
Architecture and Design

Petr Křemen, Martin Ledvinka

petr.kremen@fel.cvut.cz

Winter Term 2020

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 1 / 47



Contents

1 Why?

2 Software Architecture

3 Architectural Styles
Layered Architecture

4 Design Patterns
GoF Design Patterns
Enterprise Design Patterns
Other Useful Patterns

5 Conclusions

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 2 / 47



Architecture Design

Changes slowly

Speaks about Components

Says how components connect
and interact with others

Rapid change through
refactoring

Speaks about Classes

Solves recurrent
implementation problems

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 3 / 47



Acronyms ...

YAGNI likes a DRY KISS

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 4 / 47



Some buzzwords and acronyms for today

YAGNI You aren’t gonna need
it

KISS Keep it simple, stupid

DRY Don’t repeat yourself

IoC Inversion of Control

DI Dependency injection

DAO Data Access Object

MVC Model View Controller

Software architecture patterns

Design patterns

Separation of concerns

Hollywood principle

Encapsulation

High cohesion, loose coupling

Don’t talk to strangers
(Demeter’s law)

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 5 / 47



SOLID

Single-responsibility A class/component should take care of and
encapsulate a single state and functionality.

Open–closed principle A class/component should be open for extension,
but closed for modification.

Liskov substitution principle Instances of a class should be replaceable
with instances of its subclasses without altering the
correctness of that program.

Interface segregation principle Many client-specific interfaces are better
than one general-purpose interface.

Dependency inversion principle One should depend upon abstractions
(interfaces), not implementations.

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 6 / 47



Why?

Why?

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 7 / 47



Why?

Why should we think about architecture/design?
Development Adding new features into a mess is more difficult (and

is more likely to end-up as more mess)
Debugging is easier for a well-designed application
Accommodating new requirements is easier for a
well-designed application

Maintenance More resources are spent on maintenance than
development

Figure: Resource:
http://clarityincode.com/software-maintenance/

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 8 / 47

http://clarityincode.com/software-maintenance/


Why?

Why should we think about architecture/design?

Documentation Developers tend to change jobs often (1.5 - 3 years
[1])
Newcomers need to get up to speed quickly

Efficiency Clean code is usually more efficient than messy code

Error prevention Clean code is less prone to bugs

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 9 / 47



Why?

Why architectural styles/design patterns?

Proven best practice solutions

Means of communication

Documentation
Communication between developers

Improve code structure

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 10 / 47



Software Architecture

Software Architecture

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 11 / 47



Software Architecture

What is a software architecture?

The software architecture of a program or computing system is
the structure or structures of the system, which comprise software
elements, the externally visible properties of those elements, and
the relationships among them. Architecture is concerned with the
public side of interfaces; private details of elements—details having
to do solely with internal implementation– are not architectural.

Bass, Clements, and Kazman Software Architecture in Practice (2nd
edition)

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 12 / 47



Software Architecture

Software architecture

Architecture describes the overall structure of a software system. Good
architecture enables smooth evolution of the system, taking into account

Deployment environment

Platform and technology specifics

Expected system scope

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 13 / 47



Software Architecture

Architecture design principles

Standard design principles also apply to system-wide architecture

Separation of concerns

Single responsibility principle

Law of Demeter

Don’t repeat yourself

Before you design the system architecture, you need to

Determine application type

Determine deployment strategy and environment

Determine technologies to use

Determine quality attributes

Determine cross-cutting concerns

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 14 / 47



Software Architecture

Architecture example

Figure: System architecture example. Source:
https://msdn.microsoft.com/en-us/library/ee658124.aspx

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 15 / 47

https://msdn.microsoft.com/en-us/library/ee658124.aspx


Software Architecture

System architecture

Usually consists of multiple architectural styles

Should be well understood by the team

Should be documented (diagrams, pictures, notes)

Should clearly expose system structure, while hiding implementation
details

I.e. show where stuff happens, but not how

Should address all user scenarios (eventually)

Should handle both functional and non-functional requirements

Evolves as the software grows

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 16 / 47



Architectural Styles

Architectural Styles

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 17 / 47



Architectural Styles

Architectural styles

There exist plenty of architectural styles

They are usually combined in an application

Different styles are suitable for different scenarios

Various ways of architectural style classification

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 18 / 47



Architectural Styles

Architectural styles - Communication

Service-Oriented Architecture

Distributed applications provide services for each other

Using standard protocols and data formats (REST – HTTP and
JSON/XML)

Loose coupling, easy implementation switch

Microservices

Figure: SOA system example.

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 19 / 47



Architectural Styles

Architectural styles - Communication II

Message Bus

Central message queue handles message distribution

Asynchronous messages between clients

Loose coupling, scalability

Enterprise Service Bus – provided by Oracle, IBM etc.

Figure: ESB architecture. Source: https://docs.oracle.com/cd/
E23943_01/doc.1111/e15020/img/esb_architecture.gif

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 20 / 47

https://docs.oracle.com/cd/E23943_01/doc.1111/e15020/img/esb_architecture.gif
https://docs.oracle.com/cd/E23943_01/doc.1111/e15020/img/esb_architecture.gif


Architectural Styles

Architectural styles - Deployment

Client/Server

Client sends requests, server responds

Web applications use this pattern

Server – possible single point of failures and scalability issues

N(3)-tier

Independent tiers providing functionality

Easier scaling

E.g. load balancing, company firewall

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 21 / 47



Architectural Styles

Architectural styles - Domain

Domain-driven Design

Business components represent domain entities

Suitable for modelling complex domains

Common language and model for developers and domain experts

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 22 / 47



Architectural Styles

Architectural styles - Structure

Object-oriented

Objects consist of both behaviour and data

Natural representation of the real world

Encapsulation of implementation details

Layered

More on layers later...

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 23 / 47



Architectural Styles

Architectural styles - Structure II

Component-based

System decomposed into logical or functional components

Components provide public interfaces

Supports separation of concerns and encapsulation

Components can be managed by architecture provider

Dependency injection and Service locator used to managed
dependencies

Components can be distributed

Higher level than OOP

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 24 / 47



Architectural Styles Layered Architecture

Layered architecture

Layers of related functionality

Typical for web applications

Behaviour encapsulation, clear
separation of concerns, high
cohesion, loose coupling

Testability

Figure: Layered system
architecture.

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 25 / 47



Architectural Styles Layered Architecture

Layered architecture II

In contrast to N-tier architecture, the layers are usually in one process
(e.g. application server)

Each component communicates only with other components within
the same layer or in the layer(s) below it

Strict interaction Layer communicates only with the layer directly
below

Loose interaction Layer can communicate also with layers deeper
below

Cross-cutting concerns stem across all layers (e.g. security, logging)

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 26 / 47



Design Patterns

Design Patterns

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 27 / 47



Design Patterns

Design patterns

Design patterns represent generally applicable solutions to commonly
occurring problems.

Patterns mostly consist of (this was cemented by the GoF):

Pattern name Simple identification useful in communication

Problem Description of the problem and its context

Solution Solution of the problem (good practice)

Consequences Possible trade-offs of applying the pattern

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 28 / 47



Design Patterns GoF Design Patterns

Gang of Four Patterns

Based on the book Design Patterns: Elements of Reusable
Object-Oriented Software.

Bible of design patterns

Patterns applicable to all kinds of object-oriented software

creational
structural
behavioural

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 29 / 47



Design Patterns GoF Design Patterns

Creational Patterns

Abstract Factory Interface for creating families of related objects

Builder Instance construction process in a separate object

Factory Method Subclasses decide which class to instantiate

Prototype Build instances based on a prototype

Singleton Only one instance of the class

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 30 / 47



Design Patterns GoF Design Patterns

Structural Patterns

Adapter Convert the interface of one class to a different interface
using an adapter (e.g., for legacy classes)

Bridge Decouple abstraction from implementation

Composite Build a tree-like structure of objects

Decorator Add or alter behaviour of another object by wrapping it in a
class with the same interface (e.g., Java I/O streams)

Facade Provide a unified interface to a set of interfaces

Flyweight Use sharing to support a large number of fine-grained objects

Proxy Provide a placeholder for another object to control access to
it (e.g. Spring bean proxies)

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 31 / 47



Design Patterns GoF Design Patterns

Decorator

Decorator in Java I/O

BufferedReader in = new BufferedReader(new FileReader(new
File("input.txt")));

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 32 / 47



Design Patterns GoF Design Patterns

Behavioral Patterns

Chain of Responsibility Multiple objects in a chain can handle a request
(e.g., request filters)

Command Encapsulate a request in an object (e.g., undo functionality)

Interpreter Interpreter for a language and its grammar

Iterator Provide a way to access elements of an aggregate object
(e.g., Java collections)
Iterator<String> it = set.iterator();

Mediator An object that encapsulates how a set of objects interact

Memento Capture an object’s state so that it can be restored to this
state later

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 33 / 47



Design Patterns GoF Design Patterns

Behavioral Patterns II

Observer Decoupled notification of changes of object’s state

State Allows object’s behaviour to change based on its internal
state

Strategy A family of algorithms which can be interchanged
independently of the client

Template method Define a skeleton of an algorithm and let subclasses fill
in the details

Visitor Represent an operation to be performed on the elements of
an object structure

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 34 / 47



Design Patterns Enterprise Design Patterns

Enterprise Design Patterns

Mostly based on the book Patterns of Enterprise Application Architecture.

Design patterns used especially in enterprise software

Similarly to GoF design patterns, they originate from best practice
solutions to common problems, but this time in enterprise application
development

Many are implemented by frameworks and tools we will use (e.g.,
JPA, Spring)

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 35 / 47



Design Patterns Enterprise Design Patterns

PEAA

Data Transfer Object (DTO)

Object that carries data between processes in order to reduce the
number of calls

Useful, e.g., when JPA entities are not the best way of carrying data
between REST interfaces

Lazy Load

Object does not contain all of its data initially, but knows how to load
it

Useful for objects holding large amounts of data (e.g., binary data)

Often overused as a way of premature optimization

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 36 / 47



Design Patterns Enterprise Design Patterns

Lazy Load Antipattern

public final class Singleton {

private static singleton = null;

private Singleton () {}

public static Singleton getInstance() {
if(singleton == null) {

singleton = new Singleton();
}
return singleton;

}
}

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 37 / 47



Design Patterns Enterprise Design Patterns

PEAA II

Model View Controller (MVC)

Splits user interface interaction into three distinct roles

Decouples UI rendering from data and UI logic

UI implementation interchangeable

Unit Of Work

Maintains objects affected by a business transaction and coordinates
the writing out of changes and the resolution of concurrency problems

Common in JPA implementations (e.g., Eclipselink)

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 38 / 47



Design Patterns Other Useful Patterns

Data Access Object (DAO)

Data access object encapsulates all access to the data source

Abstract interface hides all the details of data source access (data
source can be a RDBMS, an external service, a linked data repository)

Figure: Common Data access object hierarchy.

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 39 / 47



Design Patterns Other Useful Patterns

Inversion of Control (IoC)

Most common when working with frameworks

The framework takes control of what and when gets instantiated and
called

The framework embodies some abstract design and we provide
behaviour in various places

Especially important in applications which react to client actions

Where the client can be a different application
Or a person using your application’s UI

aka The Hollywood Principle – “Don’t call us. We’ll call you.”

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 40 / 47



Design Patterns Other Useful Patterns

IoC II

Figure: Inversion of Control in a Spring application.

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 41 / 47



Design Patterns Other Useful Patterns

Dependency Injection

An assembler takes care of populating a field in a class with an
appropriate implementation for the target interface

Enables the application to use loosely coupled components with
interchangeable implementations

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 42 / 47



Design Patterns Other Useful Patterns

Dependency Injection II

Figure: Dependency injection principle.

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 43 / 47



Conclusions

Conclusions

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 44 / 47



Conclusions

Conclusions

Application design does matter

Architecture consists of multiple architectural styles

Design patterns are more fine grained than architectural styles

Web applications usually follow the layered style

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 45 / 47



Conclusions

The End

Thank You

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 46 / 47



Conclusions

Resources

http://w3sdesign.com/
https://hackerlife.co/blog/
san-francisco-large-corporation-employee-tenure

E. Gamma, R. Johnson, R. Helm, J. Vlissides: Design Patterns: Elements of
Reusable Object-Oriented Software

M. Fowler: Patterns of Enterprise Application Architecture

E. Evans: Domain Driven Design: Tackling Complexity in the Heart of Software

Lectures of Tomáš Černý – A7B36ASS

https://msdn.microsoft.com/en-us/library/ee658098.aspx

https:
//www.petrikainulainen.net/software-development/design/
understanding-spring-web-application-architecture-the-classic-way

https://sv.wikipedia.org/wiki/Model-View-Controller#/media/
Fil:ModelViewControllerDiagram2.svg

Petr Křemen, Martin Ledvinka (petr.kremen@fel.cvut.cz)Architecture and Design Winter Term 2020 47 / 47

http://w3sdesign.com/
https://hackerlife.co/blog/san-francisco-large-corporation-employee-tenure
https://hackerlife.co/blog/san-francisco-large-corporation-employee-tenure
https://msdn.microsoft.com/en-us/library/ee658098.aspx
https://www.petrikainulainen.net/software-development/design/understanding-spring-web-application-architecture-the-classic-way
https://www.petrikainulainen.net/software-development/design/understanding-spring-web-application-architecture-the-classic-way
https://www.petrikainulainen.net/software-development/design/understanding-spring-web-application-architecture-the-classic-way
https://sv.wikipedia.org/wiki/Model-View-Controller#/media/Fil:ModelViewControllerDiagram2.svg
https://sv.wikipedia.org/wiki/Model-View-Controller#/media/Fil:ModelViewControllerDiagram2.svg

	Why?
	Software Architecture
	Architectural Styles
	Layered Architecture

	Design Patterns
	GoF Design Patterns
	Enterprise Design Patterns
	Other Useful Patterns

	Conclusions

