3D Computer Vision

Radim Šára Martin Matoušek
Center for Machine Perception
Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz
phone ext. 7203

rev. December 8, 2020

Open Informatics Master's Course

Implementing Simple Linear Constraints

What for?

1. fixing external frame as in $\theta_{i}=\mathbf{t}_{i}, s_{k l}=1$ for some i, k, l
'trivial gauge'
2. representing additional knowledge as in $\theta_{i}=\theta_{j} \quad$ e.g. cameras share calibration matrix \mathbf{K}

Introduce reduced parameters $\hat{\theta}$ and replication matrix \mathbf{T} :

$$
\theta=\mathbf{T} \hat{\theta}+\mathbf{t}, \quad \mathbf{T} \in \mathbb{R}^{p, \hat{p}}, \quad \hat{p} \leq p
$$

then \mathbf{L}_{r} in LM changes to $\mathbf{L}_{r} \mathbf{T}$ and everything else stays the same $\rightarrow 107$

- \mathbf{T} deletes columns of \mathbf{L}_{r} that correspond to fixed parameters it reduces the problem size
- consistent initialisation: $\theta^{0}=\mathbf{T} \hat{\theta}^{0}+\mathbf{t} \quad$ or filter the init by pseudoinverse $\theta^{0} \mapsto \mathbf{T}^{\dagger} \theta^{0}$
- no need for computing derivatives for θ_{j} corresponding to all-zero rows of \mathbf{T} fixed θ
- constraining projective entities $\rightarrow 147-149$
- more complex constraints tend to make normal equations dense
- implementing constraints is safer than explicit renaming of the parameters, gives a flexibility to experiment
- other methods are much more involved, see [Triggs et al. 1999]
- BA resource: http://www.ics.forth.gr/~lourakis/sba/ [Lourakis 2009]

Matrix Exponential: A path to Minimal Parameterizations

- for any square matrix we define

$$
\operatorname{expm}(\mathbf{A})=\sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^{k} \quad \text { note: } \mathbf{A}^{0}=\mathbf{I}
$$

- some properties:

$$
\begin{aligned}
& \operatorname{expm} \mathbf{0}=\mathbf{I}, \quad \operatorname{expm}(-\mathbf{A})=(\operatorname{expm} \mathbf{A})^{-1} \\
& \operatorname{expm}(a \mathbf{A}+b \mathbf{A})=\operatorname{expm}(a \mathbf{A}) \operatorname{expm}(b \mathbf{A}), \quad \operatorname{expm}(\mathbf{A}+\mathbf{B}) \neq \operatorname{expm}(\mathbf{A}) \operatorname{expm}(\mathbf{B})
\end{aligned}
$$

$$
\operatorname{expm}\left(\mathbf{A}^{\top}\right)=(\operatorname{expm} \mathbf{A})^{\top} \text { hence if } \mathbf{A} \text { is skew symmetric then } \operatorname{expm} \mathbf{A} \text { is orthogonal: }
$$

$$
(\operatorname{expm}(\mathbf{A}))^{\top}=\operatorname{expm}\left(\mathbf{A}^{\top}\right)=\operatorname{expm}(-\mathbf{A})=(\operatorname{expm}(\mathbf{A}))^{-1}
$$

$$
\operatorname{det}(\operatorname{expm} \mathbf{A})=e^{\operatorname{tr} \mathbf{A}}
$$

Some consequences

- traceless matrices map to unit-determinant matrices \Rightarrow we can represent homogeneous representatives
- skew-symmetric matrices map to orthogonal matrices \Rightarrow we can represent rotations
- matrix exponential provides the exponential map from the powerful Lie group theory

Lie Groups Useful in 3D Vision

group	matrix	represent	
special linear	$\mathrm{SL}(3, \mathbb{R})$	real 3×3, unit determinant \mathbf{H}	2D homography
special linear	$\mathrm{SL}(4, \mathbb{R})$	real 4×4, unit determinant	3D homography
orthogonal	$\mathrm{SO}(3)$	real 3×3 orthogonal \mathbf{R}	3D rotation
special Euclidean	$\mathrm{SE}(3)$	$4 \times 4\left[\begin{array}{cc}\mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1\end{array}\right], \mathbf{R} \in \mathrm{SO}(3), \mathbf{t} \in \mathbb{R}^{3}$	3D rigid motion
similarity	$\operatorname{Sim}(3)$	$4 \times 4\left[\begin{array}{cc}\mathbf{R} & \mathbf{t} \\ \mathbf{0} & s^{-1}\end{array}\right], s \in \mathbb{R} \backslash 0$	rigid motion + scale

- Lie group $G=$ topological group that is also a smooth manifold with nice properties
- Lie algebra $\mathfrak{g}=$ vector space associated with a Lie group (tangent space of the manifold)
- group: this is where we need to work
- algebra: this is how to represent group elements with a minimal number of parameters
- Exponential map $=$ map between algebra and its group $\exp : \mathfrak{g} \rightarrow G$
- for matrices $\exp =\operatorname{expm}$
- in most of the above groups we have a closed-form formula for the exponential and for its principal inverse
- also Jacobians are readily available

Homography

$$
\mathbf{H}=\operatorname{expm} \mathbf{Z}
$$

- $\mathrm{SL}(3, \mathbb{R})$ group element

$$
\mathbf{H}=\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right] \quad \text { s.t. } \quad \operatorname{det} \mathbf{H}=1
$$

- $\mathfrak{s l}(3, \mathbb{R})$ algebra element

8 parameters

$$
\mathbf{Z}=\left[\begin{array}{ccc}
z_{11} & z_{12} & z_{13} \\
z_{21} & z_{22} & z_{23} \\
z_{31} & z_{32} & -\left(z_{11}+z_{22}\right)
\end{array}\right]
$$

- note that $\operatorname{tr} \mathbf{Z}=0$

Rotation in 3D

$$
\mathbf{R}=\operatorname{expm}[\phi]_{\times}, \quad \phi=\left(\phi_{1}, \phi_{2}, \phi_{3}\right)=\varphi \mathbf{e}_{\varphi}, \quad 0 \leq \varphi<\pi, \quad\left\|\mathbf{e}_{\varphi}\right\|=1
$$

- $\mathrm{SO}(3)$ group element

$$
\mathbf{R}=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right] \quad \text { s.t. } \quad \mathbf{R}^{-1}=\mathbf{R}^{\top}
$$

- $\mathfrak{s o}(3)$ algebra element

$$
[\phi]_{\times}=\left[\begin{array}{ccc}
0 & -\phi_{3} & \phi_{2} \\
\phi_{3} & 0 & -\phi_{1} \\
-\phi_{2} & \phi_{1} & 0
\end{array}\right]
$$

3 parameters

- exponential map in closed form

Rodrigues' formula

$$
\mathbf{R}=\operatorname{expm}[\boldsymbol{\phi}]_{\times}=\sum_{n=0}^{\infty} \frac{[\boldsymbol{\phi}]_{\times}^{n}}{n!}=\Re^{\circledast 1}=\mathbf{I}+\frac{\sin \varphi}{\varphi}[\boldsymbol{\phi}]_{\times}+\frac{1-\cos \varphi}{\varphi^{2}}[\boldsymbol{\phi}]_{\times}^{2}
$$

- (principal) logarithm
log is a periodic function

$$
0 \leq \varphi<\pi, \quad \cos \varphi=\frac{1}{2}(\operatorname{tr}(\mathbf{R})-1), \quad[\phi]_{\times}=\frac{\varphi}{2 \sin \varphi}\left(\mathbf{R}-\mathbf{R}^{\top}\right)
$$

- ϕ is rotation axis vector \mathbf{e}_{φ} scaled by rotation angle φ in radians
- finite limits for $\varphi \rightarrow 0$ exist: $\sin (\varphi) / \varphi \rightarrow 1,(1-\cos \varphi) / \varphi^{2} \rightarrow 1 / 2$

3D Rigid Motion

$$
\mathbf{M}=\operatorname{expm}[\boldsymbol{\nu}]_{\wedge}
$$

－ $\mathrm{SE}(3)$ group element
4×4 matrix

$$
\mathbf{M}=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0} & 1
\end{array}\right] \quad \text { s.t. } \quad \mathbf{R} \in \operatorname{SO}(3), \mathbf{t} \in \mathbb{R}^{3}
$$

－ $\mathfrak{s e}(3)$ algebra element
4×4 matrix

$$
[\boldsymbol{\nu}]_{\wedge}=\left[\begin{array}{cc}
{[\boldsymbol{\phi}]_{\times}} & \boldsymbol{\rho} \\
\mathbf{0} & 0
\end{array}\right] \quad \text { s.t. } \quad \phi \in \mathbb{R}^{3}, \varphi=\|\boldsymbol{\phi}\|<\pi, \boldsymbol{\rho} \in \mathbb{R}^{3}
$$

－exponential map in closed form

$$
\begin{gathered}
\mathbf{R}=\operatorname{expm}[\boldsymbol{\phi}]_{\times}, \quad \mathbf{t}=\operatorname{dexpm}\left([\boldsymbol{\phi}]_{\times}\right) \boldsymbol{\rho} \\
\operatorname{dexpm}\left([\boldsymbol{\phi}]_{\times}\right)=\sum_{n=0}^{\infty} \frac{[\boldsymbol{\phi}]_{\times}^{n}}{(n+1)!}=\mathbf{I}+\frac{1-\cos \varphi}{\varphi^{2}}[\boldsymbol{\phi}]_{\times}+\frac{\varphi-\sin \varphi}{\varphi^{3}}[\boldsymbol{\phi}]_{\times}^{2} \\
\operatorname{dexpm} \\
\\
-1\left([\boldsymbol{\phi}]_{\times}\right)=\mathbf{I}-\frac{1}{2}[\boldsymbol{\phi}]_{\times}+\frac{1}{\varphi^{2}}\left(1-\frac{\varphi}{2} \cot \frac{\varphi}{2}\right)[\boldsymbol{\phi}]_{\times}^{2}
\end{gathered}
$$

－（principal）logarithm via a similar trick as in $\mathrm{SO}(3)$
－finite limits exist：$(\varphi-\sin \varphi) / \varphi^{3} \rightarrow 1 / 6$
－this form is preferred to $\mathrm{SO}(3) \times \mathbb{R}^{3}$

Minimal Representations for Other Entities

- fundamental matrix via $\mathrm{SO}(3) \times \mathrm{SO}(3) \times \mathbb{R}$

$$
\mathbf{F}=\mathbf{U D V}^{\top}, \quad \mathbf{D}=\operatorname{diag}\left(1, d^{2}, 0\right), \quad \mathbf{U}, \mathbf{V} \in \mathrm{SO}(3), \quad 3+1+3=7 \mathrm{DOF}
$$

- essential matrix via $\mathrm{SO}(3) \times \mathbb{R}^{3}$

$$
\mathbf{E}=[-\mathbf{t}]_{\times} \mathbf{R}, \quad \mathbf{R} \in \mathrm{SO}(3), \quad \mathbf{t} \in \mathbb{R}^{3},\|\mathbf{t}\|=1, \quad 3+2=5 \mathrm{DOF}
$$

- camera via $\mathrm{SO}(3) \times \mathbb{R}^{3}$ or $\mathrm{SE}(3)$

$$
\mathbf{P}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{K} & \mathbf{0}
\end{array}\right] \mathbf{M}, \quad 5+3+3=11 \mathrm{DOF}
$$

- $\operatorname{Sim}(3)$ useful for SfM without scale
- closed-form formulae still exist but are a bit messy
- a (bit too brief) intro to Lie groups in 3D vision/robotics and SW:

國 J. Solà, J. Deray, and D. Atchuthan. A micro Lie theory for state estimation in robotics. arXiv:1812.01537v7 [cs.RO], August 2020.

Module VII

Stereovision

(71) Introduction
(7.2 Epipolar Rectification
(73) Binocular Disparity and Matching Table
(7.4) Image Similarity
(7.) Marroquin's Winner Take All Algorithm
(7.0 Maximum Likelihood Matching
(7.7) Uniqueness and Ordering as Occlusion Models
mostly covered by
Šára, R. How To Teach Stereoscopic Vision. Proc. ELMAR 2010 referenced as [SP] additional references
C. Geyer and K. Daniilidis. Conformal rectification of omnidirectional stereo pairs. In Proc Computer Vision and Pattern Recognition Workshop, p. 73, 2003.
J. Gluckman and S. K. Nayar. Rectifying transformations that minimize resampling effects. In Proc IEEE CS Conf on Computer Vision and Pattern Recognition, vol. 1:111-117. 2001.M. Pollefeys, R. Koch, and L. V. Gool. A simple and efficient rectification method for general motion. In Proc Int Conf on Computer Vision, vol. 1:496-501, 1999.

What Are The Relative Distances?

- monocular vision already gives a rough 3D sketch because we understand the scene

What Are The Relative Distances?

Centrum för teknikstudier at Malmö Högskola, Sweden

The Vyšehrad Fortress, Prague

- left: we have no help from image interpretation
- right: ambiguous interpretation due to a combination of missing texture and occlusion

How Difficult Is Stereo?

- when we do not recognize the scene and cannot use high-level constraints the problem seems difficult (right, less so in the center)
- most stereo matching algorithms do not require scene understanding prior to matching
- the success of a model-free stereo matching algorithm is unlikely:

left image

a good disparity map

disparity map from WTA

WTA Matching:
for every left-image pixel find the most similar right-image pixel along the corresponding epipolar line [Marroquin 83]

A Summary of Our Observations and an Outlook

1. simple matching algorithms do not work
2. stereopsis requires image interpretation in sufficiently complex scenes
```
we have a tradeoff: model strength }\leftrightarrow\mathrm{ universality
```


Outlook:

1. represent the occlusion constraint: correspondences are not independent due to occlusions

- epipolar rectification
- disparity
- uniqueness as an occlusion constraint

2. represent piecewise continuity the weakest of interpretations; piecewise: object boundaries

- ordering as a weak continuity model

3. use a consistent framework

- finding the most probable solution (MAP)

-Linear Epipolar Rectification for Easier Correspondence Search

Obs:

- if we map epipoles to infinity, epipolar lines become parallel
- we then rotate them to become horizontal
- we then scale the images to make correspoding epipolar lines colinear
- this can be achieved by a pair of (non-unique) homographies applied to the images Problem: Given fundamental matrix \mathbf{F} or camera matrices $\mathbf{P}_{1}, \mathbf{P}_{2}$, compute a pair of homographies that maps epipolar lines to horizontal with the same row coordinate.

Procedure:

1. find a pair of rectification homographies \mathbf{H}_{1} and \mathbf{H}_{2}.
2. warp images using \mathbf{H}_{1} and \mathbf{H}_{2} and transform the fundamental matrix $\mathbf{F} \mapsto \mathbf{H}_{2}^{-\top} \mathbf{F H}_{1}^{-1}$ or the cameras $\mathbf{P}_{1} \mapsto \mathbf{H}_{1} \mathbf{P}_{1}, \quad \mathbf{P}_{2} \mapsto \mathbf{H}_{2} \mathbf{P}_{2}$.

Thank You

