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Implementing Simple Linear Constraints

What for?
1. fixing external frame as in θi = ti, skl = 1 for some i, k, l ‘trivial gauge’

2. representing additional knowledge as in θi = θj e.g. cameras share calibration matrix K

Introduce reduced parameters θ̂ and
replication matrix T:

θ = T θ̂ + t, T ∈ Rp,p̂, p̂ ≤ p

then Lr in LM changes to Lr T and
everything else stays the same →107
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these T, t represent

θ1 = θ̂1 no change

θ2 = θ̂2 no change

θ3 = t3 constancy

θ4 = θ5 = θ̂4 equality

• T deletes columns of Lr that correspond to fixed parameters it reduces the problem size

• consistent initialisation: θ0 = T θ̂0 + t or filter the init by pseudoinverse θ0 7→ T†θ0

• no need for computing derivatives for θj corresponding to all-zero rows of T fixed θ

• constraining projective entities →147–149

• more complex constraints tend to make normal equations dense

• implementing constraints is safer than explicit renaming of the parameters, gives a flexibility
to experiment

• other methods are much more involved, see [Triggs et al. 1999]

• BA resource: http://www.ics.forth.gr/~lourakis/sba/ [Lourakis 2009]
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Matrix Exponential: A path to Minimal Parameterizations

• for any square matrix we define

expm(A) =

∞∑
k=0

1

k!
Ak

note: A0 = I

• some properties:

expm0 = I, expm(−A) =
(
expmA

)−1
,

expm(aA + bA) = expm(aA) expm(bA), expm(A + B) 6= expm(A) expm(B)

expm(A>) = (expmA)> hence if A is skew symmetric then expmA is orthogonal:(
expm(A)

)>
= expm(A>) = expm(−A) =

(
expm(A)

)−1

det
(
expmA

)
= etrA

Some consequences

• traceless matrices map to unit-determinant matrices ⇒ we can represent
homogeneous representatives

• skew-symmetric matrices map to orthogonal matrices ⇒ we can represent rotations

• matrix exponential provides the exponential map from the powerful Lie group theory

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 144/189) R. Šára, CMP; rev. 8–Dec–2020



Lie Groups Useful in 3D Vision

group matrix represent

special linear SL(3,R) real 3× 3, unit determinant H 2D homography

special linear SL(4,R) real 4× 4, unit determinant 3D homography

orthogonal SO(3) real 3× 3 orthogonal R 3D rotation

special Euclidean SE(3) 4× 4
[
R t
0 1

]
, R ∈ SO(3), t ∈ R3 3D rigid motion

similarity Sim(3) 4× 4
[
R t
0 s−1

]
, s ∈ R \ 0 rigid motion + scale

• Lie group G = topological group that is also a smooth manifold with nice properties

• Lie algebra g = vector space associated with a Lie group (tangent space of the manifold)

• group: this is where we need to work

• algebra: this is how to represent group elements with a minimal number of parameters

• Exponential map = map between algebra and its group exp: g→ G

• for matrices exp = expm

• in most of the above groups we have a closed-form formula for the exponential and for its
principal inverse

• also Jacobians are readily available
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Homography

H = expmZ

• SL(3,R) group element

H =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 s.t. detH = 1

• sl(3,R) algebra element 8 parameters

Z =

z11 z12 z13

z21 z22 z23

z31 z32 −(z11 + z22)



• note that tr Z = 0
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IRotation in 3D

R = expm [φ]×, φ = (φ1, φ2, φ3) = ϕ eϕ, 0 ≤ ϕ < π, ‖eϕ‖ = 1

• SO(3) group element

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 s.t. R−1 = R>

• so(3) algebra element 3 parameters

[φ]× =

 0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0


• exponential map in closed form Rodrigues’ formula

R = expm [φ]× =

∞∑
n=0

[φ]n×
n!

=
~ 1· · · = I +

sinϕ

ϕ
[φ]× +

1− cosϕ

ϕ2
[φ]2×

• (principal) logarithm log is a periodic function

0 ≤ ϕ < π, cosϕ =
1

2
(tr(R)− 1) , [φ]× =

ϕ

2 sinϕ
(R−R>),

• φ is rotation axis vector eϕ scaled by rotation angle ϕ in radians

• finite limits for ϕ→ 0 exist: sin(ϕ)/ϕ→ 1, (1− cosϕ)/ϕ2 → 1/2
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3D Rigid Motion

M = expm [ν]∧

• SE(3) group element 4× 4 matrix

M =

[
R t
0 1

]
s.t. R ∈ SO(3), t ∈ R3

• se(3) algebra element 4× 4 matrix

[ν]∧ =

[
[φ]× ρ
0 0

]
s.t. φ ∈ R3, ϕ = ‖φ‖ < π, ρ ∈ R3

• exponential map in closed form

R = expm [φ]×, t = dexpm([φ]×)ρ

dexpm([φ]×) =

∞∑
n=0

[φ]n×
(n+ 1)!

= I +
1− cosϕ

ϕ2
[φ]× +

ϕ− sinϕ

ϕ3
[φ]2×

dexpm−1([φ]×) = I− 1

2
[φ]× +

1

ϕ2

(
1− ϕ

2
cot

ϕ

2

)
[φ]2×

• (principal) logarithm via a similar trick as in SO(3)

• finite limits exist: (ϕ− sinϕ)/ϕ3 → 1/6

• this form is preferred to SO(3)× R3
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IMinimal Representations for Other Entities

• fundamental matrix via SO(3)× SO(3)× R

F = UDV>, D = diag(1, d2, 0), U,V ∈ SO(3), 3 + 1 + 3 = 7 DOF

• essential matrix via SO(3)× R3

E = [−t]×R, R ∈ SO(3), t ∈ R3, ‖t‖ = 1, 3 + 2 = 5 DOF

• camera via SO(3)× R3 or SE(3)

P = K
[
R t

]
=
[
K 0

]
M, 5 + 3 + 3 = 11 DOF

• Sim(3) useful for SfM without scale

• closed-form formulae still exist but are a bit messy

• a (bit too brief) intro to Lie groups in 3D vision/robotics and SW:

J. Solà, J. Deray, and D. Atchuthan. A micro Lie theory for state estimation in robotics.

arXiv:1812.01537v7 [cs.RO], August 2020.
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Module VII

Stereovision

7.1 Introduction
7.2 Epipolar Rectification
7.3 Binocular Disparity and Matching Table
7.4 Image Similarity
7.5 Marroquin’s Winner Take All Algorithm
7.6 Maximum Likelihood Matching
7.7 Uniqueness and Ordering as Occlusion Models

mostly covered by

Šára, R. How To Teach Stereoscopic Vision. Proc. ELMAR 2010 referenced as [SP]

additional references

C. Geyer and K. Daniilidis. Conformal rectification of omnidirectional stereo pairs. In Proc Computer Vision

and Pattern Recognition Workshop, p. 73, 2003.

J. Gluckman and S. K. Nayar. Rectifying transformations that minimize resampling effects. In Proc IEEE

CS Conf on Computer Vision and Pattern Recognition, vol. 1:111–117. 2001.

M. Pollefeys, R. Koch, and L. V. Gool. A simple and efficient rectification method for general motion. In

Proc Int Conf on Computer Vision, vol. 1:496–501, 1999.
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What Are The Relative Distances?

• monocular vision already gives a rough 3D sketch because we understand the scene
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What Are The Relative Distances?

Centrum för teknikstudier at Malmö Högskola, Sweden The Vyšehrad Fortress, Prague

• left: we have no help from image interpretation

• right: ambiguous interpretation due to a combination of missing texture and occlusion
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IHow Difficult Is Stereo?

• when we do not recognize the scene and cannot use high-level constraints the problem
seems difficult (right, less so in the center)

• most stereo matching algorithms do not require scene understanding prior to matching

• the success of a model-free stereo matching algorithm is unlikely:

left image a good disparity map disparity map from WTA

WTA Matching:

for every left-image pixel
find the most similar
right-image pixel along the
corresponding epipolar line
[Marroquin 83]
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A Summary of Our Observations and an Outlook

1. simple matching algorithms do not work

2. stereopsis requires image interpretation in sufficiently complex scenes
or another-modality measurement

we have a tradeoff: model strength ↔ universality

Outlook:

1. represent the occlusion constraint: correspondences are not independent due to occlusions

• epipolar rectification
• disparity
• uniqueness as an occlusion constraint

2. represent piecewise continuity the weakest of interpretations; piecewise: object boundaries

• ordering as a weak continuity model

3. use a consistent framework
• finding the most probable solution (MAP)
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ILinear Epipolar Rectification for Easier Correspondence Search

Obs:
• if we map epipoles to infinity, epipolar lines become parallel
• we then rotate them to become horizontal
• we then scale the images to make correspoding epipolar lines colinear
• this can be achieved by a pair of (non-unique) homographies applied to the images

Problem: Given fundamental matrix F or camera matrices P1, P2, compute a pair of
homographies that maps epipolar lines to horizontal with the same row coordinate.

Procedure:
1. find a pair of rectification homographies H1 and H2.
2. warp images using H1 and H2 and transform the fundamental matrix

F 7→ H−>2 FH−1
1 or the cameras P1 7→ H1P1, P2 7→ H2P2.

rectification 1 rectification 2

original pair

rectification ∞
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Thank You
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3D Computer Vision: enlarged figures R. Šára, CMP; rev. 8–Dec–2020
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