3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz
phone ext. 7203

rev. October 13, 2020

Open Informatics Master's Course

Module III

Computing with a Single Camera

- Calibration: Internal Camera Parameters from Vanishing Points and Lines
- Camera Resection: Projection Matrix from 6 Known Points
- 3 Exterior Orientation: Camera Rotation and Translation from 3 Known Points
- Relative Orientation Problem: Rotation and Translation between Two Point Sets

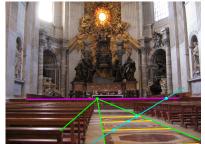
covered by

- [1] [H&Z] Secs: 8.6, 7.1, 22.1
- [2] Fischler, M.A. and Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24(6):381–395, 1981
- [3] [Golub & van Loan 2013, Sec. 2.5]

Obtaining Vanishing Points and Lines

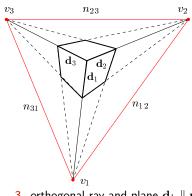
• orthogonal direction pairs can be collected from more images by camera rotation

ullet vanishing line can be obtained from vanishing points and/or regularities (ightarrow49)



► Camera Calibration from Vanishing Points and Lines

Problem: Given finite vanishing points and/or vanishing lines, compute K



$$\mathbf{d}_{i} = \lambda_{i} \mathbf{Q}^{-1} \mathbf{y}_{i}, \qquad i = 1, 2, 3 \rightarrow 43$$

$$\mathbf{p}_{ij} = \mu_{ij} \mathbf{Q}^{\top} \underline{\mathbf{n}}_{ij}, \quad i, j = 1, 2, 3, \ i \neq j \rightarrow 39$$
 (2)

• simple method: solve (2) after eliminating λ_i , μ_{ij} .

Special Configurations

1. orthogonal rays $\mathbf{d}_1 \perp \mathbf{d}_2$ in space then

 $0 = \mathbf{d}_1^{\mathsf{T}} \mathbf{d}_2 = \underline{\mathbf{v}}_1^{\mathsf{T}} \mathbf{Q}^{-\mathsf{T}} \mathbf{Q}^{-1} \underline{\mathbf{v}}_2 = \underline{\mathbf{v}}_1^{\mathsf{T}} \underbrace{(\mathbf{K} \mathbf{K}^{\mathsf{T}})^{-1}}_{\omega \text{ (IAC)}} \underline{\mathbf{v}}_2$ 2. orthogonal planes $\mathbf{p}_{ij} \perp \mathbf{p}_{ik}$ in space

$$0 = \mathbf{p}_{ij}^{\top} \mathbf{p}_{ik} = \underline{\mathbf{n}}_{ij}^{\top} \mathbf{Q} \mathbf{Q}^{\top} \underline{\mathbf{n}}_{ik} = \underline{\mathbf{n}}_{ij}^{\top} \boldsymbol{\omega}^{-1} \underline{\mathbf{n}}_{ik}$$

3. orthogonal ray and plane $\mathbf{d}_k \parallel \mathbf{p}_{ij}, \ k \neq i, j$ normal parallel to optical ray $\mathbf{p}_{ij} \simeq \mathbf{d}_k \quad \Rightarrow \quad \mathbf{Q}^{\top} \underline{\mathbf{n}}_{ij} = \frac{\lambda_i}{\mu_{ij}} \mathbf{Q}^{-1} \underline{\mathbf{v}}_k \quad \Rightarrow \quad \underline{\mathbf{n}}_{ij} = \varkappa \mathbf{Q}^{-\top} \mathbf{Q}^{-1} \underline{\mathbf{v}}_k = \varkappa \omega \, \underline{\mathbf{v}}_k, \quad \varkappa \neq 0$

- ullet n_{ij} may be constructed from non-orthogonal v_i and v_j , e.g. using the cross-ratio
- ω is a symmetric, positive definite 3×3 matrix

 IAC = Image of Absolute Conic

▶cont'd

	configuration	equation	# constraints
(3)	orthogonal v.p.	$\underline{\mathbf{v}}_i^{\top} \boldsymbol{\omega} \underline{\mathbf{v}}_j = 0$	1
(4)	orthogonal v.l.	$\underline{\mathbf{n}}_{ij}^{\top} \boldsymbol{\omega}^{-1} \underline{\mathbf{n}}_{ik} = 0$	1
(5)	v.p. orthogonal to v.l.	$\underline{\mathbf{n}}_{ij} = \boldsymbol{arkappa} \underline{\mathbf{v}}_k$	2
(6)	orthogonal image raster $\theta=\pi/2$	$\omega_{12}=\omega_{21}=0$	1
(7)	unit aspect $a=1$ when $\theta=\pi/2$	$\omega_{11}-\omega_{22}=0$	1
(8)	known principal point $u_0=v_0=0$	$\omega_{13} = \omega_{31} = \omega_{23} = \omega_{32} = 0$	0 2

- these are homogeneous linear equations for the 5 parameters in ω in the form Dw = 0 % can be eliminated from (5)
- ullet we need at least 5 constraints for full ω
- we get \mathbf{K} from $\boldsymbol{\omega}^{-1} = \mathbf{K}\mathbf{K}^{\top}$ by Choleski decomposition the decomposition returns a positive definite upper triangular matrix one avoids solving an explicit set of quadratic equations for the parameters in \mathbf{K}

symmetric 3×3

Examples

Assuming orthogonal raster, unit aspect (ORUA): $\theta = \pi/2$, a = 1

$$\boldsymbol{\omega} \simeq \begin{bmatrix} 1 & 0 & -u_0 \\ 0 & 1 & -v_0 \\ -u_0 & -v_0 & f^2 + u_0^2 + v_0^2 \end{bmatrix}$$

Ex 1:

Assuming ORUA and known $m_0 = (u_0, v_0)$, two finite orthogonal vanishing points give f

$$\mathbf{v}_1^{\mathsf{T}} \boldsymbol{\omega} \, \mathbf{v}_2 = 0 \quad \Rightarrow \quad \boldsymbol{f}^2 = \left| (\mathbf{v}_1 - \mathbf{m}_0)^{\mathsf{T}} (\mathbf{v}_2 - \mathbf{m}_0) \right|$$

in this formula, \mathbf{v}_i , \mathbf{m}_0 are Cartesian (not homogeneous)!

Ex 2:

Ex 2: Non-orthogonal vanishing points \mathbf{v}_i , \mathbf{v}_j , known angle ϕ : $\cos\phi = \frac{\mathbf{v}_i^\top \boldsymbol{\omega} \mathbf{v}_j}{\sqrt{\mathbf{v}_i^\top \boldsymbol{\omega} \mathbf{v}_i} \sqrt{\mathbf{v}_j^\top \boldsymbol{\omega} \mathbf{v}_j}}$

- leads to polynomial equations
- e.g. ORUA and $u_0 = v_0 = 0$ gives

$$(f^2 + \mathbf{v}_i^{\mathsf{T}} \mathbf{v}_i)^2 = (f^2 + ||\mathbf{v}_i||^2) \cdot (f^2 + ||\mathbf{v}_i||^2) \cdot \cos^2 \phi$$

▶ Camera Orientation from Two Finite Vanishing Points

Problem: Given K and two vanishing points corresponding to two known orthogonal directions d_1 , d_2 , compute camera orientation R with respect to the plane.

• 3D coordinate system choice, e.g.:

$$\mathbf{d}_1 = (1, 0, 0), \quad \mathbf{d}_2 = (0, 1, 0)$$

we know that

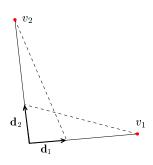
$$\mathbf{d}_i \simeq \mathbf{Q}^{-1} \underline{\mathbf{v}}_i = (\mathbf{K}\mathbf{R})^{-1} \underline{\mathbf{v}}_i = \mathbf{R}^{-1} \underbrace{\mathbf{K}^{-1} \underline{\mathbf{v}}_i}_{\underline{\mathbf{w}}_i}$$

 $\mathbf{Rd}_i \simeq \mathbf{w}_i$

- knowing $\mathbf{d}_{1,2}$ we conclude that $\underline{\mathbf{w}}_i/\|\underline{\mathbf{w}}_i\|$ is the i-th column \mathbf{r}_i of \mathbf{R}
- the third column is orthogonal:
 r₃ ≃ r₁ × r₂

$$\mathbf{R} = \begin{bmatrix} \underline{\mathbf{w}}_1 & \underline{\mathbf{w}}_2 & \underline{\mathbf{w}}_1 \times \underline{\mathbf{w}}_2 \\ \|\underline{\mathbf{w}}_1\| & \|\underline{\mathbf{w}}_2\| & \|\underline{\mathbf{w}}_1 \times \underline{\mathbf{w}}_2\| \end{bmatrix}$$

• in general we have to care about the signs $\pm \underline{\mathbf{w}}_i$ (such that $\det \mathbf{R} = 1$)



some suitable scenes

Application: Planar Rectification

Principle: Rotate camera (image plane) parallel to the plane of interest.

$$\underline{m} \simeq \mathbf{K} \mathbf{R} \begin{bmatrix} \mathbf{I} & -\mathbf{C} \end{bmatrix} \underline{\mathbf{X}}$$

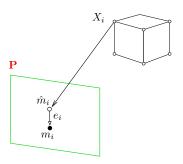
$$\underline{\mathbf{m}}' \simeq \mathbf{K} \begin{bmatrix} \mathbf{I} & -\mathbf{C} \end{bmatrix} \underline{\mathbf{X}}$$

$$\underline{\mathbf{m}}' \simeq \mathbf{K}(\mathbf{K}\mathbf{R})^{-1}\,\underline{\mathbf{m}} = \mathbf{K}\mathbf{R}^{\top}\mathbf{K}^{-1}\,\underline{\mathbf{m}} = \mathbf{H}\,\underline{\mathbf{m}}$$

- H is the rectifying homography
- \bullet both K and R can be calibrated from two finite vanishing points assuming ORUA ${\to}57$
- not possible when one of them is (or both are) infinite
- without ORUA we would need 4 additional views to calibrate K as on $\rightarrow 54$

▶Camera Resection

Camera <u>calibration</u> and <u>orientation</u> from a known set of $k \ge 6$ reference points and their images $\{(X_i, m_i)\}_{i=1}^6$.

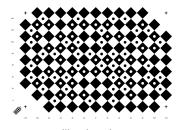


- X_i are considered exact
- m_i is a measurement subject to detection error

$$\mathbf{m}_i = \hat{\mathbf{m}}_i + \mathbf{e}_i$$
 Cartesian

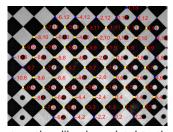
ullet where ${\color{red} oldsymbol{\lambda}_i}\ \hat{{\mathbf{m}}}_i = {\mathbf{P}}{\mathbf{X}}_i$

Resection Targets



calibration chart

resection target with translation stage



automatic calibration point detection

- target translated at least once
- by a calibrated (known) translation
- ullet X_i point locations looked up in a table based on their code

▶The Minimal Problem for Camera Resection

Problem: Given k = 6 corresponding pairs $\{(X_i, m_i)\}_{i=1}^k$, find **P**

easily modifiable for infinite points X_i but be aw

expanded:
$$\lambda_i u_i = \mathbf{q}_1^\top \mathbf{X}_i + q_{14}, \quad \lambda_i v_i = \mathbf{q}_2^\top \mathbf{X}_i + q_{24}, \quad \lambda_i = \mathbf{q}_3^\top \mathbf{X}_i + q_{34}$$
 after elimination of λ_i : $(\mathbf{q}_3^\top \mathbf{X}_i + q_{34}) u_i = \mathbf{q}_1^\top \mathbf{X}_i + q_{14}, \quad (\mathbf{q}_3^\top \mathbf{X}_i + q_{34}) v_i = \mathbf{q}_2^\top \mathbf{X}_i + q_{24}$

Then

$$\mathbf{A} \mathbf{q} = \begin{bmatrix} \mathbf{X}_{1}^{\top} & 1 & \mathbf{0}^{\top} & 0 & -u_{1} \mathbf{X}_{1}^{\top} & -u_{1} \\ \mathbf{0}^{\top} & 0 & \mathbf{X}_{1}^{\top} & 1 & -v_{1} \mathbf{X}_{1}^{\top} & -v_{1} \\ \vdots & & & & \vdots \\ \mathbf{X}_{k}^{\top} & 1 & \mathbf{0}^{\top} & 0 & -u_{k} \mathbf{X}_{k}^{\top} & -u_{k} \\ \mathbf{0}^{\top} & 0 & \mathbf{X}_{k}^{\top} & 1 & -v_{k} \mathbf{X}_{k}^{\top} & -v_{k} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{q}_{1} \\ q_{14} \\ \mathbf{q}_{2} \\ q_{24} \\ \mathbf{q}_{3} \\ q_{34} \end{bmatrix} = \mathbf{0}$$
(9)

- we need 11 indepedent parameters for P
- $oldsymbol{A} \in \mathbb{R}^{2k,12}, \; \mathbf{q} \in \mathbb{R}^{12}$
- 6 points in a general position give rank A = 12 and there is no (non-trivial) null space
 drop one row to get rank-11 matrix, then the basis vector of the null space of A gives q
- 3D Computer Vision: III. Computing with a Single Camera (p. 62/189) 990 R. Šára, CMP; rev. 13-Oct-2020

▶ The Jack-Knife Solution for k = 6

- given the 6 correspondences, we have 12 equations for the 11 parameters
- can we use all the information present in the 6 points?

Jack-knife estimation

- 1. n := 0
- 2. for i = 1, 2, ..., 2k do
 - a) delete *i*-th row from A, this gives A_i
 - b) if dim null $\mathbf{A}_i > 1$ continue with the next i
 - c) n := n + 1
 - d) compute the right null-space \mathbf{q}_i of \mathbf{A}_i e) $\hat{\mathbf{q}}_i := \mathbf{q}_i$ normalized to $q_{34} = 1$ and dimension-reduced
- 3. from all n vectors $\hat{\mathbf{q}}_i$ collected in Step 1d compute

- have a solution + an error estimate, per individual elements of ${\bf P}$ (except P_{34})
- at least 5 points must be in a general position (→64)
- large error indicates near degeneracy
- computation not efficient with k > 6 points, needs $\binom{2k}{11}$ draws, e.g. $k = 7 \Rightarrow 364$ draws
- better error estimation method: decompose P_i to K_i , R_i , t_i (\rightarrow 33), represent R_i with 3 parameters (e.g. Euler angles, or in Cayley representation \rightarrow 141) and compute the errors for the parameters
- even better: use the SE(3) Lie group for $(\mathbf{R}_i, \mathbf{t}_i)$ and average its Lie-algebra representations

e.g. by 'economy-size' SVD

assuming finite cam. with $P_{3,4}=1$

▶Degenerate (Critical) Configurations for Camera Resection

Let $\mathcal{X} = \{X_i; i = 1, \ldots\}$ be a set of points and $\mathbf{P}_1 \not\simeq \mathbf{P}_j$ be two regular (rank-3) cameras. Then two configurations $(\mathbf{P}_1, \mathcal{X})$ and $(\mathbf{P}_i, \mathcal{X})$ are image-equivalent if

$$\mathbf{P}_1 \mathbf{X}_i \simeq \mathbf{P}_i \mathbf{X}_i$$
 for all $X_i \in \mathcal{X}$

there is a non-trivial set of other cameras that see the same image

Results

Case 4

arkappa then camera resection is non-unique and all image-equivalent camera centers lie on a spatial line $\mathcal C$ with the $C_\infty=arkappa\cap\mathcal C$ excluded

• importantly: If all calibration points $X_i \in \mathcal{X}$ lie on a plane

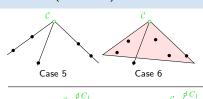
- this also means we cannot resect if all X_i are infinite \bullet and more: by adding points $X_i \in \mathcal{X}$ to \mathcal{C} we gain nothing
- there are additional image-equivalent configurations, see next

proof sketch in [H&Z, Sec. 22.1.2]

Note that if \mathbf{Q} , \mathbf{T} are suitable homographies then $\mathbf{P}_1 \simeq \mathbf{Q}\mathbf{P}_0\mathbf{T}$, where \mathbf{P}_0 is canonical and the analysis can be made with $\hat{\mathbf{P}}_i \simeq \mathbf{Q}^{-1}\mathbf{P}_i$

$$\mathbf{P}_0 \underbrace{\mathbf{T} \mathbf{X}_i}_{\mathbf{Y}_i} \simeq \hat{\mathbf{P}}_j \underbrace{\mathbf{T} \mathbf{X}_i}_{\mathbf{Y}_i} \quad ext{for all} \quad Y_i \in \mathcal{Y}$$

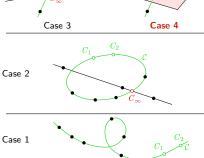
cont'd (all cases)



- cameras C_1 , C_2 co-located at point $\mathcal C$ points on three optical rays or one optical ray
- and one optical plane
 Case 5: camera sees 3 isolated point images
- Case 5: camera sees 3 isolated point images
 Case 6: cam. sees a line of points and an isolated point
- cameras lie on a line $\mathcal{C} \setminus \{C_{\infty}, C'_{\infty}\}$ • points lie on \mathcal{C} and
 - 1. on two lines meeting $\mathcal C$ at C_∞ , C_∞'
 - 2. or on a plane meeting ${\mathcal C}$ at C_∞
- Case 3: camera sees 2 lines of points
- Case 4: dangerous!
- cameras lie on a planar conic $\mathcal{C}\setminus\{C_\infty\}$ not necessarily an ellipse points lie on \mathcal{C} and an additional line meeting the conic at C_∞
- Case 2: camera sees 2 lines of points

Case 1: camera sees points on a conic

ullet cameras and points all lie on a twisted cubic ${\cal C}$



► Three-Point Exterior Orientation Problem (P3P)

<u>Calibrated</u> camera rotation and translation from <u>Perspective images of 3 reference Points.</u>

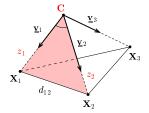
Problem: Given K and three corresponding pairs $\{(m_i, X_i)\}_{i=1}^3$, find R, C by solving

$$\lambda_i \underline{\mathbf{m}}_i = \mathbf{KR} \left(\mathbf{X}_i - \mathbf{C} \right), \qquad i = 1, 2, 3$$
 \mathbf{X}_i Cartesian

1. Transform $\underline{\mathbf{v}}_i \stackrel{\mathrm{def}}{=} \mathbf{K}^{-1}\underline{\mathbf{m}}_i$. Then

$$\lambda_i \underline{\mathbf{v}}_i = \mathbf{R} \left(\mathbf{X}_i - \mathbf{C} \right). \tag{10}$$

2. If there was no rotation in (10), the situation would look like this



- 3. and we could shoot 3 lines from the given points X_i in given directions $\underline{\mathbf{v}}_i$ to get \mathbf{C}
- 4. given C we solve (10) for λ_i , R

If there is rotation R

1. Eliminate \mathbf{R} by taking rotation preserves length: $\|\mathbf{R}\mathbf{x}\| = \|\mathbf{x}\|$

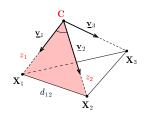
$$|\lambda_i| \cdot ||\underline{\mathbf{v}}_i|| = ||\mathbf{X}_i - \mathbf{C}|| \stackrel{\text{def}}{=} z_i$$
 (11)

2. Consider only angles among $\underline{\mathbf{v}}_i$ and apply Cosine Law per triangle $(\mathbf{C}, \mathbf{X}_i, \mathbf{X}_j)$ $i, j = 1, 2, 3, i \neq j$

$$d_{ij}^{2} = z_{i}^{2} + z_{j}^{2} - 2 z_{i} z_{j} c_{ij},$$

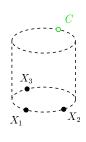
$$\mathbf{z}_i = \|\mathbf{X}_i - \mathbf{C}\|, \ d_{ij} = \|\mathbf{X}_j - \mathbf{X}_i\|, \ c_{ij} = \cos(\angle \mathbf{\underline{v}}_i \ \mathbf{\underline{v}}_j)$$

- 4. Solve system of 3 quadratic eqs in 3 unknowns z_i [Fischler & Bolles, 1981] there may be no real root; there are up to 4 solutions that cannot be ignored (verify on additional points)
- 5. Compute ${\bf C}$ by trilateration (3-sphere intersection) from ${\bf X}_i$ and z_i ; then λ_i from (11) and ${\bf R}$ from (10)



Similar problems (P4P with unknown f) at http://cmp.felk.cvut.cz/minimal/ (with code)

Degenerate (Critical) Configurations for Exterior Orientation



unstable solution

ullet center of projection C located on the orthogonal circular cylinder with base circumscribing the three points X_i unstable: a small change of X_i results in a large change of C

degenerate

• camera C is coplanar with points (X_1,X_2,X_3) but is not on the circumscribed circle of (X_1,X_2,X_3)

camera sees points on a line

no solution

1. C cocyclic with (X_1,X_2,X_3) camera sees points on a line

additional critical configurations depend on the quadratic equations solver

[Haralick et al. IJCV 1994]

can be detected by error propagation

▶ Populating A Little ZOO of Minimal Geometric Problems in CV

problem	given	unknown	slide
camera resection	6 world–img correspondences $\left\{(X_i,m_i) ight\}_{i=1}^6$	P	62
exterior orientation	$\left[\mathbf{K}$, 3 world–img correspondences $\left\{ (X_i,m_i) ight\}_{i=1}^3$	R, C	66
relative orientation	3 world-world correspondences $\left\{(X_i,Y_i) ight\}_{i=1}^3$	R, t	70

- camera resection and exterior orientation are similar problems in a sense:
 - we do resectioning when our camera is uncalibrated
 - we do orientation when our camera is calibrated
- relative orientation involves no camera (see next)
- more problems to come



