3D Computer Vision

Radim Šára Martin Matoušek
Center for Machine Perception
Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz
phone ext. 7203

rev. November 3, 2020

Open Informatics Master's Course

Module V

Optimization for 3D Vision

（5．）The Concept of Error for Epipolar Geometry
5．2 Levenberg－Marquardt＇s Iterative Optimization
5．3 The Correspondence Problem
（5．4）Optimization by Random Sampling
covered by
［1］［H\＆Z］Secs：11．4，11．6， 4.7
［2］Fischler，M．A．and Bolles，R．C ．Random Sample Consensus：A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography． Communications of the ACM 24（6）：381－395， 1981
additional references
P．D．Sampson．Fitting conic sections to＇very scattered＇data：An iterative refinement of the Bookstein algorithm．Computer Vision，Graphics，and Image Processing，18：97－108， 1982.

O．Chum，J．Matas，and J．Kittler．Locally optimized RANSAC．In Proc DAGM，LNCS 2781：236－243．
Springer－Verlag， 2003.
\square O．Chum，T．Werner，and J．Matas．Epipolar geometry estimation via RANSAC benefits from the oriented epipolar constraint．In Proc ICPR，vol 1：112－115， 2004.

-The Concept of Error for Epipolar Geometry

Background problems: (1) Given at least 8 matched points $x_{i} \leftrightarrow y_{j}$ in a general position, estimate the most 'likely' fundamental matrix \mathbf{F}; (2) given \mathbf{F} triangulate 3D point from $x_{i} \leftrightarrow y_{j}$.

$$
\mathbf{x}_{i}=\left(u_{i}^{1}, v_{i}^{1}\right), \quad \mathbf{y}_{i}=\left(u_{i}^{2}, v_{i}^{2}\right), \quad i=1,2, \ldots, k, \quad k \geq 8
$$

- detected points (measurements) x_{i}, y_{i}
- we introduce matches $\mathbf{Z}_{i}=\left(u_{i}^{1}, v_{i}^{1}, u_{i}^{2}, v_{i}^{2}\right) \in \mathbb{R}^{4} ; \quad Z=\left\{\mathbf{Z}_{i}\right\}_{i=1}^{(1)}$
- corrected points $\hat{x}_{i}, \hat{y}_{i} ; \quad \hat{\mathbf{Z}}_{i}=\left(\hat{u}_{i}^{1}, \hat{v}_{i}^{1}, \hat{u}_{i}^{2}, \hat{v}_{i}^{2}\right) ; \hat{Z}=\left\{\hat{\mathbf{Z}}_{i}\right\}_{i=1}^{k}$ are correspondences
- correspondences satisfy the epipolar geometry exactly $\underline{\hat{\mathbf{y}}}_{i}^{\top} \mathbf{F} \underline{\underline{\hat{x}}}_{i}=0, i=1, \ldots, k$
- small correction is more probable
- let $\mathbf{e}_{i}(\cdot)$ be the 'reprojection error' (vector) per match i,

$$
\begin{align*}
\mathbf{e}_{i}\left(x_{i}, y_{i} \mid \hat{x}_{i}, \hat{y}_{i}, \mathbf{F}\right) & =\left[\begin{array}{l}
\mathbf{x}_{i}-\hat{\mathbf{x}}_{i} \\
\mathbf{y}_{i}-\hat{\mathbf{y}}_{i}
\end{array}\right]=\mathbf{e}_{i}\left(\mathbf{Z}_{i} \mid \hat{\mathbf{Z}}_{i}, \mathbf{F}\right)=\mathbf{Z}_{i}-\hat{\mathbf{Z}}_{i}(\mathbf{F}) \tag{15}\\
\left\|\mathbf{e}_{i}(\cdot)\right\|^{2} \stackrel{\text { def }}{=} \mathbf{e}_{i}^{2}(\cdot) & =\left\|\mathbf{x}_{i}-\hat{\mathbf{x}}_{i}\right\|^{2}+\left\|\mathbf{y}_{i}-\hat{\mathbf{y}}_{i}\right\|^{2}=\left\|\mathbf{Z}_{i}-\hat{\mathbf{Z}}_{i}(\mathbf{F})\right\|^{2}
\end{align*}
$$

-cont'd

- the total reprojection error (of all data) then is
- and the optimization problem is

$$
L(Z \mid \hat{Z}, \mathbf{F})=\sum_{i=1}^{k} \mathbf{e}_{i}^{2}(\underbrace{x_{i}, y_{i}} \mid \underbrace{\hat{x}_{i}, \hat{y}_{i}}, \mathbf{F})=\sum_{i=1}^{k} \mathbf{e}_{i}^{2}\left(\mathbf{Z}_{i} \mid \hat{\mathbf{Z}}_{i}, \mathbf{F}\right)
$$

Three possible approaches

- they differ in how the correspondences \hat{x}_{i}, \hat{y}_{i} are obtained:

1. direct optimization of reprojection error over all variables \hat{Z}, \mathbf{F}
2. Sampson optimal correction $=$ partial correction of \mathbf{Z}_{i} towards $\hat{\mathbf{Z}}_{i}$ used in an iterative minimization over \mathbf{F}
Yremoving \hat{x}_{i}, \hat{y}_{i} altogether $=$ marginalization of $L(Z, \hat{Z} \mid \mathbf{F})$ over \hat{Z} followed by
minimization over \mathbf{F} not covered, the marginalization is difficult

Method 1: Reprojection Error Optimization

- we need to encode the constraints $\hat{\mathbf{y}}_{i} \mathbf{F} \hat{\underline{\mathbf{x}}}_{i}=0, \operatorname{rank} \mathbf{F}=2$
- idea: reconstruct 3D point via equivalent projection matrices and use reprojection error
- equivalent projection matrices are see [H2 2, ,Sec. 9.5] for complete characterization

$$
\mathbf{P}_{1}=\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right], \quad \mathbf{P}_{2}=\left[\begin{array}{ll}
{\left[\mathbf{e}_{2}\right], \mathbf{F}+\mathbf{e}_{2} \mathbf{e}_{1}^{\dagger}} & \mathbf{e}_{2} \tag{17}
\end{array}\right]
$$

$\circledast \mathrm{H} 3$; 2pt: Given \mathbf{F}, let $\underline{\mathbf{e}}_{1}, \underline{\mathbf{e}}_{2}$ be the left and right nullspace basis vectors of \mathbf{F} (i.e. the epipoles). Verify that \mathbf{F} is a fundamental matrix of $\mathbf{P}_{1}, \mathbf{P}_{2}$ from (17). Hint: \mathbf{A} is skew symmetric iff $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}=0$ for all vectors \mathbf{x}.

1. compute $\mathbf{F}^{(0)}$ by the 7-point algorithm $\rightarrow 84$; construct camera $\mathbf{P}_{2}^{(0)}$ from $\mathbf{F}^{(0)}$ using (17)
2. triangulate 3D points $\hat{\mathbf{X}}_{i}^{(0)}$ from matches $\left(x_{i}, y_{i}\right)$ for all $i=1, \ldots, k$
3. starting from $\mathbf{P}_{2}^{(0)}, \hat{\mathbf{X}}^{(0)}$ minimize the reprojection error (15)

$$
\left(\hat{\mathbf{X}}^{*}, \mathbf{P}_{2}^{*}\right)=\arg \min _{\mathbf{P}_{2}, \hat{\mathbf{X}}} \sum_{i=1}^{k} \mathbf{e}_{i}^{2}\left(\mathbf{Z}_{i} \mid \hat{\mathbf{Z}}_{i}\left(\hat{\mathbf{X}}_{i}, \mathbf{P}_{2}\right)\right)
$$

where

$$
\hat{\mathbf{Z}}_{i}=\left(\hat{\mathbf{x}}_{i}, \hat{\mathbf{y}}_{i}\right) \quad(\text { Cartesian }), \quad \hat{\mathbf{x}}_{i} \simeq \mathbf{P}_{1} \underline{\underline{\mathbf{x}}}_{i}, \quad \hat{\mathbf{y}}_{i} \simeq \mathbf{P}_{2} \underline{\underline{\mathbf{x}}}_{i} \text { (homogeneous) }
$$

Non-linear, non-convex problem
4. compute \mathbf{F} from $\mathbf{P}_{1}, \mathbf{P}_{2}^{*}$

- $3 k+12$ parameters to be found: latent: $\hat{\mathbf{X}}_{i}$, for all i (correspondences!), non-latent: \mathbf{P}_{2}
- minimal representation: $3 k+7$ parameters, $\mathbf{P}_{2}=\mathbf{P}_{2}(\mathbf{F})$
- there are pitfalls; this is essentially bundle adjustment; we will return to this later

Method 2: First-Order Error Approximation

An elegant method for solving problems like (16):

- we will get rid of the latent parameters \hat{X} needed for obtaining the correction
- we will recycle the algebraic error $\varepsilon_{i}=\underline{\mathbf{y}}_{i}^{\top} \mathbf{F}_{-i}$ rom $\rightarrow 84$
[H\&Z, p. 287], [Sampson 1982]
- consider matches \mathbf{Z}_{i}, correspondences $\hat{\mathbf{Z}}_{i}$, and reprojection error $\mathbf{e}_{i}=\left\|\mathbf{Z}_{i}-\hat{\mathbf{Z}}_{i}\right\|^{2}$
- correspondences satisfy $\underline{\hat{\mathbf{y}}}_{i}^{\top} \mathbf{F} \underline{\underline{\mathbf{x}}}_{i}=0, \quad \hat{\underline{\mathbf{x}}}_{i}=\left(\hat{u}^{1}, \hat{v}^{1}, 1\right), \underline{\hat{\mathbf{y}}}_{i}=\left(\hat{u}^{2}, \hat{v}^{2}, 1\right)$
- this is a manifold $\mathcal{V}_{F} \in \mathbb{R}^{4}$: a set of points $\hat{\mathbf{Z}}=\left(\hat{u}^{1}, \hat{v}^{1}, \hat{u}^{2}, \hat{v}^{2}\right)$ consistent with \mathbf{F}
- algebraic error vanishes for $\hat{\mathbf{Z}}_{i}: \mathbf{0}=\boldsymbol{\varepsilon}_{i}\left(\hat{\mathbf{Z}}_{i}\right)=\underline{\hat{\mathbf{y}}}_{i}^{\top} \mathbf{F} \underline{\hat{\mathbf{x}}}_{i}$

Sampson's idea: Linearize the algebraic error $\varepsilon(\mathbf{Z})$ at \mathbf{Z}_{i} (where it is non-zero) and evaluate the resulting linear function at $\hat{\mathbf{Z}}_{i}$ (where it is zero). The zero-crossing replaces \mathcal{V}_{F} by a linear manifold \mathcal{L}. The point on V_{F} closest to \mathbf{Z}_{i} is replaced by the closest point on \mathcal{L}.

$$
\boldsymbol{\gamma}=\underbrace{\varepsilon_{i}\left(\hat{\mathbf{Z}}_{i}\right)} \approx \underbrace{\varepsilon_{i}\left(\mathbf{Z}_{i}\right)+\frac{\partial \boldsymbol{\varepsilon}_{i}\left(\mathbf{Z}_{i}\right)}{\partial \mathbf{Z}_{i}}\left(\hat{\mathbf{Z}}_{i}-\mathbf{Z}_{i}\right)} e_{i}
$$

-Sampson's Approximation of Reprojection Error

- linearize $\boldsymbol{\varepsilon}(\mathbf{Z})$ at match \mathbf{Z}_{i}, evaluate it at correspondence $\hat{\mathbf{Z}}_{i}$

$$
\boldsymbol{\varepsilon}_{i}\left(\mathbf{Z}_{i}\right)+\underbrace{\frac{\partial \boldsymbol{\varepsilon}_{i}\left(\mathbf{Z}_{i}\right)}{\partial \mathbf{Z}_{i}}}_{\mathbf{J}_{i}\left(\mathbf{Z}_{i}\right)} \underbrace{\left(\hat{\mathbf{Z}}_{i}-\mathbf{Z}_{i}\right)}_{\mathbf{e}_{i}\left(\hat{\mathbf{Z}}_{i}, \mathbf{Z}_{i}\right)} \stackrel{\text { def }}{=} \underline{\boldsymbol{\varepsilon}_{i}\left(\mathbf{Z}_{i}\right)}+\mathbf{J}_{i}\left(\mathbf{Z}_{i}\right) \underbrace{\mathbf{e}_{i}\left(\hat{\mathbf{Z}}_{i}, \mathbf{Z}_{i}\right)}=\boldsymbol{\varepsilon}_{i}\left(\hat{\mathbf{Z}}_{i}\right) \stackrel{!}{=} 0
$$

- goal: compute function $\mathbf{e}_{i}(\cdot)$ from $\boldsymbol{\varepsilon}_{i}(\cdot)$, where $\mathbf{e}_{i}(\cdot)$ is the distance of $\hat{\mathbf{Z}}_{i}$ from \mathbf{Z}_{i}
- we have a linear underconstrained equation for $\mathbf{e}_{i}(\cdot)$
- we look for a minimal $\mathrm{e}_{i}(\cdot)$ per match i

$$
\mathbf{e}_{i}(\cdot)^{*}=\arg \min _{\mathbf{e}_{i}(\cdot)}\left\|\mathbf{e}_{i}(\cdot)\right\|^{2} \quad \text { subject to } \quad \varepsilon_{i}(\cdot)+\mathbf{J}_{i}(\cdot) \mathbf{e}_{i}(\cdot)=0
$$

- which has a closed-form solution note that $\mathbf{J}_{i}(\cdot)$ is not invertible! $\circledast \mathrm{P} 1 ; 1$ pt: derive $\mathrm{e}_{i}^{*}(\cdot)$

$$
\begin{align*}
\mathbf{e}_{i}^{*}(\cdot) & =-\mathbf{J}_{i}^{\top}\left(\mathbf{J}_{i} \mathbf{J}_{i}^{\top}\right)^{-1} \varepsilon_{i}(\cdot) \quad \text { pseudo-inverse } \\
\left\|\mathbf{e}_{i}^{*}(\cdot)\right\|^{2} & =\boldsymbol{\varepsilon}_{i}^{\top}(\cdot)\left(\mathbf{J}_{i} \mathbf{J}_{i}^{\top}\right)^{-1} \varepsilon_{i}(\cdot) \tag{18}
\end{align*}
$$

- this maps $\boldsymbol{\varepsilon}_{i}(\cdot)$ to an estimate of $\mathbf{e}_{i}(\cdot)$ per correspondence
- we often do not need \mathbf{e}_{i}, just $\left\|\mathbf{e}_{i}\right\|^{2}$
exception: triangulation $\rightarrow 105$
- the unknown parameters F are inside: $\mathbf{e}_{i}=\mathbf{e}_{i}(\mathbf{F}), \boldsymbol{\varepsilon}_{i}=\boldsymbol{\varepsilon}_{i}(\mathbf{F}), \mathbf{J}_{i}=\mathbf{J}_{i}(\mathbf{F})$

Example: Fitting A Circle To Scattered Points

Problem: Fit an origin-centered circle $\mathcal{C}:\|\mathbf{x}\|^{2}-r^{2}=0$ to a set of 2D points $Z=\left\{x_{i}\right\}_{i=1}^{k}$

1. consider radial error as the 'algebraic error' $\varepsilon(\mathbf{x})=\|\mathbf{x}\|^{2}-r^{2} \quad$ 'arbitrary' choice 2. linearize it at $\hat{\mathrm{x}}$ we are dropping i in $\boldsymbol{\varepsilon}_{i}, \mathbf{e}_{i}$ etc for clarity

$$
\boldsymbol{\varepsilon}\left(\hat{x_{x}}\right) \approx \underbrace{\varepsilon\left(\mathbf{x}_{i}\right)}_{\mid x \|^{2}-v^{2}}+\underbrace{\frac{\partial \varepsilon(\mathbf{x})}{\partial \mathbf{x}_{i}}}_{\mathbf{J}(\mathbf{x})=2 \mathbf{x}^{\top}} \underbrace{\left(\hat{\mathbf{x}}_{i}-\mathbf{x}\right)}_{\mathbf{e}(\hat{\mathbf{x}}, \mathbf{x})}=\cdots=2 \mathbf{x}_{i}^{\top} \hat{\mathbf{x}}_{i}-\left(r^{2}+\left\|\mathbf{x}_{i}\right\|^{2}\right) \stackrel{\text { def }}{=} \varepsilon_{L}\left(\hat{\mathbf{x}}_{i}\right)
$$

$\varepsilon_{L}(\hat{\mathbf{x}})=0$ is a line with normal $\frac{\mathbf{x}}{\|\mathbf{x}\|}$ and intercept $\frac{r^{2}+\|\mathbf{x}\|^{2}}{2\|\mathbf{x}\|} \quad$ not tangent to \mathcal{C}, outside!
3. using (18), express error approximation \mathbf{e}^{*} as

$$
\mathbf{e}^{*} \|^{2}=\boldsymbol{\varepsilon}^{\top}\left(\mathbf{J} \mathbf{J}^{\top}\right)^{-1} \boldsymbol{\varepsilon}=\frac{\left(\|\mathbf{x}\|^{2}-r^{2}\right)^{2}}{4\|\mathbf{x}\|^{2}}
$$

4. fit circle
$\varepsilon(\mathbf{x})=0 r^{*} \underbrace{\varepsilon_{L 1}(\mathbf{x})=0} \quad \arg \min _{r} \sum_{i=1}^{k} \frac{\left(\left\|\mathbf{x}_{i}\right\|^{2}-r^{2}\right)^{2}}{4\left\|\mathbf{x}_{i}\right\|^{2}}=\cdots=\left(\frac{1}{k} \sum_{i=1}^{k} \frac{1}{\left\|\mathbf{x}_{i}\right\|^{2}}\right)^{t^{\frac{1}{2}}}$

- this example results in a convex quadratic optimization problem
- note that

$$
\arg \min _{r} \sum_{i=1}^{k}\left(\left\|\mathbf{x}_{i}\right\|^{2}-r^{2}\right)^{2}=\left(\frac{1}{k} \sum_{i=1}^{k}\left\|\mathbf{x}_{i}\right\|^{2}\right)^{\frac{1}{2}}
$$

Circle Fitting: Some Results

opt: 1.8, Smp: 1.9, dir: 2.3
big radial noise

$1.6,1.8,2.6$
medium isotropic noise

1.8, 2.0, 2.2
big isotropic noise

1.6, 2.0, 2.4
mean ranks over 10000 random trials with $k=32$ samples optimal estimator for isotropic error (black, dashed):

$$
r \approx \frac{3}{4 k} \sum_{i=1}^{k}\left\|\mathbf{x}_{i}\right\|+\sqrt{\left(\frac{3}{4 k} \sum_{i=1}^{k}\left\|\mathbf{x}_{i}\right\|\right)^{2}-\frac{1}{2 k} \sum_{i=1}^{k}\left\|\mathbf{x}_{i}\right\|^{2}}
$$

which method is better?

- error should model noise, radial noise and isotropic noise behave differently
- ground truth: Normally distributed isotropic error, Gamma-distributed radial error
- Sampson: better for the radial distribution model; Direct: better for the isotropic model
- no matter how corrected, the algebraic error minimizer is not an unbiased parameter estimator

Cramér-Rao bound tells us how close one can get with unbiased estimator and given k

Discussion: On The Art of Probabilistic Model Design. . .

- a few models for fitting zero-centered circle C of radius r to points in \mathbb{R}^{2}

$$
\text { marginalized over } C
$$

$\frac{E}{\frac{\hbar}{x}}$
orthogonal deviation from C

$\frac{1}{2 \pi \Gamma\left(\frac{r^{2}}{\sigma}\right)} \frac{1}{\|\mathbf{x}\|^{2}}\left(\frac{r\|\mathbf{x}\|}{\sigma}\right)^{\frac{r^{2}}{\sigma}} e^{-\frac{r\|\mathbf{x}\|}{\sigma}}$

- peak at the center
- unusable for small radii
- tends to Dirac distrib.

Sampson approximation

$$
\frac{1}{r \sigma \sqrt{(2 \pi)^{3}}} e^{-\frac{e^{2}(\mathbf{x} ; r)}{2 \sigma^{2}}}
$$

- mode at the circle
- hole at the center
- tends to normal distrib.

-Sampson Error for Fundamental Matrix Manifold

The epipolar algebraic error is

$$
\varepsilon_{i}(\mathbf{F})=\underline{\mathbf{y}}_{i}^{\top} \mathbf{F} \underline{\mathbf{x}}_{i}, \quad \mathbf{x}_{i}=\left(u_{i}^{1}, v_{i}^{1}\right), \quad \mathbf{y}_{i}=\left(u_{i}^{2}, v_{i}^{2}\right), \quad \varepsilon_{i} \in \mathbb{R}
$$

Let $\mathbf{F}=\left[\begin{array}{lll}\mathbf{F}_{1} & \mathbf{F}_{2} & \mathbf{F}_{3}\end{array}\right]$ (per columns) $=\left[\begin{array}{l}\left(\mathbf{F}^{1}\right)^{\top} \\ \left(\mathbf{F}^{2}\right)^{\top} \\ \left(\mathbf{F}^{3}\right)^{\top}\end{array}\right]$ (per rows), $\mathbf{S}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$, tyen
Sampson

$$
\mathbf{J}_{i}(\mathbf{F})=\left[\frac{\partial \varepsilon_{i}(\mathbf{F})}{\partial u_{i}^{1}}, \frac{\partial \varepsilon_{i}(\mathbf{F})}{\partial v_{i}^{1}}, \frac{\partial \varepsilon_{i}(\mathbf{F})}{\partial u_{i}^{2}}, \frac{\partial \varepsilon_{i}(\mathbf{F})}{\partial v_{i}^{2}}\right] \quad \mathbf{J}_{i} \in \mathbb{R}^{1,4} \quad \begin{aligned}
& \text { derivatives over } \\
& \text { point coordinates }
\end{aligned}
$$

$=\left[\left(\mathbf{F}_{1}\right)^{\top} \underline{\mathbf{y}}_{i},\left(\mathbf{F}_{2}\right)^{\top} \underline{\mathbf{y}}_{i},\left(\mathbf{F}^{1}\right)^{\top} \underline{\mathbf{x}}_{i},\left(\mathbf{F}^{2}\right)^{\top} \underline{\mathbf{x}}_{i}\right]=\left[\begin{array}{c}\mathbf{S F}^{\top} \underline{\mathbf{y}}_{i} \\ \mathbf{S F} \underline{\underline{x}}_{i}\end{array}\right]^{\top}$
$\mathbf{e}_{i}(\mathbf{F})=-\frac{\mathbf{J}_{i}(\mathbf{F}) \varepsilon_{i}(\mathbf{F})}{\left\|\mathbf{J}_{i}(\mathbf{F})\right\|^{2}}$
$e_{i}(\mathbf{F}) \stackrel{\text { def }}{=}\left\|\mathbf{e}_{i}(\mathbf{F})\right\|=\frac{\varepsilon_{i}(\mathbf{F})}{\left\|\mathbf{J}_{i}(\mathbf{F})\right\|}=\sqrt{\sqrt{\underline{\mathbf{y}}_{i}^{\top} \mathbf{F} \underline{\mathbf{x}}_{i}}} \sqrt{\left\|\mathbf{S F} \underline{\mathbf{x}}_{i}\right\|^{2}+\left\|\mathbf{S F}^{\top} \underline{\mathbf{y}}_{i}\right\|^{2}}$
$\mathbf{e}_{i}(\mathbf{F}) \in \mathbb{R}^{4}$
$e_{i}(\mathbf{F}) \in \mathbb{R}$

Sampson error vector
scalar Sampson error

- Sampson error 'normalizes' the algebraic error
- automatically copes with multiplicative factors $\mathbf{F} \mapsto \lambda \mathbf{F}$
- actual optimization not yet covered $\rightarrow 109$

-Back to Triangulation: The Golden Standard Method

Given $\mathbf{P}_{1}, \mathbf{P}_{2}$ and a correspondence $x \leftrightarrow y$, look for 3D point \mathbf{X} projecting to x and $y \rightarrow 89$ Idea:

1. if not given, compute \mathbf{F} from $\mathbf{P}_{1}, \mathbf{P}_{2}$, e.g. $\mathbf{F}=\left(\mathbf{Q}_{1} \mathbf{Q}_{2}^{-1}\right)^{\top}\left[\mathbf{q}_{1}-\left(\mathbf{Q}_{1} \mathbf{Q}_{2}^{-1}\right) \mathbf{q}_{2}\right]_{\times}$
2. correct the measurement by the linear estimate of the correction vector

$$
\left.\left[\begin{array}{c}
\hat{u}^{1} \\
\hat{v}^{1} \\
\hat{u}^{2} \\
\hat{v}^{2}
\end{array}\right] \approx\left[\begin{array}{c}
u^{1} \\
v^{1} \\
u^{2} \\
v^{2}
\end{array}\right]-\frac{\varepsilon}{\|\mathbf{J}\|^{2}} \mathbf{J}^{\top}\right)=\left[\begin{array}{c}
u^{1} \\
v^{1} \\
u^{2} \\
v^{2}
\end{array}\right]-\frac{\mathbf{y}^{\top} \mathbf{F} \underline{\mathbf{x}}}{\|\mathbf{S F} \underline{\mathbf{x}}\|^{2}+\left\|\mathbf{S F}^{\top} \underline{\mathbf{y}}\right\|^{2}}\left[\begin{array}{l}
\left(\mathbf{F}_{1}\right)^{\top} \underline{\mathbf{y}} \\
\left(\mathbf{F}_{2}\right)^{\top} \underline{\mathbf{y}} \\
\left(\mathbf{F}^{1}\right)^{\top} \mathbf{x} \\
\left(\mathbf{F}^{2}\right)^{\top} \underline{\underline{x}}
\end{array}\right]
$$

3. use the SVD triangulation algorithm with numerical conditioning

Ex (cont'd from $\rightarrow 93$):

X_{T} - noiseless ground truth position

- - reprojection error minimizer
X_{S} - Sampson-corrected algebraic error minimizer
X_{a} - algebraic error minimizer
m - measurement (m_{T} with noise in v^{2})

-Back to Fundamental Matrix Estimation

Goal: Given a set $X=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{k}$ of $k \gg 7$ iflier correspondences, compute a statistically efficient estimate for fundamental matrix $\overline{\mathrm{F}}$.

What we have so far

- 7-point algorithm for \mathbf{F} (5-point algorithm for \mathbf{E}) $\rightarrow 84$
- definition of Sampson error per correspondence $e_{i}\left(\mathbf{F} \mid x_{i}, y_{i}\right) \rightarrow 104$
- triangulation requiring an optimal \mathbf{F}

What we need

- an optimization algorithm for

$$
\left.\mathbf{F}^{*}=\arg \min _{\mathbf{F}} \sum_{i=1}^{k} e_{i}^{2} \lambda \mathbf{F} \mid X\right)
$$

- the 7-point estimate is a good starting point \mathbf{F}_{0}

Levenberg-Marquardt (LM) Iterative Estimation in a Nutshell

Consider error function $\mathbf{e}_{i}(\boldsymbol{\theta})=f\left(\mathbf{x}_{i}, \mathbf{y}_{i}, \boldsymbol{\theta}\right) \in \mathbb{R}^{m}$, with $\mathbf{x}_{i}, \mathbf{y}_{i}$ given, $\boldsymbol{\theta} \in \mathbb{R}^{q}$ unknown $\sum^{k} \quad \theta=\mathbf{F}, q=9, m=1$ for f.m. estimation
Our goal: $\quad \boldsymbol{\theta}^{*}=\arg \min _{\boldsymbol{\theta}} \sum_{i=1}\left\|\mathbf{e}_{i}(\boldsymbol{\theta})\right\|^{2}$
Idea 1 (Gauss-Newton approximation): proceed iteratively for $s=0,1,2, \ldots$

$$
\begin{align*}
& \boldsymbol{\theta}^{s+1}:=\boldsymbol{\theta}^{s}+\mathbf{d}_{s}, \quad \text { where } \quad \mathbf{d}_{s}=\arg \min _{\mathbf{d}} \sum_{i=1}^{k} \| \mathbf{e}_{i}\left(\boldsymbol{\theta}^{s}+\boldsymbol{d}\right) \tag{19}\\
& \|^{2} \\
& \mathbf{e}_{i}\left(\boldsymbol{\theta}^{s}+\mathbf{d}\right) \approx \mathbf{e}_{i}\left(\boldsymbol{\theta}^{s}\right)+\mathbf{L}_{i} \mathbf{d}, \\
&\left(\mathbf{L}_{i}\right)_{j l}=\frac{\partial\left(\mathbf{e}_{i}(\boldsymbol{\theta})\right)_{j}}{\partial(\boldsymbol{\theta})_{l}}, \quad \mathbf{L}_{i} \in \mathbb{R}^{m, q} \quad \text { typically a long matrix, } m \ll q
\end{align*}
$$

Then the solution to Problem (19) is a set of 'normal' eqs

$$
\begin{equation*}
-\underbrace{\sum_{i=1}^{k} \mathbf{L}_{i}^{\top} \mathbf{e}_{i}\left(\boldsymbol{\theta}^{s}\right)}_{\mathbf{e} \in \mathbb{R}^{q}, 1}=\underbrace{\left(\sum_{i=1}^{\overparen{k}} \mathbf{L}_{i}^{\top} \mathbf{L}_{i}\right)}_{\mathbf{L} \in \mathbb{R}^{q, q}} \mathbf{d}_{s} \tag{20}
\end{equation*}
$$

- \mathbf{d}_{s} can be solved for by Gaussian elimination using Choleski decomposition of \mathbf{L}

L symmetric PSD \Rightarrow use Choleski, almost $2 \times$ faster than Gauss-Seidel, see bundle adjustment $\rightarrow 139$

- such updates do not lead to stable convergence \longrightarrow ideas of Levenberg and Marquardt

LM (cont'd)

Idea 2 (Levenberg): replace $\sum_{i} \mathbf{L}_{i}^{\top} \mathbf{L}_{i}$ with $\sum_{i} \mathbf{L}_{i}^{\top} \mathbf{L}_{i}+\lambda$ I for some damping factor $\lambda \geq 0$ Idea 3 (Marquardt): replace $\lambda \mathbf{I}$ with $\oint \sum_{i} \operatorname{diag}\left(\mathbf{L}_{i}^{\top} \mathbf{L}_{i}\right)$ to adapt to local curvature:

$$
-\sum_{i=1}^{k} \mathbf{L}_{i}^{\top} \mathbf{e}_{i}\left(\boldsymbol{\theta}^{s}\right)=\left(\sum_{i=1}^{k}\left(\mathbf{L}_{i}^{\top} \mathbf{L}_{i}+\lambda \operatorname{diag}\left(\mathbf{L}_{i}^{\top} \mathbf{L}_{i}\right)\right)\right) \mathrm{d}_{s}
$$

Idea 4 (Marquardt): adaptive λ small $\lambda \rightarrow$ Gauss-Newton, large $\lambda \rightarrow$ gradient descend

1. choose $\lambda \approx 10^{-3}$ and compute \mathbf{d}_{s}
2. if $\sum_{i}\left\|\mathbf{e}_{i}\left(\boldsymbol{\theta}^{s}+\mathbf{d}_{s}\right)\right\|^{2}<\sum_{i}\left\|\mathbf{e}_{i}\left(\boldsymbol{\theta}^{s}\right)\right\|^{2}$ then accept \mathbf{d}_{s} and set $\lambda:=\lambda / 10, s:=s+1_{1}$
3. otherwise set $\lambda:=10 \lambda$ and recompute \mathbf{d}_{s}
```
F}\leftrightarrowF+\mp@subsup{D}{S}{
```


- sometimes different constants are needed for the 10 and 10^{-3}
- note that $\mathbf{L}_{i} \in \mathbb{R}^{m, q}$ (long matrix) but each contribution $\mathbf{L}_{i}^{\top} \mathbf{L}_{i}$ is a square singular $q \times q$ matrix (always singular for $k<q$)
- error can be made robust to outliers, see the trick $\rightarrow 112$
- we have approximated the least squares Hessian by ignoring second derivatives of the error function (Gauss-Newton approximation) See [Triggs et al. 1999, Sec. 4.3]
- λ helps avoid the consequences of gauge freedom $\rightarrow 141$
modern variants of LM are Trust Region methods

LM with Sampson Error for Fundamental Matrix Estimation

Sampson (derived by linearization over point coordinates $u^{1}, v^{1}, u^{2}, v^{2}$)

$$
e_{i}(\mathbf{F})=\frac{\varepsilon_{i}}{\left\|\mathbf{J}_{i}\right\|}=\frac{\underline{\mathbf{y}}_{i}^{\top} \mathbf{F} \underline{\mathbf{x}}_{i}}{\sqrt{\left\|\mathbf{S F} \underline{x}_{i}\right\|^{2}+\left\|\mathbf{S F}^{\top} \underline{\mathbf{y}}_{i}\right\|^{2}}} \quad \text { where } \quad \mathbf{S}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

LM (by linearization over parameters \mathbf{F})

$$
\begin{equation*}
\mathbf{L}_{i}=\frac{\partial e_{i}(\mathbf{F})}{\partial \mathbf{F}}=\cdots=\frac{1}{2\left\|\mathbf{J}_{i}\right\|}\left[\left(\underline{\mathbf{y}}_{i}-\frac{2 e_{i}}{\left\|\mathbf{J}_{i}\right\|} \mathbf{S F} \underline{\mathbf{x}}_{i}\right) \underline{\mathbf{x}}_{i}^{\top}+\underline{\mathbf{y}}_{i}\left(\underline{\mathbf{x}_{i}}-\frac{2 e_{i}}{\left\|\mathbf{J}_{i}\right\|} \mathbf{S F}^{\top} \underline{\mathbf{y}}_{i}\right)^{\top}\right] \tag{21}
\end{equation*}
$$

- \mathbf{L}_{i} in (21) is a 3×3 matrix, must be reshaped to dimension-9 vector $\operatorname{vec}\left(\mathbf{L}_{i}\right)$ to be used in LM
- $\underline{\mathbf{x}}_{i}$ and $\underline{\mathbf{y}}_{i}$ in Sampson error are normalized to unit homogeneous coordinate (21) relies on this
- reinforce $\operatorname{rank} \mathbf{F}=2$ after each LM update to stay in the fundamental matrix manifold and $\|\mathbf{F}\|=1$ to avoid gauge freedom
by SVD $\rightarrow 110$
- LM linearization could be done by numerical differentiation (we have a small dimension here)

-Local Optimization for Fundamental Matrix Estimation

Given a set $X=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{k}$ of $k \gg 7$ inlier correspondences, compute a statistically efficient estimate for fundamental matrix $\overline{\mathbf{F}}$.

Summary so far

1. Find the conditioned $(\rightarrow 92)$ 7-point $\mathbf{F}_{0}(\rightarrow 84)$ from a suitable 7-tuple
2. Improve the \mathbf{F}_{0}^{*} using the LM optimization $(\rightarrow 107-108)$ and the Sampson error $(\rightarrow 109)$ on all inliers, reinforce rank-2, unit-norm \mathbf{F}_{k}^{*} after each LM iteration using SVD

We are not yet done

- if there are no wrong correspondences (mismatches, outliers), this gives a local optimum given the 7 -point initial estimate
- the algorithm breaks under contamination of (inlier) correspondences by outliers
- the full problem involves finding the inliers!
- in addition, we need a mechanism for jumping out of local minima (and exploring the space of all fundamental matrices)

Thank You

