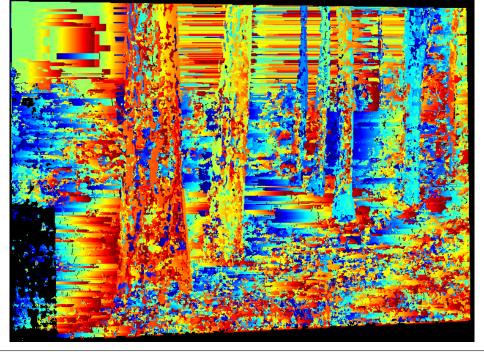


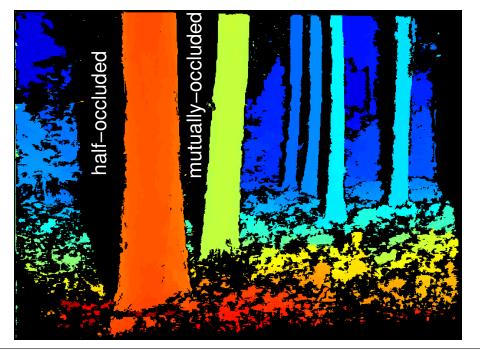


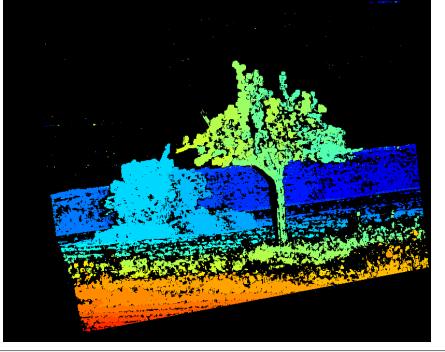
3D Computer Vision: enlarged figures

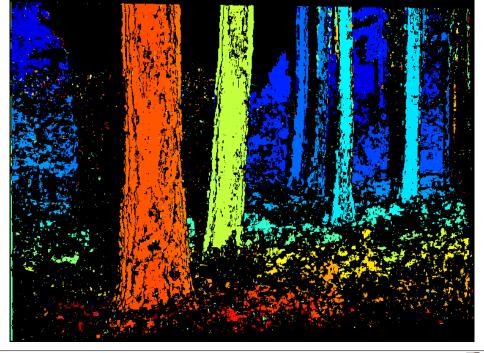
R. Šára, CMP; rev. 5-Jan-2021

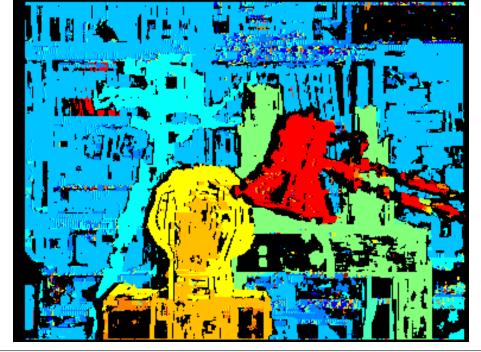


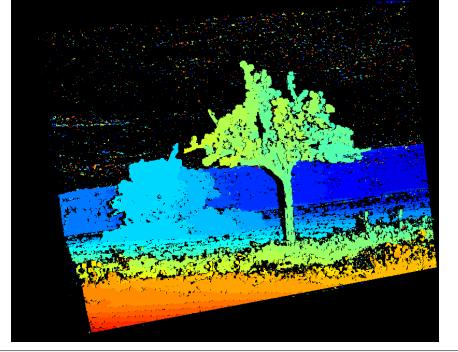


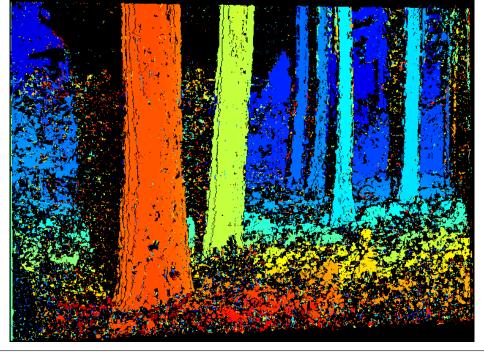


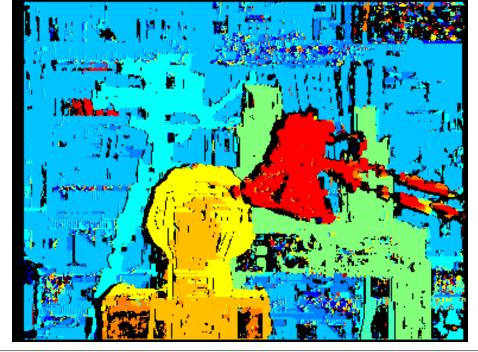


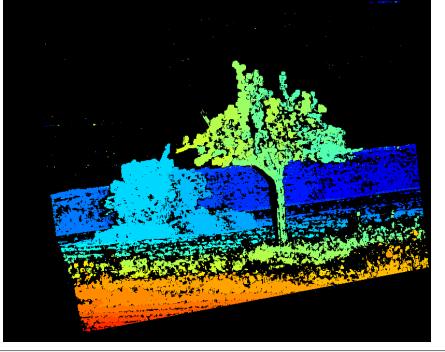


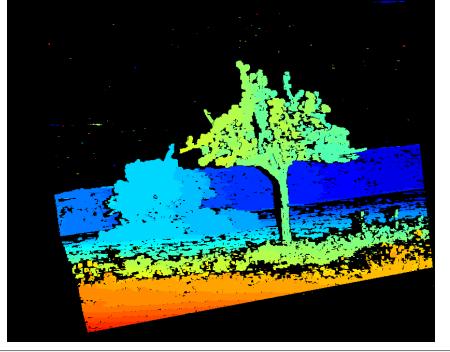


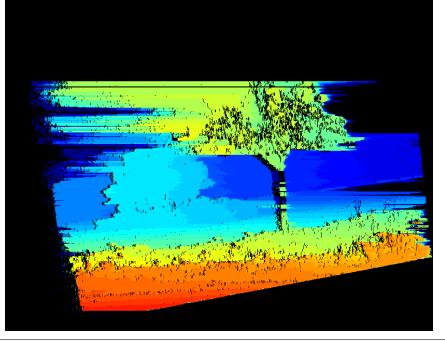


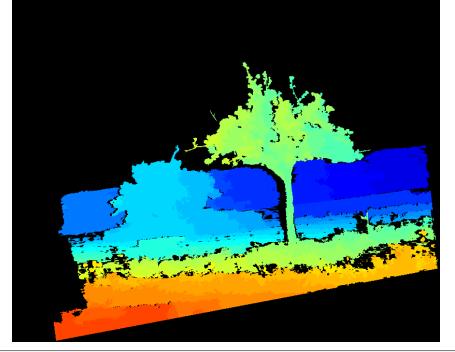












3D Computer Vision: enlarged figures

R. Šára, CMP; rev. 5-Jan-2021

3D Computer Vision: enlarged figures

R. Šára, CMP; rev. 5-Jan-2021

