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the notation introduced above, we are getting a version of the generalized
Laplace expansion of the determinant [9, 10]

|A| “
ÿ

ωPΩ

¨

˝

ź

iPrks, jPrk`1,ns

sgnpϕωp jq ´ ϕωpiqq

˛

‚|Aε,ϕω |
ˇ

ˇ

ˇAρ,ϕωpρq
ˇ

ˇ

ˇ (1.35)

1.3 Vector product

Let us look at an interesting mapping from R3 ˆ R3 to R3, the vector
product in R3 [4] (which it also often called the cross product [2]). Vector
product has interesting geometrical properties but we shall motivate it by
its connection to systems of linear equations.

§1 Vector product Assume two linearly independent coordinate vec-
tors
%x “

“

x1 x2 x3
‰J

and %y “
“

y1 y2 y3
‰J

inR3. The following system of
linear equations

„

x1 x2 x3

y1 y2 y3



%z “ 0 (1.36)

has a one-dimensional subspace V of solutions in R3. The solutions can
be written as multiples of one non-zero vector %w, the basis of V, i.e.

%z “ λ %w, λ P R (1.37)

Let us see how we can construct %w in a convenient way from vectors %x, %y.
Consider determinants of two matrices constructed from the matrix of

the system (1.36) by adjoining its first, resp. second, row to the matrix of
the system (1.36)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

x1 x2 x3

y1 y2 y3

x1 x2 x3

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

x1 x2 x3

y1 y2 y3

y1 y2 y3

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0 (1.38)
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which gives

x1 px2 y3 ´ x3 y2q ` x2 px3 y1 ´ x1 y3q ` x3 px1 y2 ´ x2 y1q “ 0(1.39)

y1 px2 y3 ´ x3 y2q ` y2 px3 y1 ´ x1 y3q ` y3 px1 y2 ´ x2 y1q “ 0(1.40)

and can be rewritten as

„

x1 x2 x3

y1 y2 y3



»

–

x2 y3 ´ x3 y2

´x1 y3 ` x3 y1

x1 y2 ´ x2 y1

fi

fl “ 0 (1.41)

We see that vector

%w “

»

–

x2 y3 ´ x3 y2

´x1 y3 ` x3 y1

x1 y2 ´ x2 y1

fi

fl (1.42)

solves Equation 1.36.
Notice that elements of %w are the three two by two minors of the matrix

of the system (1.36). The rank of the matrix is two, which means that at
least one of the minors is non-zero, and hence %w is also non-zero. We see
that %w is a basic vector of V. Formula 1.42 is known as the vector product
in R3 and %w is also often denoted by %x ˆ %y.

§2 Vector product under the change of basis Let us next study the
behavior of the vector product under the change of basis in R3. Let
us have two bases β, β 1 in R3 and two vectors %x, %y with coordinates

%xβ “
“

x1 x2 x3
‰J

, %yβ “
“

y1 y2 y3
‰J

and %xβ 1 “
“

x 1
1 x 1

2 x 1
3

‰J
, %yβ “

“

y 1
1 y 1

2 y 1
3

‰J
. We introduce

%xβ ˆ %yβ “

»

–

x2 y3 ´ x3 y2

´x1 y3 ` x3 y1

x1 y2 ´ x2 y1

fi

fl %xβ 1 ˆ %yβ 1 “

»

–

x 1
2y 1

3 ´ x 1
3y 1

2
´x 1

1y 1
3 ` x 1

3y 1
1

x 1
1y 1

2 ´ x 1
2y 1

1

fi

fl (1.43)
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To find the relationship between%xβˆ%yβ and%xβ 1 ˆ%yβ 1 , we will use the follow-

ing fact. For every three vectors %x “
“

x1 x2 x3
‰J

, %y “
“

y1 y2 y3
‰J

,

%z “
“

z1 z2 z3
‰J

in R3 there holds

%zJp%x ˆ %yq “
“

z1 z2 z3
‰

»

–

x2 y3 ´ x3 y2

´x1 y3 ` x3 y1

x1 y2 ´ x2 y1

fi

fl “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

x1 x2 x3

y1 y2 y3

z1 z2 z3

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

%xJ

%yJ

%zJ

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(1.44)

We can write

%xβ 1 ˆ %yβ 1 “

»

–

r1 0 0s p%xβ 1 ˆ %yβ 1q
r0 1 0s p%xβ 1 ˆ %yβ 1q
r0 0 1s p%xβ 1 ˆ %yβ 1q

fi

fl “

»

—

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

%xJ
β 1

%yJ
β 1

1 0 0

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

%xJ
β 1

%yJ
β 1

0 1 0

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

%xJ
β 1

%yJ
β 1

0 0 1

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

ffi

fl

J

“

»

—

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

%xJ
β A

J

%yJ
β A

J

1 0 0

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

%xJ
β A

J

%yJ
β A

J

0 1 0

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

%xJ
β A

J

%yJ
β A

J

0 0 1

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

ffi

fl

J

“

»

—

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

%xJ
β

%yJ
β

r1 0 0s A´J

fi

ffi

fl
AJ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

%xJ
β

%yJ
β

r0 1 0s A´J

fi

ffi

fl
AJ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

%xJ
β

%yJ
β

r0 0 1s A´J

fi

ffi

fl
AJ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

ffi

fl

J

“

»

–

r1 0 0s A´Jp%xβ ˆ %yβq
r0 1 0s A´Jp%xβ ˆ %yβq
r0 0 1s A´Jp%xβ ˆ %yβq

fi

fl

ˇ

ˇAJ
ˇ

ˇ

“
A´J

|A´J|
p%xβ ˆ %yβq (1.45)

§3 Vector product as a linear mapping It is interesting to see that for
all %x, %y P R3 there holds

%x ˆ %y “

»

–

x2 y3 ´ x3 y2

´x1 y3 ` x3 y1

x1 y2 ´ x2 y1

fi

fl “

»

–

0 ´x3 x2

x3 0 ´x1

´x2 x1 0

fi

fl

»

–

y1

y2

y3

fi

fl (1.46)
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and thus we can introduce matrix

r%xsˆ “

»

–

0 ´x3 x2

x3 0 ´x1

´x2 x1 0

fi

fl (1.47)

and write
%x ˆ %y “ r%xsˆ %y (1.48)

Notice also that r%xsJ
ˆ “ ´ r%xsˆ and therefore

p%x ˆ %yqJ “ pr%xsˆ %yqJ “ ´%yJ r%xsˆ (1.49)

The result of § 2 can also be written in the formalism of this paragraph.
We can write for every %x, %y P R3

“

A %xβ
‰

ˆ
A %yβ “ pA %xβq ˆ pA %yβq “

A´J

|A´J|
p%xβ ˆ %yβq “

A´J

|A´J|
“

%xβ
‰

ˆ
%yβ (1.50)

and hence we get for every %x P R3

“

A %xβ
‰

ˆ
A “

A´J

|A´J|
“

%xβ
‰

ˆ
(1.51)

1.4 Dual space and dual basis

Let us start with a three-dimensional linear space L over scalars S and
consider the set L‹ of all linear functions f : L Ñ S, i.e. the functions on L
for which the following holds true

f pa %x ` b %yq “ a f p%xq ` b f p%yq (1.52)

for all a, b P S and all %x, %y P L.
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Let us next define the addition `‹ : L‹ ˆ L‹ Ñ L‹ of linear functions
f , g P L‹ and the multiplication ¨‹ : S ˆ L‹ Ñ L‹ of a linear function f P L‹

by a scalar a P S such that

p f `‹ gqp%xq “ f p%xq ` gp%xq (1.53)

pa ¨‹ f qp%xq “ a f p%xq (1.54)

holds true for all a P S and for all %x P L. One can verify that pL‹,`‹, ¨‹q
over pS,`, q is itself a linear space [1, 4, 3]. It makes therefore a good sense

to use arrows above symbols for linear functions, e.g. %f instead of f .
The linear space L‹ is derived from, and naturally connected to, the

linear space L and hence deserves a special name. Linear space L‹ is
called [1] the dual (linear) space to L.

Now, consider a basis β “ r%b1,%b2,%b3s of L. We will construct a basis β‹ of
L‹, in a certain natural and useful way. Let us take three linear functions
%b‹

1,
%b‹

2,
%b‹

3 P L‹ such that

%b‹
1p%b1q “ 1 %b‹

1p%b2q “ 0 %b‹
1p%b3q “ 0

%b‹
2p%b1q “ 0 %b‹

2p%b2q “ 1 %b‹
2p%b3q “ 0

%b‹
3p%b1q “ 0 %b‹

3p%b2q “ 0 %b‹
3p%b3q “ 1

(1.55)

where 0 and 1 are the zero and the unit element of S, respectively. First
of all, one has to verify [1] that such an assignment is possible with linear

functions over L. Secondly one can show [1] that functions %b‹
1,
%b‹

2,
%b‹

3 are
determined by this assignment uniquely on all vectors of L. Finally, one

can observe [1] that the triple β‹ “ r%b‹
1,
%b‹

2,
%b‹

3s forms an (ordered) basis of
%L. The basis β‹ is called the dual basis of L‹, i.e. it is the basis of L‹, which
is related in a special (dual) way to the basis β of L.

§1 Evaluating linear functions Consider a vector %x P L with coordi-

nates %xβ “ rx1, x2, x3sJ w.r.t. a basis β “ r%b1,%b2,%b3s and a linear function %h P
13
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L‹ with coordinates %hβ‹ “ rh1, h2, h3sJ w.r.t. the dual basis β‹ “ r%b‹
1,
%b‹

2,
%b‹

3s.
The value %hp%xq P S is obtained from the coordinates %xβ and %hβ‹ as

%hp%xq “ %hpx1
%b1 ` x2

%b2 ` x3
%b3q (1.56)

“ ph1
%b‹

1 ` h2
%b‹

2 ` h3
%b‹

3qpx1
%b1 ` x2

%b2 ` x3
%b3q (1.57)

“ h1
%b‹

1p%b1q x1 ` h1
%b‹

1p%b2q x2 ` h1
%b‹

1p%b3q x3

`h2
%b‹

2p%b1q x1 ` h2
%b‹

2p%b2q x2 ` h2
%b‹

2p%b3q x3 (1.58)

`h3
%b‹

3p%b1q x1 ` h3
%b‹

3p%b2q x2 ` h3
%b‹

3p%b3q x3

“
“

h1 h2 h3
‰

»

—

–

%b‹
1p%b1q %b‹

1p%b2q %b‹
1p%b3q

%b‹
2p%b1q %b‹

2p%b2q %b‹
2p%b3q

%b‹
3p%b1q %b‹

3p%b2q %b‹
3p%b3q

fi

ffi

fl

»

–

x1

x2

x3

fi

fl (1.59)

“
“

h1 h2 h3
‰

»

–

1 0 0
0 1 0
0 0 1

fi

fl

»

–

x1

x2

x3

fi

fl (1.60)

“
“

h1, h2, h3
‰

»

–

x1

x2

x3

fi

fl (1.61)

“ %h
J

β‹ %xβ (1.62)

The value of%h P L‹ on %x P L is obtained by multiplying %xβ by the transpose

of %hβ‹ from the left.
Notice that the middle matrix on the right in Equation 1.59 evaluates

into the identity. This is the consequence of using the pair of a basis and
its dual basis. The formula 1.62 can be generalized to the situation when
bases are not dual by evaluating the middle matrix accordingly. In general

%hp%xq “ %hJ

β̄
r%̄bip%bjqs %xβ (1.63)

14
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where matrix r%̄bip%bjqs is constructed from the respective bases β, β̄ of L and
L‹.

§2 Changing the basis in a linear space and in its dual Let us now
look at what happens with coordinates of vectors of L‹ when passing from
the dual basis β‹ to the dual basis β 1‹ induced by passing from a basis β

to a basis β 1 in L. Consider vector %x P L and a linear function %h P L‹ and

their coordinates %xβ, %xβ 1 and %hβ‹ , %hβ 1‹ w.r.t. the respective bases. Introduce
further matrix A transforming coordinates of vectors in L as

%xβ 1 “ A %xβ (1.64)

when passing from β to β 1.
Basis β‹ is the dual basis to β and basis β 1‹ is the dual basis to β 1 and

therefore
%h

J

β‹ %xβ “ %hp%xq “ %hJ

β 1‹ %xβ 1 (1.65)

for all %x P L and all %h P L‹. Hence

%h
J

β‹ %xβ “ %hJ

β 1‹ A %xβ (1.66)

for all %x P L and therefore
%h

J

β‹ “ %hJ

β 1‹ A (1.67)

or equivalently
%hβ‹ “ AJ%hβ 1‹ (1.68)

Let us now see what is the meaning of the rows of matrix A. It becomes
clear from Equation 1.67 that the columns of matrix AJ can be viewed as

vectors of coordinates of basic vectors of β 1‹ “ r%b 1
1

‹,%b 1
2

‹,%b 1
3

‹s in the basis

15
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β‹ “ r%b‹
1,
%b‹

2,
%b‹

3s and therefore

A “

»

—

—

–

%b 1
1

‹
β‹

J

%b 1
2

‹
β‹

J

%b 1
3

‹
β‹

J

fi

ffi

ffi

fl

(1.69)

which means that the rows of A are coordinates of the dual basis of the
primed dual space in the dual basis of the non-primed dual space.

Finally notice that we can also write

%hβ 1‹ “ A´J%hβ‹ (1.70)

which is formally identical with Equation 1.15.

§3 When do coordinates transform the same way in a basis and in
its dual basis It is natural to ask when it happens that the coordinates
of linear functions in L‹ w.r.t. the dual basis β‹ transform the same way as
the coordinates of vectors of L w.r.t. the original basis β, i.e.

%xβ 1 “ A %xβ (1.71)

%hβ 1‹ “ A%hβ‹ (1.72)

for all %x P L and all %h P L‹. Considering Equation 1.70, we get

A “ A´J (1.73)

AJA “ I (1.74)

Notice that this is, for instance, satisfied when A is a rotation [2]. In such
a case, one often does not anymore distinguish between vectors of L and
L‹ because they behave the same way and it is hence possible to represent
linear functions from L‹ by vectors of L.
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§4 Coordinates of the basis dual to a general basis We denote the
standard basis inR3 by σ and its dual (standard) basis inR3‹

by σ‹. Now,
we can further establish another basis γ “

“

%c1 %c2 %c3
‰

in R3 and its dual

basis γ‹ “
“

%c ‹
1
%c ‹

2
%c ‹

3

‰

in R3‹
. We would like to find the coordinates

γ‹
σ‹ “

“

%c ‹
1σ‹ %c ‹

2σ‹ %c ‹
3σ‹

‰

of vectors of γ‹ w.r.t. σ‹ as a function of coordi-

nates γσ “
“

%c1σ %c2σ %c3σ
‰

of vectors of γw.r.t. σ.
Considering Equations 1.55 and 1.62, we are getting

%ci
‹
σ‹
J
%cjσ “

"

1 if i “ j
0 if i ‰ j

for i, j “ 1, 2, 3 (1.75)

which can be rewritten in a matrix form as
»

–

1 0 0
0 1 0
0 0 1

fi

fl “

»

—

–

%c1
‹
σ‹
J

%c2
‹
σ‹
J

%c3
‹
σ‹
J

fi

ffi

fl

“

%c1σ %c2σ %c3σ
‰

“ γ‹
σ‹
J γσ (1.76)

and therefore
γ‹
σ‹ “ γ´J

σ (1.77)

§5 Remark on higher dimensions We have introduced the dual space
and the dual basis in a three-dimensional linear space. The definition of
the dual space is exactly the same for any linear space. The definition of
the dual basis is the same for all finite-dimensional linear spaces [1]. For
any n-dimensional linear space L and its basis β, we get the corresponding
n-dimensional dual space L‹ with the dual basis β‹.

1.5 Operations with matrices

Matrices are a powerful tool which can be used in many ways. Here
we review a few useful rules for matrix manipulation. The rules are
often studied in multi-linear algebra and tensor calculus. We shall not

17
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Notice, that in the real projective plane there is exactly one point incident to
two distinct lines.

This is not true in an affine plane because there are (parallel) lines that
have no point in common!

2.3 Line coordinates under homography

Let us now investigate the behavior of homogeneous coordinates of lines
in projective plane mapped by a homography.

Let us have two points represented by vectors %xβ, %yβ. We now map
the points, represented by vectors %xβ, %yβ, by a homography, represented
by matrix H, to points represented by vectors %x 1

β 1 , %y 1
β 1 such that there are

λ1,λ2 P R,λ1λ2 ‰ 0

λ1 %x
1
β 1 “ H %xβ (2.27)

λ2 %y 1
β 1 “ H %yβ (2.28)

Homogeneous coordinates %pβ̄ of the line passing through points repre-

sented by %xβ, %yβ̄ and homogeneous coordinates %p 1
β̄ 1 of the line passing

through points represented by %x 1
β 1 , %y 1

β 1 are obtained by solving the linear
systems

%pJ
β̄
%xβ “ 0 and %p 1

β̄ 1

J
%x 1
β 1 “ 0 (2.29)

%pJ
β̄
%yβ “ 0 %p 1

β̄ 1

J
%y 1
β 1 “ 0 (2.30)

for a non-trivial solutions. Writing down the incidence of points and lines,
we get

λ1 %p
J
β̄ H

´1 %x 1
β 1 “ 0 ô %pJ

β̄ H
´1 %x 1

β 1 “ 0

λ2 %pJ
β̄ H

´1 %y 1
β 1 “ 0 ô %pJ

β̄ H
´1 %y 1

β 1 “ 0
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We see that %p 1
β̄ 1 and H´J%pβ̄ are solutions of the same set of homogeneous

equations. When %xβ, %yβ are independent, then there is λ P R such that

λ%p 1
β̄ 1 “ H´J%pβ̄ (2.31)

since the solution space is one-dimensional. Equation 2.31 gives the rela-
tionship between homogeneous coordinates of a line and its image under
homography H.

2.3.1 Join under homography

Let us go one step further and establish formulas connecting line coordi-
nates constructed by vector products. Construct joins as

%pβ̄ “ %xβ ˆ %yβ and %p 1
β̄ 1 “ %x 1

β 1 ˆ %y 1
β 1 (2.32)

and use Equation 1.45 to get

%xβ 1 ˆ %yβ 1 “
H´J

|H´J|
p%xβ ˆ %yβq (2.33)

pλ1 %x
1
β 1q ˆ pλ2 %y 1

β 1q “
H´J

|H´J|
p%xβ ˆ %yβq (2.34)

%x 1
β 1 ˆ %y 1

β 1 “
H´J

λ1 λ2 |H´J|
p%xβ ˆ %yβq (2.35)

%p 1
β̄ 1 “

H´J

λ1 λ2 |H´J|
%pβ̄ (2.36)

2.3.2 Meet under homography

Let us next look at the meet. Let point %x be the meet of lines %p and %q
with line cordinates %pβ̄, %qβ̄, which are related by a homography H to line

45



T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-4-26 (pajdla@cvut.cz)

coordinates %p 1
β̄ 1 and %q 1

β̄ 1 by

λ1 %p
1
β̄ 1 “ H´J %pβ̄ (2.37)

λ2 %q 1
β̄ 1 “ H´J %qβ̄ (2.38)

for some non-zero λ1, λ2. Construct meets as

%xβ “ %pβ̄ ˆ %qβ̄ and %x 1
β 1 “ %p 1

β̄ 1 ˆ %q 1
β̄ 1 (2.39)

and, similarly as above, use Equation 1.45 to get

%x 1
β 1 “

pH´Jq´J

λ1 λ2 |pH´Jq´J|
%xβ “

H

λ1 λ2 |H|
%xβ (2.40)

2.3.3 Meet of join under homography

We can put the above together to get meet of join under homography. We
consider two pairs of points represented by their homogeneous coordi-
nates %xβ, %yβ, and %zβ, %wβ and the corresponding pairs of points with their
homogeneous coordinates %x 1

β 1 , %y 1
β 1 , and %z 1

β 1 , %w 1
β 1 related by homography H

as

λ1 %x
1
β 1 “ H %xβ , λ2 %y 1

β 1 “ H %yβ , λ3%z 1
β 1 “ H%zβ , λ4 %w

1
β 1 “ H %wβ (2.41)

Let us now consider point

%v 1
β 1 “ p%x 1

β 1 ˆ %y 1
β 1q ˆ p%z 1

β 1 ˆ %w 1
β 1q (2.42)

“
ˆ

H´J

λ1 λ2 |H´J|
p%xβ ˆ %yβq

˙

ˆ
ˆ

H´J

λ3 λ4 |H´J|
p%zβ ˆ %wβq

˙

(2.43)

“
H |H|

λ1 λ2 λ3 λ4
p%xβ ˆ %yβq ˆ p%zβ ˆ %wβq (2.44)

“
H |H|

λ1 λ2 λ3 λ4
%vβ (2.45)
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