3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz
phone ext. 7203

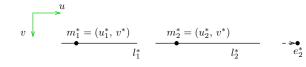
rev. December 15, 2020

Open Informatics Master's Course

▶Rectification Homographies

Assumption: Cameras $(\mathbf{P}_1, \mathbf{P}_2)$ are rectified by a homography pair $(\mathbf{H}_1, \mathbf{H}_2)$:

$$\mathbf{P}_{i}^{*} = \mathbf{H}_{i}\mathbf{P}_{i} = \mathbf{H}_{i}\mathbf{K}_{i}\mathbf{R}_{i}\begin{bmatrix}\mathbf{I} & -\mathbf{C}_{i}\end{bmatrix}, \quad i = 1, 2$$



rectified entities: \mathbf{F}^* , \mathbf{l}_2^* , \mathbf{l}_1^* , etc:

• the rectified location difference $d=u_1^*-u_2^*$ is called <u>disparity</u>

corresponding epipolar lines must be:

- 1. parallel to image rows \Rightarrow epipoles become $e_1^* = e_2^* = (1,0,0)$
- $\textbf{2.} \text{ equivalent } l_2^* = l_1^*: \quad \mathbf{l}_1^* \simeq \underline{\mathbf{e}}_1^* \times \underline{\mathbf{m}}_1 = \left[\underline{\mathbf{e}}_1^*\right]_{\times} \underline{\mathbf{m}}_1, \quad \mathbf{l}_2^* \simeq \mathbf{F}^*\underline{\mathbf{m}}_1 \quad \Rightarrow \quad \mathbf{F}^* = \left[\underline{\mathbf{e}}_1^*\right]_{\times}$
 - therefore the canonical fundamental matrix is

$$\mathbf{F}^* \simeq \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

A two-step rectification procedure

- 1. find some pair of primitive rectification homographies $\hat{\mathbf{H}}_1$, $\hat{\mathbf{H}}_2$
- 2. upgrade to a pair of optimal rectification homographies while preserving \mathbf{F}^*

▶ Geometric Interpretation of Linear Rectification

What pair of physical cameras is compatible with F^* ?

- we know that $\mathbf{F} = (\mathbf{Q}_1 \mathbf{Q}_2^{-1})^\top [\underline{\mathbf{e}}_1]_\times$
- we choose $\mathbf{Q}_1^* = \mathbf{K}_1^*$, $\mathbf{Q}_2^* = \mathbf{K}_2^* \mathbf{R}^*$; then

$$(\mathbf{Q}_1^*\mathbf{Q}_2^{*-1})^\top [\underline{\mathbf{e}}_1^*]_\times = (\mathbf{K}_1^*\mathbf{R}^{*\top}\mathbf{K}_2^{*-1})^\top \mathbf{F}^*$$

ullet we look for ${f R}^*$, ${f K}_1^*$, ${f K}_2^*$ compatible with

$$(\mathbf{K}_1^*\mathbf{R}^{*\top}\mathbf{K}_2^{*-1})^{\top}\mathbf{F}^* = \lambda\mathbf{F}^*, \qquad \mathbf{R}^*\mathbf{R}^{*\top} = \mathbf{I}, \qquad \mathbf{K}_1^*, \mathbf{K}_2^* \text{ upper triangular}$$

• we also want \mathbf{b}^* from $\mathbf{e}_1^* \simeq \mathbf{P}_1^* \mathbf{C}_2^* = \mathbf{K}_1^* \mathbf{b}^*$

 \mathbf{b}^* in cam. 1 frame

 \rightarrow 79

result:

$$\mathbf{R}^* = \mathbf{I}, \quad \mathbf{b}^* = \begin{bmatrix} b \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{K}_1^* = \begin{bmatrix} k_{11} & k_{12} & k_{13} \\ 0 & f & v_0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{K}_2^* = \begin{bmatrix} k_{21} & k_{22} & k_{23} \\ 0 & f & v_0 \\ 0 & 0 & 1 \end{bmatrix}$$
(33)

rectified cameras are in canonical relative pose

- · rectified calibration matrices can differ in the first row only
- when K₁* = K₂* then the rectified pair is called the standard stereo pair and the homographies standard rectification homographies
- standard rectification homographies: points at infinity have zero disparity

$$\mathbf{P}_{i}^{*}\mathbf{X}_{\infty} = \mathbf{K} \begin{bmatrix} \mathbf{I} & -\mathbf{C}_{i} \end{bmatrix} \mathbf{X}_{\infty} = \mathbf{K}\mathbf{X}_{\infty} \qquad i = 1, 2$$

this does not mean that the images are not distorted after rectification

not rotated, canonical baseline

▶Primitive Rectification

Goal: Given fundamental matrix ${f F}$, derive some simple rectification homographies ${f H}_1,\,{f H}_2$

- 1. Let the SVD of \mathbf{F} be $\mathbf{U}\mathbf{D}\mathbf{V}^{\top} = \mathbf{F}$, where $\mathbf{D} = \mathrm{diag}(1, d^2, 0)$, $1 \ge d^2 > 0$
- 2. Write **D** as $\mathbf{D} = \mathbf{A}^{\top} \mathbf{F}^* \mathbf{B}$ for some regular **A**, **B**. For instance $(\mathbf{F}^* \text{ is given } \to 156)$

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -d & 0 \\ 1 & 0 & 0 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & d & 0 \end{bmatrix}$$

3. Then

$$\mathbf{F} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top} = \underbrace{\mathbf{U}\mathbf{A}^{\top}}_{\hat{\mathbf{H}}_{2}^{\top}} \mathbf{F}^{*} \underbrace{\mathbf{B}\mathbf{V}^{\top}}_{\hat{\mathbf{H}}_{1}}$$

and the primitive rectification homographies are

$$\hat{\mathbf{H}}_2 = \mathbf{A}\mathbf{U}^{\top}, \qquad \hat{\mathbf{H}}_1 = \mathbf{B}\mathbf{V}^{\top}$$

- \circledast P1; 1pt: derive some other admissible \mathbf{A} , \mathbf{B}
- rectification homographies do exist →156
- there are other primitive rectification homographies, these suggested are just simple to obtain

▶The Set of All Rectification Homographies

Proposition 1 Homographies A_1 and A_2 are rectification-preserving if the images stay rectified, i.e. if $A_2^{-\top} \mathbf{F}^* \mathbf{A}_1^{-1} \simeq \mathbf{F}^*$, which gives

$$\mathbf{A}_{1} = \begin{bmatrix} l_{1} & l_{2} & l_{3} \\ 0 & s_{v} & t_{v} \\ 0 & q & 1 \end{bmatrix}, \qquad \mathbf{A}_{2} = \begin{bmatrix} r_{1} & r_{2} & r_{3} \\ 0 & s_{v} & t_{v} \\ 0 & q & 1 \end{bmatrix}, \qquad v$$

where $s_v \neq 0$, t_v , $l_1 \neq 0$, l_2 , l_3 , $r_1 \neq 0$, r_2 , r_3 , q are $\underline{9}$ free parameters.

	general	transformation	standard
_	l_1 , r_1	horizontal scales	$l_1 = r_1$
	l_2 , r_2	horizontal shears	$l_2 = r_2$
	l_3 , r_3	horizontal shifts	$l_3 = r_3$
	q	common special projective	
	s_v	common vertical scale	
	t_v	common vertical shift	
	9 DoF		9 - 3 = 6 DoF

- q is due to a rotation about the baseline proof: find a rotation G that brings K to upper triangular form via RQ decomposition: $A_1K_1^* = \hat{K}_1G$ and $A_2K_2^* = \hat{K}_2G$
- ullet s_v changes the focal length

The Rectification Group

Corollary for Proposition 1 Let $\bar{\mathbf{H}}_1$ and $\bar{\mathbf{H}}_2$ be (primitive or other) rectification homographies. Then $\mathbf{H}_1 = \mathbf{A}_1\bar{\mathbf{H}}_1$, $\mathbf{H}_2 = \mathbf{A}_2\bar{\mathbf{H}}_2$ are also rectification homographies.

Proposition 2 Pairs of rectification-preserving homographies (A_1, A_2) form a group with group operation $(A'_1, A'_2) \circ (A_1, A_2) = (A'_1 A_1, A'_2 A_2)$.

Proof:

- closure by Proposition 1
- associativity by matrix multiplication
- identity belongs to the set
- inverse element belongs to the set by $\mathbf{A}_2^{\top} \mathbf{F}^* \mathbf{A}_1 \simeq \mathbf{F}^* \Leftrightarrow \mathbf{F}^* \simeq \mathbf{A}_2^{-\top} \mathbf{F}^* \mathbf{A}_1^{-1}$

▶ Primitive Rectification Suffices for Calibrated Cameras

Obs: calibrated cameras: $d=1\Rightarrow\hat{\mathbf{H}}_1$, $\hat{\mathbf{H}}_2$ (\rightarrow 158) are orthonormal

- 1. determine primitive rectification homographies $(\hat{\mathbf{H}}_1, \hat{\mathbf{H}}_2)$ from the essential matrix
- 2. choose a suitable common calibration matrix K, e.g.

$$\mathbf{K} = \begin{bmatrix} f & 0 & u_0 \\ 0 & f & v_0 \\ 0 & 0 & 1 \end{bmatrix}, \quad f = \frac{1}{2}(f^1 + f^2), \quad u_0 = \frac{1}{2}(u_0^1 + u_0^2), \quad \text{etc.}$$

3. the final rectification homographies applied as $\mathbf{P}_i \mapsto \mathbf{H}_i \, \mathbf{P}_i$ are

$$\mathbf{H}_1 = \mathbf{K}\mathbf{\hat{H}}_1\mathbf{K}_1^{-1}, \quad \mathbf{H}_2 = \mathbf{K}\mathbf{\hat{H}}_2\mathbf{K}_2^{-1}$$

• we got a standard stereo pair (\rightarrow 157) and non-negative disparity: let $\mathbf{K}_i^{-1}\mathbf{P}_i = \mathbf{R}_i \begin{bmatrix} \mathbf{I} & -\mathbf{C}_i \end{bmatrix}$, i=1,2 note we started from \mathbf{E}_i not \mathbf{F}_i

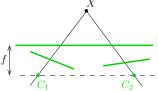
$$\mathbf{H}_1\mathbf{P}_1 = \mathbf{K}\mathbf{\hat{H}}_1\mathbf{K}_1^{-1}\mathbf{P}_1 = \mathbf{K}\underbrace{\mathbf{B}\mathbf{V}^{\top}\mathbf{R}_1}_{\mathbf{R}^*}\begin{bmatrix}\mathbf{I} & -\mathbf{C}_1\end{bmatrix} = \mathbf{K}\mathbf{R}^*\begin{bmatrix}\mathbf{I} & -\mathbf{C}_1\end{bmatrix}$$

$$\mathbf{H}_{2}\mathbf{P}_{2} = \mathbf{K}\hat{\mathbf{H}}_{2}\mathbf{K}_{2}^{-1}\mathbf{P}_{2} = \mathbf{K}\underbrace{\mathbf{A}\mathbf{U}^{\top}\mathbf{R}_{2}}_{\mathbf{R}^{*}}\begin{bmatrix}\mathbf{I} & -\mathbf{C}_{2}\end{bmatrix} = \mathbf{K}\mathbf{R}^{*}\begin{bmatrix}\mathbf{I} & -\mathbf{C}_{2}\end{bmatrix}$$

- one can prove that $\mathbf{B}\mathbf{V}^{\top}\mathbf{R}_1 = \mathbf{A}\mathbf{U}^{\top}\mathbf{R}_2$ with the help of essential matrix decomposition (13)
- points at infinity project by \mathbf{KR}^* in both cameras \Rightarrow they have zero disparity

▶Summary & Remarks: Linear Rectification

standard rectification homographies reproject onto a common image plane parallel to the baseline



 $\rightarrow 155$

 $\rightarrow 157$

 $\rightarrow 157$

 \rightarrow 161

- rectification is done with a pair of homographies (one per image)
 - ⇒ rectified camera centers are equal to the original ones
 - binocular rectification: a 9-parameter family of rectification homographies
 - trinocular rectification: has 9 or 6 free parameters (depending on additional constrains)
- in general, linear rectification is not possible for more than three cameras
 rectified cameras are in canonical orientation
- ⇒ rectified image projection planes are coplanar
- equal rectified calibration matrices give standard rectification
 - ⇒ rectified image projection planes are equal
- primitive rectification is standard in calibrated cameras
- known F used alone does not allow standardization of rectification homographies
- for that we need either of these:
 - 1. projection matrices, or calibrated cameras, or
 - 2. a few points at infinity calibrating k_{1i} , k_{2i} , i=1,2,3 in (33)

Optimal and Non-linear Rectification

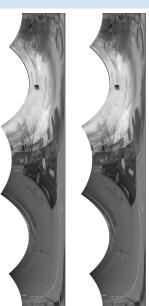
Optimal choice for the free parameters

 by minimization of residual image distortion, eg. [Gluckman & Nayar 2001]

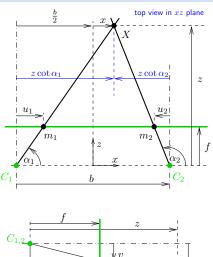
$$\mathbf{A}_{1}^{*} = \arg\min_{\mathbf{A}_{1}} \iint_{\Omega} (\det J(\mathbf{A}_{1}\hat{\mathbf{H}}_{1}\underline{\mathbf{x}}) - 1)^{2} d\mathbf{x}$$

- by minimization of image information loss [Matoušek, ICIG 2004]
- non-linear rectification suitable for forward motion non-parametric: [Pollefeys et al. 1999]
 analytic: [Geyer & Daniilidis 2003]

forward egomotion



►Binocular Disparity in Standard Stereo Pair



Assumptions: single image line, standard camera pair

$$b = z \cot \alpha_1 - z \cot \alpha_2$$

$$u_1 = f \cot \alpha_1$$

$$u_2 = f \cot \alpha_2$$

$$b = \frac{b}{2} + x - z \cot \alpha_2$$

$$X = (x, y, z)$$
 from disparity $d = u_1 - u_2$:

$$z = \frac{bf}{d}$$
, $x = \frac{b}{d} \frac{u_1 + u_2}{2}$, $y = \frac{bv}{d}$

f, d, u, v in pixels, b, x, y, z in meters

Observations

- constant disparity surface is a frontoparallel plane
- distant points have small disparity
- ullet relative error in z is large for small disparity

$$\frac{1}{z}\frac{\mathrm{d}z}{\mathrm{d}d} = -\frac{1}{d}$$

 increasing the baseline or the focal length increases disparity and reduces the error

 $m_{1,2}$

side view in uz plane

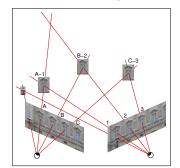
Structural Ambiguity in Stereovision

- suppose we can recognize local matches independently but have no scene model
- lack of an occlusion model
- lack of a continuity model

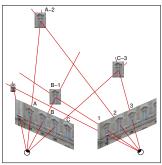
structural ambiguity in the presence of repetitions (or lack of texture)

left image

right image

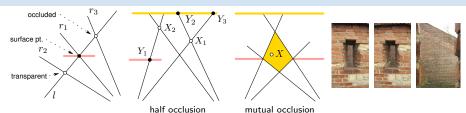


interpretation 1



interpretation 2

▶Understanding Basic Occlusion Types



• surface point at the intersection of rays l and r_1 occludes a world point at the intersection (l,r_3) and implies the world point (l,r_2) is transparent, therefore

$$(l,r_3)$$
 and (l,r_2) are excluded by (l,r_1)

- in half-occlusion, every world point such as X_1 or X_2 is excluded by a binocularly visible surface point such as Y_1 , Y_2 , Y_3 \Rightarrow decisions on correspondences are not independent
- in mutual occlusion this is no longer the case: any X in the yellow zone is not excluded \Rightarrow decisions in the zone are independent on the rest

