3D Computer Vision

Radim Šára Martin Matoušek
Center for Machine Perception
Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz mailto:sara@cmp.felk.cvut.cz phone ext. 7203

rev. October 6, 2020

Open Informatics Master's Course

-Center of Projection (Optical Center)

Observation: finite \mathbf{P} has a non-trivial right null-space

Theorem

Let \mathbf{P} be a camera and let there be $\underline{B} \neq \mathbf{0}$ s.t. $\mathbf{P} \underline{B}=\mathbf{0}$. Then \underline{B} is equivalent to the projection center $\underline{\mathbf{C}}$ (homogeneous, in world coordinate frame).

Proof.

1. Consider spatial line $A B$ (B is given, $A \neq B$). We can write

$$
\underline{\mathbf{X}}(\lambda) \simeq \lambda \underline{\mathbf{A}}+(1-\lambda) \underline{\mathbf{B}}, \quad \lambda \in \mathbb{R}
$$

2. it projects to

$$
\mathbf{P} \underline{\mathbf{X}}(\lambda) \simeq \lambda \mathbf{P} \underline{\mathbf{A}}+(1-\lambda) \mathbf{P} \underline{\mathbf{B}} \simeq \mathbf{P} \underline{\mathbf{A}}=\underline{m}
$$

- the entire line projects to a single point \Rightarrow it must pass through the projection center of \mathbf{P}
- this holds for any choice of $A \neq B \Rightarrow$ the only common point of the lines is the C, i.e. $\underline{B} \simeq \underline{\mathbf{C}}$

Hence

$$
\mathbf{0}=\mathbf{P} \underline{\mathbf{C}}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{l}
\mathbf{C} \\
1
\end{array}\right]=\mathbf{Q} \mathbf{C}+\mathbf{q} \Rightarrow \mathbf{C}=-\mathbf{Q}^{-1} \mathbf{q}
$$

$\underline{\mathbf{C}}=\left(c_{j}\right)$, where $c_{j}=(-1)^{j} \operatorname{det} \mathbf{P}^{(j)}$, in which $\mathbf{P}^{(j)}$ is \mathbf{P} with column j dropped Matlab: C_homo $=$ null (P); or $C=-Q \backslash q$;

-Optical Ray

Optical ray: Spatial line that projects to a single image point.

1. consider the following line
\mathbf{d} unit line direction vector, $\|\mathbf{d}\|=1, \lambda \in \mathbb{R}$, Cartesian representation

$$
\mathbf{X}(\lambda)=\mathbf{C}+\lambda \mathbf{d}
$$

2. the projection of the (finite) point $X(\lambda)$ is

$$
\begin{aligned}
\underline{\mathbf{m}} & \simeq\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{c}
\mathbf{X}(\lambda) \\
1
\end{array}\right]=\mathbf{Q}(\mathbf{C}+\lambda \mathbf{d})+\mathbf{q}=\lambda \mathbf{Q} \mathbf{d}= \\
& =\lambda \underbrace{\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]}_{饣}\left[\begin{array}{c}
\mathbf{d} \\
0
\end{array}\right] \quad Q C+9=\phi
\end{aligned}
$$

\ldots which is also the image of a point at infinity in \mathbb{P}^{3}

- optical ray line corresponding to image point m is the set

$$
\mathbf{X}(\mu)=\mathbf{C}+\mu \mathbf{Q}^{-1} \underline{\mathbf{m}}, \quad \mu \in \mathbb{R} \quad(\mu=1 / \lambda)
$$

- optical ray direction may be represented by a point at infinity $(\mathbf{d}, 0)$ in \mathbb{P}^{3}
- optical ray is expressed in world coordinate frame

-Optical Axis

Optical axis: Optical ray that is perpendicular to image plane π

1. points X on a given line N parallel to π project to a point at infinity $(u, v, 0)$ in π :

$$
\left[\begin{array}{c}
u \\
v \\
\vartheta 1
\end{array}\right] \simeq \mathbf{P} \underline{\mathbf{X}}=\left[\begin{array}{ll}
\mathbf{q}_{1}^{\top} & q_{14} \\
\mathbf{q}_{2}^{\top} & q_{24} \\
\hline \mathbf{q}_{3}^{\top} & q_{34}
\end{array}\right]\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right]
$$

2. therefore the set of points X is parallel to π iff

$$
\mathbf{q}_{3}^{\top} \mathbf{X}+q_{34}=0 \quad x \in \mathbb{R}^{3}
$$

3. this is a plane with $\pm \mathbf{q}_{3}$ as the normal vector
4. optical axis direction: substitution $\mathbf{P} \mapsto \lambda \mathbf{P}$ must not change the direction
5. we select (assuming $\operatorname{det}(\mathbf{R})>0$)

$$
\mu \mathbf{o}=\operatorname{det}(\mathbf{Q}) \mathbf{q}_{3} \quad \mu \neq 0
$$

$$
\text { if } \mathbf{P} \mapsto \lambda \mathbf{P} \text { then } \operatorname{det}(\mathbf{Q}) \mapsto \lambda^{3} \operatorname{det}(\mathbf{Q}) \quad \text { and } \quad \mathbf{q}_{3} \mapsto \lambda \mathbf{q}_{3}
$$

- the axis is expressed in world coordinate frame

-Principal Point

Principal point: The intersection of image plane and the optical axis

1. as we saw, \mathbf{q}_{3} is the directional vector of optical axis
2. we take point at infinity on the optical axis that must project to the principal point m_{0}
3. then

$$
\underline{\mathbf{m}}_{0} \simeq\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{c}
\mathbf{q}_{3} \\
0
\end{array}\right]=\mathbf{Q} \mathbf{q}_{3}
$$

$$
\text { principal point: } \quad \underline{\mathbf{m}}_{0} \simeq \mathbf{Q} \mathbf{q}_{3}
$$

- principal point is also the center of radial distortion

Optical Plane

A spatial plane with normal p containing the projection center C and a given image line n.

$$
\begin{array}{cc}
\text { optical ray given by } m & \mathbf{d} \simeq \mathbf{Q}^{-1} \underline{\mathbf{m}} \\
\text { optical ray given by } m^{\prime} & \mathbf{d}^{\prime} \simeq \mathbf{Q}^{-1} \underline{\mathbf{m}}^{\prime}
\end{array}
$$

$$
\text { hence, } 0=\mathbf{p}^{\top}(\mathbf{X}-\mathbf{C})=\underline{\mathbf{n}}^{\top} \underbrace{\widetilde{\mathbf{Q}(\mathbf{X}-\mathbf{C})}}_{\rightarrow 30}=\left(\mathbf{n}^{\top} \mathbf{P}\right) \underline{\mathbf{X}}=\left(\mathbf{P}^{\top} \underline{\mathbf{n}}\right)^{\top} \underline{\mathbf{X}} \text { for every } X \text { in plane } \rho
$$

optical plane is given by n :

$$
\underline{\rho} \simeq \mathbf{P}^{\top} \underline{n}
$$

$$
\rho_{1} x+\rho_{2} y+\rho_{3} z+\rho_{4}=0
$$

Cross－Check：Optical Ray as Optical Plane Intersection

$\begin{array}{rlrl}\text { optical plane normal given by } n & \mathbf{p} & =\mathbf{Q}^{\top} \underline{\mathbf{n}} \\ \text { optical plane normal given by } n^{\prime} & \mathbf{p}^{\prime} & =\mathbf{Q}^{\top} \underline{\mathbf{n}}\end{array}$
$\mathbf{d}=\mathbf{p} \times \mathbf{p}^{\prime}=\left(\mathbf{Q}^{\top} \underline{\mathbf{n}}\right) \times\left(\mathbf{Q}^{\top} \underline{\mathbf{n}}^{\prime}\right)=\mathbf{Q}^{-1}\left(\underline{\mathbf{n}} \times \underline{\mathbf{n}}^{\prime}\right)=\mathbf{Q}^{-1} \underline{\mathbf{m}}$

Summary: Projection Center; Optical Ray, Axis, Plane

General (finite) camera

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{q}_{1}^{\top} & q_{14} \\
\mathbf{q}_{2}^{\top} & q_{24} \\
\mathbf{q}_{3}^{\top} & q_{34}
\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K} \mathbf{R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]
$$

$$
\begin{aligned}
\underline{\mathbf{C}} & \simeq \operatorname{rnull}(\mathbf{P}), \quad \mathbf{C}=-\mathbf{Q}^{-1} \mathbf{q} \\
\mathbf{d} & =\mathbf{Q}^{-1} \underline{\mathbf{m}} \\
\mathbf{o} & =\operatorname{det}(\mathbf{Q}) \mathbf{q}_{3} \\
\underline{\mathbf{m}}_{0} & \simeq \mathbf{Q} \mathbf{q}_{3}
\end{aligned}
$$

$$
\underline{\rho}=\mathbf{P}^{\top} \underline{\mathbf{n}}
$$

$$
\mathbf{K}=\left[\begin{array}{ccc}
a f & -a f \cot \theta & u_{0} \\
0 & f / \sin \theta & v_{0} \\
0 & 0 & 1
\end{array}\right]
$$

$$
\mathbf{R}
$$

$$
\mathrm{t}
$$

projection center (world coords.) $\rightarrow 35$
optical ray direction (world coords.) $\rightarrow 36$
outward optical axis (world coords.) $\rightarrow 37$ principal point (in image plane) $\rightarrow 38$ optical plane (world coords.) $\rightarrow 39$ camera (calibration) matrix (f, u_{0}, v_{0} in pixels) $\rightarrow 31$ camera rotation matrix (cam coords.) $\rightarrow 30$ camera translation vector (cam coords.) $\rightarrow 30$

What Can We Do with An 'Uncalibrated’ Perspective Camera?

distance between sleepers (ties) 0.806 m but we cannot count them, the image resolution is too low
We will review some life-saving theory...
\ldots. and build a bit of geometric intuition. . .

In fact

- 'uncalibrated' $=$ the image contains a 'calibrating object' that suffices for the task at hand

－Vanishing Point

Vanishing point：the limit of the projection of a point that moves along a space line infinitely in one direction． the image of the point at infinity on the line

$$
\underline{\mathbf{m}}_{\infty} \simeq \lim _{\lambda \rightarrow \pm \infty} \mathbf{P}\left[\begin{array}{c}
\mathbf{X}_{0}+\lambda \mathbf{d} \\
1
\end{array}\right]=\cdots \simeq \mathbf{Q} \mathbf{d}
$$

\circledast P1；1pt：Prove（use Cartesian coordinates and L＇Hôpital＇s rule）
－the V．P．of a spatial line with directional vector \mathbf{d} is $\underline{\mathbf{m}}_{\infty} \simeq \mathbf{Q d}$
－V．P．is independent on line position \mathbf{X}_{0} ，it depends on its directional vector only
－all parallel（world）lines share the same（image）V．P．，including the optical ray defined by m_{∞}

Some Vanishing Point "Applications"

where is the sun?

what is the wind direction?
(must have video)

fly above the lane, at constant altitude!

- Vanishing Line

Vanishing line: The set of vanishing points of all lines in a plane
the image of the line at infinity in the plane and in all parallel planes

- any box with parallel edges
- top (blue) and bottom (black) box planes are parallel, hence they share V.L. n
- V.L. n corresponds to spatial plane of normal vector $\mathbf{p}=\mathbf{Q}^{\top} \underline{\mathbf{n}}$
because this is the normal vector of a parallel optical plane (!) $\rightarrow 39$
- a spatial plane of normal vector \mathbf{p} has a V.L. represented by $\quad \underline{\mathbf{n}}=\mathbf{Q}^{-\top} \mathbf{p}$.

Cross Ratio

Four distinct collinear spatial points R, S, T, U define cross-ratio

$$
\sqrt{[R S T U]} \stackrel{N \|}{\equiv}\left|\frac{|\overrightarrow{R T}|}{|\overrightarrow{S R}|}\right| \frac{|\overrightarrow{U S}|}{|\overrightarrow{T U}|}
$$

$|\overrightarrow{R T}|$ - signed distance from R to T in the arrow direction 6 cross-ratios from four points:

$$
[S R U T]=[R S T U],[R S U T]=\frac{1}{[R S T U]},[R T S U]=1-[R S T U]
$$

Corollaries:

- cross ratio is invariant under homographies $\underline{\mathbf{x}}^{\prime} \simeq \mathbf{H} \underline{\mathbf{x}}$ plug $\mathbf{H} \underline{\mathbf{x}}$ in (1): $\left(\mathbf{H}^{-\top}(\underline{\mathbf{r}} \times \underline{\mathbf{t}})\right)^{\top} \mathbf{H} \underline{\mathbf{v}}$
- cross ratio is invariant under perspective projection: $[R S T U]=[r$ stu]
- 4 collinear points: any perspective camera will "see" the same cross-ratio of their images
- we measure the same cross-ratio in image as on the world line
- one of the points R, S, T, U may be at infinity (we take the limit, in effect $\underbrace{\frac{\infty}{\infty}=1 \text {) }}$

1D Projective Coordinates

The 1-D projective coordinate of a point P is defined by the following cross-ratio:
$\left.[P]=\left[\begin{array}{lll}P_{0} & P_{1} & P\end{array} P_{\infty}\right]=\left[\begin{array}{lll}p_{0} & p_{1} & p\end{array} p_{\infty}\right]=\left\lvert\, \frac{\left|\overrightarrow{p_{0} p}\right|}{\left|\overrightarrow{p_{1} p_{0}}\right|} \frac{\left|\overrightarrow{p_{\infty} p_{1}}\right|}{\left|\overrightarrow{p p_{\infty}}\right|}=1 p\right.\right]$

$$
\begin{aligned}
P_{0}-\text { the origin } & {\left[P_{0}\right] } & =0 \\
P_{1}-\text { the unit point } & {\left[P_{1}\right] } & =1 \\
P_{\infty}-\text { the supporting point } & {\left[P_{\infty}\right] } & = \pm \infty
\end{aligned}
$$

$$
[P]=[p]
$$

$[P]$ is equal to Euclidean coordinate along N
$[p]$ is its measurement in the image plane

Applications

- Given the image of a 3D line N, the origin, the unit point, and the vanishing point, then the Euclidean coordinate of any point $P \in N$ can be determined
- Finding v.p. of a line through a regular object

Application: Counting Steps

- Namesti Miru underground station in Prague

detail around the vanishing point

Result: $[P]=214$ steps (correct answer is 216 steps)
4Mpx camera

Application：Finding the Horizon from Repetitions

in 3D：$\left|P_{0} P\right|=2\left|P_{0} P_{1}\right|$ then
［H\＆Z，p．218］

$$
\left[P_{0} P_{1} P P_{\infty}\right]=\frac{\left|P_{0} P\right|}{\left|P_{1} P_{0}\right|}=2 \quad \Rightarrow \quad x_{\infty}=\frac{x_{0}\left(2 x-x_{1}\right)-x x_{1}}{x+x_{0}-2 x_{1}} \quad P_{\& \rho}
$$

－$x-1 \mathrm{D}$ coordinate along the yellow line，positive in the arrow direction
－could be applied to counting steps $(\rightarrow 48)$ if there was no supporting line
$\circledast \mathrm{P} 1 ; 1$ pt：How high is the camera above the floor？

Homework Problem

$\circledast \mathrm{H} 2$; 3pt: What is the ratio of heights of Building A to Building B ?

- expected: conceptual solution; use notation from this figure
- deadline: LD+2 weeks

Hints

1. What are the interesting properties of line h connecting the top t_{B} of Buiding B with the point m at which the horizon intersects the line p joining the foots f_{A}, f_{B} of both buildings? [1 point]
2. How do we actually get the horizon n_{∞} ? (we do not see it directly, there are some hills there...) [1 point]
3. Give the formula for measuring the length ratio. [formula $=1$ point]

2D Projective Coordinates

Application: Measuring on the Floor (Wall, etc)

- measuring distances on the floor in terms of tile units
- what are the dimensions of the seal? Is it circular (assuming square tiles)?
- needs no explicit camera calibration
because we can see the calibrating object (vanishing points)

Thank You

