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1 Notation

%)
expU
UxV

2]

orthogonal vectors
orthonormal vectors

Pol
PvQ
kAl

the empty set [1]

the set of all subsets of set U [1]

Cartesian product of sets U and V' [1]

whole numbers [1]

non-negative integers [2]

rational numbers [3]

real numbers [3]

imaginary unit [3]

space of geometric scalars

affine space (space of geometric vectors)

space of geometric vectors bound to point o
space of free vectors

real affine plane

three-dimensional real affine space

real projective plane

three-dimensional real projective space

vector

matrix

1j element of A

transpose of A

conjugate transpose of A

determinant of A

identity matrix

rotation matrix

Kronecker product of matrices

basis (an ordered triple of independent generator vectors)
the dual basis to basis 3

column matrix of coordinates of & w.r.t. the basis (8
Euclidean scalar product of & and ¢ (Z- ¢ = a?'g ¥z in an
orthonormal basis ()

cross (vector) product of Z and ¥

the matrix such that [Z], ¥ =2 x ¥

Euclidean norm of # (||Z]| = V7 - ¥)

mutually perpendicular and all of equal length
unit orthogonal vectors

point P is incident to line [

line(s) incident to points P and @

point(s) incident to lines k and [



2 Linear algebra

We rely on linear algebra [4, 5, 6, 7, 8, 9]. We recommend excellent text books [7, 4] for acquiring
basic as well as more advanced elements of the topic. Monograph [5] provides a number of
examples and applications and provides a link to numerical and computational aspects of linear
algebra. We will next review the most crucial topics needed in this text.

2.1 Change of coordinates induced by the change of basis

Let us discuss the relationship between the coordinates of a vector in a linear space, which is
induced by passing from one basis to another. We shall derive the relationship between the
coordinates in a three-dimensional linear space over real numbers, which is the most important
when modeling the geometry around us. The formulas for all other n-dimensional spaces are
obtained by passing from 3 to n.

§1 Coordinates Let us consider an ordered basis 5 = [51 bo 53] of a three-dimensional
vector space V3 over scalars R. A vector ¥ € V3 is uniquely expressed as a hnear combination
of basic vectors of V3 by its coordinates z,y,z € R, i.e. ¥ = x by + Y by + zb3, and can be

represented as an ordered triple of coordinates, i.e. as U3 = [:r Y z]T
We see that an ordered triple of scalars can be understood as a triple of coordinates of a vector

in V3 w.r.t. a basis of V3. However, at the same time, the set of ordered triples [az Y Z]T is also
a three-dimensional coordinate linear space R3 over R with [:El Y1 zl]T + [:L‘g Y2 ZQ]T =

[acl +x2 Y1 +Y2 21 —&-zg]T and s [ac Y z]T = [sx sy sz]—r for s € R. Moreover, the
ordered triple of the following three particular coordinate vectors

1 0 0
o=110 1 0 (2.1)
0 0 1

forms an ordered basis of R3, the standard basis, and therefore a vector ¥ = [m Y Z]T is

represented by U, = [:U Y Z]T w.r.t. the standard basis in R3. It is noticeable that the vector
¥ and the coordinate vector ¥, of its coordinates w.r.t. the standard basis of R3, are identical.

§2 Two bases Having two ordered bases 5 = [51 by 53] and 3 = [5{ I;é I;é] leads to

expressing one vector Z in two ways as & = 2 by + y by + 2z by and & = 2'b] + /by + 2/ b},
The vectors of the basis 3 can also be expressed in the basis 5’ using their coordinates. Let us
introduce

51 = a1l [;{ + a21 gé + asy l;é
by = ais b{ + a9 bé + aso bé (2.2)
bs = a3 b{ + a93 bé + ass bé
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§3 Change of coordinates We will next use the above equations to relate the coordinates of
T w.r.t. the basis 3 to the coordinates of & w.r.t. the basis /5’
r = x51+y52 +253

o 71 71 71 71 71 71 71 71 71

= (a11 bl + a21 bQ + asz1 b3) +vy (a12 bl + a92 1)2 + aszo b3) + z (CL13 b1 + a93 b2 + ass 1)3)

= (ana:—i—algy—i-algz)b{ + (aglx—kaggy—l—aggz)bé + (a31x+a32y+aggz)b§

= 20 +y by + 2 b (2.3)
Since coordinates are unique, we get

a1+ apy + a3z (2.4)

= a1+ a9y + a3z

= a31xtazy+azz=z

Coordinate vectors g and '3/ are thus related by the following matrix multiplication

T aip a2 ais €
/
Yy = | a2 a2 a3 Yy (2.7)
!/
Z azyp as2 ass z
which we concisely write as
fﬁ/ = A fﬁ (2.8)

The columns of matrix A can be viewed as vectors of coordinates of basic vectors, 51, 52, 53 of B
in the basis 3’

A = 5151 523, 5331 (29)
o

and the matrix multiplication can be interpreted as a linear combination of the columns of A by
coordinates of ¥ w.r.t. 8

fﬁ’ = xglﬁl + ngﬁ/ + Zggﬁ, (210)

Matrix A plays such an important role here that it deserves its own name. Matrix A is very
often called the change of basis matriz from basis 3 to ' or the transition matriz from basis 3
to basis B’ [5, 10] since it can be used to pass from coordinates w.r.t. 8 to coordinates w.r.t. 3’
by Equation 2.8.

However, literature [6, 11] calls A the change of basis matrixz from basis 8 to 3, i.e. it (seemingly
illogically) swaps the bases. This choice is motivated by the fact that A relates vectors of 5 and
vectors of ' by Equation 2.2 as

[51 62 53] = [CLH g{ + a9 l_)é + a3y l_;é a19 g{ + a992 gé + asz2 l_)é
a13 g{ + as3 l;é + ass gé] (2.11)
- - o L oL ailr a2 aig
60 B Bs| = B B B |axn ax ax (2.12)
az; as2 ass
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and therefore giving

B0 B Bs| = [B B By a (2.13)
or equivalently

5 5 B =[5 B Bya (2.14)

where the multiplication of a row of column vectors by a matrix from the right in Equation 2.13
has the meaning given by Equation 2.11 above. Yet another variation of the naming appeared
in [8, 9] where A~! was named the change of basis matriz from basis 3 to f'.

We have to conclude that the meaning associated with the change of basis matriz varies in
the literature and hence we will avoid this confusing name and talk about A as about the matrixz
transforming coordinates of a vector from basis 3 to basis [3'.

There is the following interesting variation of Equation 2.13

b by
by | = AT | by (2.15)
b} b3

where the basic vectors of 3 and 8’ are understood as elements of column vectors. For instance,

vector b is obtained as
b] = aj; by + ajybo + aj5bs (2.16)

where [af;, al,, aj3] is the first row of A= T.
4 Example We demonstrate the relationship between vectors and bases on a concrete ex-

ample. Consider two bases « and 3 represented by coordinate vectors, which we write into
matrices

1 10
a = [@ d az]=[0 1 1 (2.17)
0 01
1 1 1
B = [b1 Gy bg,]: 00 1], (2.18)
011
and a vector ¥ with coordinates w.r.t. the basis «
1
To=11 (2.19)
1

We see that basic vectors of a can be obtained as the following linear combinations of basic
vectors of 3

a = +1 51 + 052 + 053 (2.20)
s +1by — 1by + 1b3 (2.21)
Gy = —1by+0by+ 103 (2.22)
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or equivalently

1 1 -1
(@1 @ a3] = [51 by 53] 0 -1 0 =[61 o B},]A (2.23)
0o 1 1
Coordinates of & w.r.t. # are hence obtained as
1 1 -1
Zg = Afa, A=|0 -1 0 (2.24)
0 1 1
1 1 1 -1 1
—1 = 0 —1 0 1 (2.25)
2 0 1 1 1
We see that
a = BA (2.26)
1 10 1 1 1 1 1 -1
01 1 = 0 0 1 0 —1 0 (2.27)
0 0 1 011 0 1

The following questions arises: When are the coordinates of a vector Z (Equation 2.8) and the
basic vectors themselves (Equation 2.15) transformed in the same way? In other words, when
A = A"". We shall give the answer to this question later in paragraph 2.4.

2.2 Determinant

Determinat [4] of a matrix A, denoted by |A|, is a very interesting and useful concept. It can be,
for instance, used to check the linear independence of a set of vectors or to define an orientation
of the space.

2.2.1 Permutation
A permutation [4] 7 on the set [n]= {1,...,n} of integers is a one-to-one function from [n] onto

[n]. The identity permutation will be denoted by e, i.e. €(i) =i for all i € [n] .

§1 Composition of permutations Let o and 7 be two permutations on [n]. Then, their
composition, i.e. (o), is also a permutation on [n] since a composition of two one-to-one onto
functions is a one-to-one onto function.

§2 Sign of a permutation We will now introduce another important concept related to per-
mutations. Sign, sgn(m), of a permutation 7 is defined as

sgn(m) = (—1)N) (2.28)

where N(7) is equal to the number of inversions in 7, i.e. the number of pairs [7, j] such that
i, €[n],i<jand w(i) > 7(j).
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2.2.2 Determinant

Let S, be the set of all permutations on [n] and A be an n x n matrix. Then, determinant |A|
of A is defined by the formula

Al =D sen(m) Ayr(r) Aor(z) Anen) (2.29)

TESH

Notice that for every m € S, and for j € [n] there is exactly one i € [n] such that j = 7(¢). Hence

(L] [2,7@)] - [0, ()]} = {771 (1), 1], [77(2), 2], [+~ (n), ]} (2.30)

and since the multiplication of elements of A is commutative we get

Al = Z sgn () Arl(l),l A7r*1(2),2 : "Aﬂfl(n)m (2.31)

TESR

Let us next define a submatrix of A and find its determinant. Consider k& < n and two one-to-
one monotonic functions p,v: [k] — [n], i < j = p(i) < p(j), v(i) < v(j). We define k x k
submatrix A”Y of an n x n matrix A by

AV = Aoty for 5 € [k] (2.32)

We get the determinant of A”" as follows

A =y sgn(m) AT ) A o) A (2.33)
ﬂESk

= D sen(m) A1) (1)) Ap(@)win(2) o) (e (k) (2.34)
7T€Sk

Let us next split the rows of the matrix A into two groups of £ and m rows and find the
relationship between |A| and the determinants of certain k& x k and m x m submatrices of A.
Take 1 < k,m < n such that k + m = n and define a one-to-one function p: [m] — [k + 1,n] =
{k+1,...,n}, by p(i) = k + 1. Next, let Q < exp [n] be the set of all subsets of [n] of size k.
Let w € Q. Then, there is exactly one one-to-one monotonic function ¢,, from [k] onto w since
[k] and w are finite sets of integers of the same size. Let @ = [n]\w. Then, there is exactly
one one-to-one monotonic function ¢z from [k + 1,n] onto w. Let further there be 7 € Sy and
Tm € Sm.  With the notation introduced above, we are getting a version of the generalized
Laplace expansion of the determinant [12, 13|

Al =) [T senlea(s) = eu(d) |14

weQ) \i€[k],je[k+1,n]

pAP#a(P) ’ (2.35)

2.3 Vector product

Let us look at an interesting mapping from R3 x R3 to R3, the vector product in R? [7] (which
it also often called the cross product [5]). Vector product has interesting geometrical properties
but we shall motivate it by its connection to systems of linear equations.
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§1 Vector product Assume two linearly independent coordinate vectors
T = [ml o xg]T and i = [y1 Yo yg]T in R3. The following system of linear equations

[‘”1 2 9”3]2:0 (2.36)
yioY2 U

has a one-dimensional subspace V of solutions in R3. The solutions can be written as multiples
of one non-zero vector w, the basis of V, i.e.

Z=\@, AeR (2.37)

Let us see how we can construct @ in a convenient way from vectors &, 4.
Consider determinants of two matrices constructed from the matrix of the system (2.36) by
adjoining its first, resp. second, row to the matrix of the system (2.36)

ry T2 I3 r1 T X3
vy y2 Y3 ||=0 y1 Y2 ys ||=0 (2.38)
ry X2 I3 yi Y2 Y3
which gives
z1 (T2y3 — x3y2) + T2 (w31 — 21 y3) + 3 (T1Y2 —221) = O (2.39)
v1 (Tays — x3y2) +yo (zayr — 21y3) + ys (w12 —2201) = O (2.40)

and can be rewritten as

—z1ys+a3y1 | =0 (2.41)

{961 T2 I3
T1Y2 — T2Y1

T2Y3 — X3Y2
yr Y2 yg]

We see that vector
T2Ys —T3Y2
W= | —x1y3+ 2391 (2.42)

T1Y2 — X241

solves Equation 2.36.

Notice that elements of w0 are the three two by two minors of the matrix of the system (2.36).
The rank of the matrix is two, which means that at least one of the minors is non-zero, and
hence @ is also non-zero. We see that w is a basic vector of V. Formula 2.42 is known as the
vector product in R? and 17 is also often denoted by & x 7.

§2 Vector product under the change of basis Let us next study the behavior of the vector
product under the change of basis in R3. Let us have two bases 3, 8’ in R? and two vectors
R . - T T - / / T
Z, y with coordinates Tz = [xl 9 a:3] , Y = [y1 Yo yg] and Tg: = [371 x5 :c3] ,

Ys = [y{ Yy yé]T . We introduce

T2Y3 — X3Y2 xéygl - xéyé
T x s = | —21Y3 + 231 Tgr X §gr = | —T1y3 + 2391 (2.43)
T1Y2 — 2241 T1Yy — Tayq
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To find the relationship between '3 x 43 and #g/ x 3/, we will use the following fact. For every

three vectors ¥ = [331 To :Ug]T, Y= [y1 Y2 yg]T, Z= [z1 29 ,23]T in R3 there holds

T2 Y3 — XT3Y2 r1 T2 I3 fT
Z@ExN=[=21 2 z]|-wwton|=||ln w wnl|/ =7 (2.44)
T1Y2 — T2 Y1 21 2z 23 ZT
We can write
_ . . _ T T T
. . []. 0 0] (%}3/ X Zi,g/) {é/ {é/ ﬂi!?l
Tpr X Yg [0 1 0] (.ZL'B/ X y5/> = yﬁ, y[j/ y/g/
_[001](fg/><g:3/) 100 010 001
i UE/%AT i”%AT_ :E’%AT 11"
_ ST AT ST AT ST AT
= yﬂA ygA ygA
[]1.100 010 001 |
- 7 AT 7 AT I AT
[ [100] AT [ [010] AT [001] AT
(10014 (E i) ]
= [0 1 0] A_T(a?g X yg) |A |
| [001]A™ (&5 x g

AT
= T (25 x ¥3) (2.45)
63 Vector product as a linear mapping It is interesting to see that for all Z,7 € R? there
holds

T2 Y3 — X3 Y2 0 —x3 22 Y1
T x gj = | —T1y3+x3Y1 | = xs3 0 —x Y2 (2.46)
T1Y2 — T2 Y1 -T2 T 0 Y3
and thus we can introduce matrix
0 —XI3 T
[Z], = | =3 0 —x (2.47)
—Xx2 T 0
and write
¥xy=[7], ¥ (2.48)
Notice also that [#]] = — [Z], and therefore
@xi" = (&9 =y [7], (2.49)

The result of §2 can also be written in the formalism of this paragraph. We can write for every
7, e R3
A—T

TS| (5], ¥s (2.50)

—

8

=

X

<
<!
~—

|
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and hence we get for every ¥ € R3

-7
[AZ5], A= |§T| (7], (2.51)

2.4 Dual space and dual basis

Let us start with a three-dimensional linear space L over scalars S and consider the set L* of
all linear functions f: L — S, i.e. the functions on L for which the following holds true

flaZ +by) = a f(Z) +bf(7) (2.52)

for all a,be S and all Z,y € L.
Let us next define the addition +*: L* x L* — L* of linear functions f,g € L* and the
multiplication -*: S x L* — L* of a linear function f € L* by a scalar a € S such that

(f+"9)@) = f(@)+9(T) (2.53)
(@" )F) = af(@ (2.54)

holds true for all a € S and for all ¥ € L. One can verify that (L*, +*,-*) over (S, +, ) is itself
a linear space [4, 7, 6]. It makes therefore a good sense to use arrows above symbols for linear
functions, e.g. f instead of f.

The linear space L* is derived from, and naturally connected to, the linear space L and hence
deserves a special name. Linear space L* is called [4] the dual (linear) space to L.

Now, consider a basis 3 = [51,52,53] of L. We will construct a basis g* of L*, in a certain
natural and useful way. Let us take three linear functions 5’{, 55, gg e L* such that

bi(b) =1 bi(ba) =0 bi(bs) =0
b5(b1) =0 b3(b2) =1 b3(b3) =0 (2.55)
b3(b1) =0 b3(b2) =0 b3(bs) =1

where 0 and 1 are the zero and the unit element of S, respectively. First of all, one has to
verify [4] that such an ass1gnment is possible with linear functions over L. Secondly one can
show [4] that functions bl, bQ, b3 are determined by this assignment uniquely on all vectors of L.
Finally, one can observe [4] that the triple f* = [b’{,b;,b?)] forms an (ordered) basis of L. The
basis 5* is called the dual basis of L*, i.e. it is the basis of L*, which is related in a special (dual)
way to the basis 8 of L.

§1 Evaluating linear functions Consider a vector ¥ € L with coordinates T = [z1, 22, 23]
w.r.t. a basis 8 = [51,52,53] and a linear function h € L* with coordinates Hg* = [h1, ho, h3]"
w.r.t. the dual basis 8* = [b%, 55, gg] The value h(Z) € S is obtained from the coordinates Zg
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and i_ig* as
H(f) = ﬁ(acl 51 + X9 52 + I3 53) (2.56)
(hl EI + ho 55 + h3 53>( xr1 b1 + X9 52 + 3 53) (2.57)
= hyb(by) @1 + hy b} (ba) xg + hy b} (b3) a3
+ho b;(bl) x1 + ho b2(b2) To + ho bQ(bg) (2.58)
+hs bg(bl) r1 + hs b3( 2) To + hs b3( 3)
bi(br) Bi(B2) Bi(bs) | [
= [h1 ha hs] | b5(b1) B5(ba) B5(bs) | | 2 (2.59)
| 03(b1) b3(b2) b3(b3) | L3
_1 0 0 X1
— [h1 ha h3]|0 1 0] (2.60)
_0 0 1 X3
r1
= [hi,ho,h3] | 22 (2.61)
x3
= Dy T (2.62)

The value of h € L* on 7 € L is obtained by multiplying #s by the transpose of ﬁg* from the
left.

Notice that the middle matrix on the right in Equation 2.59 evaluates into the identity.
This is the consequence of using the pair of a basis and its dual basis. The formula 2.62 can be
generalized to the situation when bases are not dual by evaluating the middle matrix accordingly.
In general

—

W) = Iy [bi(5;)] @5 (2.63)

where matrix [EZ(B;)] is constructed from the respective bases 3, 8 of L and L*.

™

§2 Changing the basis in a linear space and in its dual Let us now look at what happens
with coordinates of vectors of L* when passing from the dual basis 3* to the dual basis 5'*
induced by passing from a basis 5 to a ba81s ﬁ’ in L. Consider vector # € L and a linear function
h e L* and their coordinates 7 Zg, ¥g: and hg* hﬁl* w.r.t. the respective bases. Introduce further
matrix A transforming coordinates of vectors in L as

Zg = ATg (2.64)

when passing from 3 to 3.
Basis 3* is the dual basis to 3 and basis 8* is the dual basis to 3’ and therefore

ST — T
for all Z € L and all h € L*. Hence

ﬁg* fg = E;/* Afg (2.66)

10
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for all Z € L and therefore
=T -7

or equivalently
hge = AT hgs (2.68)

Let us now see what is the meaning of the rows of matrix A. It becomes clear from Equation 2.67
that the columns of matrix A" can be viewed as vectors of coordinates of basic vectors of
B = [b1*,b5*,bi*] in the basis * = [b], b5, b5] and therefore

—

— b
A = | —bhr— (2.69)
1%t

—bhr —

which means that the rows of A are coordinates of the dual basis of the primed dual space in
the dual basis of the non-primed dual space.
Finally notice that we can also write

ﬁﬁ/* == A_TEB* (2.70)

which is formally identical with Equation 2.15.

§3 When do coordinates transform the same way in a basis and in its dual basis It is
natural to ask when it happens that the coordinates of linear functions in L* w.r.t. the dual
basis §* transform the same way as the coordinates of vectors of L w.r.t. the original basis £,
i.e.

fﬁ/ = Afﬁ (2.71)
hgn = Ahg (2.72)

for all Ze L and all h € L*. Considering Equation 2.70, we get

A = A" (2.73)
ATA = 1 (2.74)

Notice that this is, for instance, satisfied when A is a rotation [5]. In such a case, one often does
not anymore distinguish between vectors of L and L* because they behave the same way and it
is hence possible to represent linear functions from L* by vectors of L.

¢4 Coordinates of the basis dual to a general basis We denote the standard basis in R3
by o and its dual (standard) basis in R3* by o*. Now, we can further establish another basis
v =& & ¢&]inR3 and its dual basis v* = [¢] ¢35 &% in R*". We would like to find
the coordinates 7} = [€1,« €3,+ €3, | of vectors of v* w.r.t. o* as a function of coordinates
Yo = [6'10 Cou 6'3(,] of vectors of v w.r.t. o.

Considering Equations 2.55 and 2.62, we are getting

S lifi=94 ..
cwtcjaz{ Oifz’;ﬁ; fori,7=1,2,3 (2.75)

11
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which can be rewritten in a matrix form as

ST

Clo*

T — — — * T

o | [Clo @0 o] =704 Yo (2.76)
LT

C30*

O O =

S = O

= o O
I

and therefore
Voe =5 " (2.77)

§5 Remark on higher dimensions We have introduced the dual space and the dual basis in a
three-dimensional linear space. The definition of the dual space is exactly the same for any linear
space. The definition of the dual basis is the same for all finite-dimensional linear spaces [4].
For any n-dimensional linear space L and its basis [, we get the corresponding n-dimensional
dual space L* with the dual basis g*.

2.5 Operations with matrices

Matrices are a powerful tool which can be used in many ways. Here we review a few useful
rules for matrix manipulation. The rules are often studied in multi-linear algebra and tensor
calculus. We shall not review the theory of multi-linear algebra but will look at the rules from
a phenomenological point of view. They are useful identities making an effective manipulation
and concise notation possible.

§1 Kronecker product Let A be a k x [ matrix and B be a m x n matrix

aip aiz - ay
agi az - ay
I 7| eRF! and BeR™*" (2.78)
ag1 Qg2 - Qg
then km x [ n matrix
a;1B appB -+ ayB
a1B aggB --- ayB
C=AQB= . . . . (2.79)
ap1B ageB -+ apB

is the matrix of the Kronecker product of matrices A, B (in this order).
Notice that this product is associative, i.e. (AQB)®C = A®Q (B®C), but it is not commutative,
i.e. A®B # B®A in general. There holds a useful identity (A®B)" = AT® BT.

§2 Matrix vectorization Let A be an m x n matrix

ail ai2 e A1n
a1 a2 T a2n

A o= | B gman (2.80)
Gm1  Om2 Gmn,

12
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We define operator v(.): R™*"™ — R™" which reshapes an m x n matrix A into a mn x 1 matrix
(i.e. into a vector) by stacking columns of A one above another

aiy
a21

am1
ai2

o) = | = (2.81)

am2
A1n
A2n

Amn

Let us study the relationship between v(A) and v(AT). We see that vector v(A') contains
permuted elements of v(A) and therefore we can construct permutation matrices [5] T,,x, and
Thxm such that

v(AT) = Toxnv(A)
v(A) = Taxmv(A)
We see that there holds
Thnxm Tmxn U(A) = Thxm U(AT) = U(A) (282)
for every m x n matrix A. Hence
Tnxm = T;@1><n (2.83)

Consider a permutation T. It has exactly one unit element in each row and in each column.
Consider the i-th row with 1 in the j-th column. This row sends the j-th element of an input
vector to the i-th element of the output vector. The i-the column of the transpose of T has 1
in the j-th row. It is the only non-zero element in that row and therefore the j-th row of T'
sends the i-th element of an input vector to the j-th element of the output vector. We see that
TT is the inverse of T, i.e. permutation matrices are orthogonal. We see that

T;zlxn = T;xn (2.84)
and hence conclude

Tosm = Tohsn (2.85)
We also write v(A) = T,L ., v(AT).

§3 From matrix equations to linear systems Kronecker product of matrices and matrix vec-
torization can be used to manipulate matrix equations in order to get systems of linear equations
in the standard matrix form Ax = b. Consider, for instance, matrix equation

AXB=2C (2.86)

13
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with matrices A € R™** X e RF*! B e RI*™ ¢ e R™*™. It can be verified by direct computation
that

v(AXB) = (B'® A)v(X) (2.87)

This is useful when matrices A, B and C are known and we use Equation 2.86 to compute X.
Notice that matrix Equation 2.86 is actually equivalent to mn scalar linear equations in k!
unknown elements of X. Therefore, we should be able to write it in the standard form, e.g., as

Mv(X) = v(C) (2.88)

with some M e R(m™* (kD We can use Equation 2.87 to get M = BT ® A which yields the linear
System

v(AXB) = v(C) (2.89)
B'® A)vX) = v(C) (2.90)

for unknown v(X), which is in the standard form.
Let us next consider two variations of Equation 2.86. First consider matrix equation

AXB=X (2.91)
Here unknowns X appear on both sides but we are still getting a linear system of the form
B'®A—-TI)v(X)=0 (2.92)

where I is the (mn) x (k1) identity matrix.
Next, we add yet another constraints: X' = X, i.e. matrix X is symmetric, to get

AXB=X and X' =X (2.93)
which can be rewritten in the vectorized form as
B'"®@A-T)v(X) =0 and (Tpxn—I)v(X) =0 (2.94)

and combined it into a single linear system

{Bigz B i] v(X) = 0 (2.95)

14



3 Affine space

Let us study the affine space, an important structure underlying geometry and its algebraic
representation. The affine space is closely connected to the linear space. The connection is
so intimate that the two spaces are sometimes not even distinguished. Consider, for instance,
function f: R — R with non-zero a,b € R

f(z)=ax+b (3.1)
It is often called “linear” but it is not a linear function [6, 7, 5] since for every « € R there holds
flaz) =aax+b#a(ax+b) =af(x) (3.2)

In fact, f is an affine function, which becomes a linear function only for b = 0.

In geometry, we need to be very precise and we have to clearly distinguish affine from linear.
Let us therefore first review the very basics of linear spaces, and in particular their relationship
to geometry, and then move to the notion of affine spaces.

3.1 Vectors

Let us start with geometric vectors and study the rules of their manipulation.

Figure 3.1(a) shows the space of points P, which we live in and intuitively understand. We
know what is an oriented line segment, which we also call a marked ruler (or just a ruler). A
marked ruler is oriented from its origin towards its end, which is actually a mark (represented

(a) (b) ()
Figure 3.1: (a) The space around us consists of points. Rulers (marked oriented line segments)

can be aligned (b) and translated (c) and thus used to transfer, but not measure,
distances.
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o —— a ——
) a 1 -1 -
3 —— ——— b _1&3 —la T
[ T T T T
a+b
a 1
a T ——— a Ty
b LN G A 30— ——
oy . [ T T T T ]
a+b ab

Figure 3.2: Scalars are represented by oriented rulers. They can be added (a) and multiplied
(b) purely geometrically by translating and aligning rulers. Notice that we need to
single out a unit scalar “1” to perform geometric multiplication.

by an arrow in Figure 3.1(b)) on a thought infinite ruler, Figure 3.1(b). We assume that we are
able to align the ruler with any pair of points x, y, so that the ruler begins in x and a mark is
made at the point y. We also know how to align a marked ruler with any pair of distinct points
u, v such that the ruler begins in u and aligns with the line connecting v and v in the direction
towards point v. The mark on so aligned ruler determines another point, call it z, which is
collinear with points u, v. We know how to translate, Figure 3.1(c), a ruler in this space.

To define geometric vectors, we need to first define geometric scalars.

3.1.1 Geometric scalars

Geometric scalars S are horizontal oriented rulers. The ruler, which has its origin identical with
its end is called 0. Geometric scalars are equipped with two geometric operations, addition a + b
and multiplication a b, defined for every two elements a,b € S.

Figure 3.2(a) shows addition a + b. We translate ruler b to align origin of b with the end of a
and obtain ruler a + b.

Figure 3.2(b) shows multiplication a b. To perform multiplication, we choose a unit ruler “1”
and construct its additive inverse —1 using 1+ (—1) = 0. This introduces orientation to scalars.
Scalars aiming to the same side as 1 are positive and scalars aiming to the same side as —1 are
negative. Scalar 0 is neither positive, nor negative. Next we define multiplication by —1 such
that —1a = —a, i.e. —1 times a equals the additive inverse of a. Finally, we define multiplication
of non-negative (i.e. positive and zero) rulers a, b as follows. We align a with 1 such that origins
of 1 and a coincide and such that the rulers contain an acute non-zero angle. We align b with 1
and construct ruler a b by a translation, e.g. as shown in Figure 3.2(b)!.

All constructions used were purely geometrical and were performed with real rulers. We can
verify that so defined addition and multiplication of geometric scalars satisfy all rules of addition
and multiplication of real numbers. Geometric scalars form a field [11, 14] w.r.t. to a + b and
ab.

!'Notice that ab is well defined since it is the same for all non-zero angles contained by a and 1.

16



T. Pajdla. Elements of Geometry for Computer Vision 2020-2-17 (pajdla@cvut.cz)
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T Y T o
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(a b
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/ p % // %
Yy Y
(f) (2) (h) (i) §))

Figure 3.3: Bound vectors are (ordered) pairs of points (o, ), i.e. arrows & = (o0, z). Addition of
the bound vectors &, ¥/ is realized by parallel transport (using a ruler). We see that
the result is the same whether we add # to ¢ or ¥ to . Addition is commutative.

3.1.2 Geometric vectors

Ordered pairs of points, such as (z,y) in Figure 3.3(a), are called geometric vectors and denoted
as TY, i.e. Ty = (z,y). Symbol Ty is often replaced by a simpler one, e.g. by @. The set of all
geometric vectors is denoted by A.

3.1.3 Bound vectors

Let us now choose one point o and consider all pairs (o,z), where x can be any point, Fig-
ure 3.3(a). We obtain a subset A, of A, which we call geometric vectors bound to o, or just
bound vectors when it is clear to which point they are bound. We will write & = (o0, z). Fig-
ure 3.3(f) shows another bound vector i. The pair (o,0) is special. It will be called the zero
bound vector and denoted by 0. We will introduce two operations @, ® with bound vectors.

First we define addition of bound vectors ®: A, x A, — A,. Let us add vector T to ¥ as shown
on Figure 3.3(b). We take a ruler and align it with &, Figure 3.3(c). Then we translate the ruler
to align its begin with point y, Figure 3.3(d). The end of the ruler determines point z. We define
a new bound vector, which we denote Z @ 7, as the pair (o, z), Figure 3.3(e). Figures 3.3(f-j)
demonstrate that addition gives the same result when we exchange (commute) vectors & and 7,
ie. 7@ Y = y@® Z. We notice that for every point z, there is exactly one point z’ such that
(0,2)® (0,2") = (0,0), i.e. Z®F = 0. Bound vector & is the inverse to & and is denoted as —Z.
Bound vectors are invertible w.r.t. operation @. Finally, we see that (o,z) ® (0,0) = (0, ), i.e.
) 0 = Z. Vector 0 is the identity element of the operation @. Clearly, operation @ behaves
exactly as addition of scalars — it is a commutative group [11, 14].

Secondly, we define the multiplication of a bound vector by a geometric scalar ®: Sx A, — Ay,
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where S are geometric scalars and A, are bound vectors. Operation ©® is a mapping which takes
a geometric scalar (a ruler) and a bound vector and delivers another bound vector.

Figure 3.4 shows that to multiply a bound vector ¥ = (0,x) by a geometric scalar a, we
consider the ruler b whose origin can be aligned with o and end with . We multiply scalars a
and b to obtain scalar a b and align a b with & such that the origin of a b coincides with o and a b
extends along the line passing through #. We obtain end point y of so placed a b and construct
the resulting vector ¥ = a ® Z = (0,y).

We notice that addition @ and multiplication ® of horizontal bound vectors coincides exactly
with the addition and multiplication of scalars.

3.2 Linear space

We can verify that for every two geometric scalars a,b € S and every three bound vectors
Z,1,Z € A, with their respective operations, there holds the following eight rules

IO Yoz = [Feyer? (3.3)
IQYy = yor (3.4)
io0 = & (3.5)
i@ -7 0 (3.6)
107 = & (3.7)

(ab)OF = a®(bOT) (3.8)

a®@DY) = (aOL)®(aOY) (3.9)

(a+b) 07 = (OH®MDHOT) (3.10)

These rules are known as axioms of a linear space [6, 7, 4]. Bound vectors are one particular
model of the linear space. There are many other very useful models, e.g. n-tuples of real or
rational numbers for any natural n, polynomials, series of real numbers and real functions. We
will give some particularly simple examples useful in geometry later.

The next concept we will introduce are coordinates of bound vectors. To illustrate this concept,
we will work in a plane. Figure 3.5 shows two non-collinear bound vectors 51, 52, which we call
basis, and another bound vector Z. We see that there is only one way how to choose scalars x|
and x9 such that vectors x1 ©® 51 and 29 © 52 add to 7, i.e.

F=12,0b@®ryO by (3.11)

y=a0OT

Figure 3.4: Multiplication of the bound vector Z by a geometric scalar a is realized by aligning
rulers to vectors and multiplication of geometric scalars.
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Figure 3.5: Coordinates are the unique scalars that combine independent basic vectors 51, 52
into Z.

Scalars 1, 25 are coordinates of T in (ordered) basis [by, bs].

3.3 Free vectors

We can choose any point from A to construct bound vectors and all such choices will lead to the
same manipulation of bound vector and to the same axioms of a linear space. Figure 3.6 shows
two such choices for points o and o’.

We take bound vectors by = (0,b1), by = (0,b2), & = (0,) at o and construct bound vectors
bl = (o, b)), by = (0, b)), Z' = (o/,2') at o by translating z to #/, by to b} and by to b} by the
same translation. Coordinates of # w.r.t. [by,bs] are equal to coordinates of #' w.r.t. [b],b5].
This interesting property allows us to construct another model of a linear space, which plays an
important role in geometry.

Let us now consider the set of all geometric vectors A. Figure 3.7(a) shows an example of
a few points and a few geometric vectors. Let us partition [1] the set A of geometric vectors
into disjoint subsets A, ;) such that we choose one bound vector (o,z) and put to A, all
geometric vectors that can be obtained by a translation of (0, ). Figure 3.7(b) shows two such
partitions A, ;), Ay)- It is clear that A, ;) N Aoy = & for  # 2" and that every geometric
vector is in some (and in exactly one) subset A, ).

Figure 3.6: Two sets of bound vectors A, and A,. Coordinates of & w.r.t. [51, 52] are equal to

coordinates of ’ w.r.t. [b],b}].
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- N

(a) (b)

Figure 3.7: The set A of all geometric vectors (a) can be partitioned into subsets which are called
free vectors. Two free vectors A, ;) and A(, ), i.e. subsets of A, are shown in (b).

O/Vox A /x /

0 o N

- N \ﬂ* /
— PN

p

Figure 3.8: Free vector A, ;) is added to free vector A,y by translating (o, z) to (¢, 2") and (p,y)
o (¢q,y'), adding bound vectors (g, z) = (¢,2") ® (¢,¥') and setting A, ») HAp ) =

A(w)

Two geometric vectors (o0,z) and (o', 2') form two subsets A, .y, A(y ) Which are equal if
and only if (o', 2’) is related by a translation to (o, z).

“To be related by a translation” is an equivalence relation [1]. All geometric vectors in A, )
are equivalent to (o, x).

There are as many sets in the partition as there are bound vectors at a point. We can define
the partition by geometric vectors bound to any point o because if we choose another point o,
then for every point z, there is exactly one point 2’ such that (0,x) can be translated to (o', 2’).

We denote the set of subsets A, ;) by V. Let us see that we can equip set V' with a meaningful
addition H: V x V — V and multiplication [-]: S x V — V by geometric scalars S such that it
will become a model of the linear space. Elements of V' will be called free vectors.

We define the sum of @ = A,y and § = Ay, le. 27 = T H ¢y is the set A1) @ (0y)-
Multiplication of # = A(,,) by geometrical scalar a is defined analogically, i.e. a[-]Z equals the
set Ago(o0)- We see that the result of H and [-] does not depend on the choice of 0. We have
constructed the linear space V of free vectors.

§1 Why so many vectors? In the literature, e.g. in [4, 5, 8], linear spaces are often treated
purely axiomatically and their geometrical models based on geometrical scalars and vectors are
not studied in detail. This is a good approach for a pure mathematician but in engineering we
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<l

<y

g

Figure 3.9: Free vectors i, v and W defined by three points x, y and z satisfy triangle identity
UHT = .

use the geometrical model to study the space we live in. In particular, we wish to appreciate
that good understanding of the geometry of the space around us calls for using bound as well
as free vectors.

3.4 Affine space

We saw that bound vectors and free vectors were (models of) a linear space. On the other hand,
we see that the set of geometric vectors A is not (a model of) a linear space because we do not
know how to meaningfully add (by translation) geometric vectors which are not bound to the
same point. The set of geometric vectors is an affine space.

The affine space connects points, geometric scalars, bound geometric vectors and free vectors
in a natural way.

Two points x and y, in this order, give one geometric vector (x,y), which determines exactly
one free vector v = A, ). We define function ¢: A — V, which assigns to two points z,y € P
their corresponding free vector (z,y) = A, ).

Consider a point a € P and a free vector Z € V. There is exactly one geometric vector (a, ),
with a at the first position, in the free vector Z. Therefore, point a and free vector Z uniquely
define point x. We define function #: P x V — P, which takes a point and a free vector and
delivers another point. We write a#Z = x and require ¥ = ¢(a, ).

Consider three points x,y, z € P, Figure 3.9. We can produce three free vectors 4 = p(z,y) =
Ay, V= 0(y,2) = Az, W = ¢(x,2) = A5 Let us investigate the sum @ [ ¢. Chose
the representatives of the free vectors, such that they are all bound to x, i.e. bound vectors
(z,y) € Azy, (v,1) € Ay -y and (7, 2) € A, ;). Notice that we could choose the pairs of original
points to represent the first and the third free vector but we had to introduce a new pair of
points, (z,t), to represent the second free vector. Clearly, there holds (x,y)® (z,t) = (z, z). We
now see, Figure 3.9, that (y, z) is related to (x,t) by a translation and therefore

UHT = Ay B Ay = Ay BAwy = Aeyeet = Aws) =0 (3.12)

Figure 3.10 shows the operations explained above in Figure 3.9 but realized using the vectors
bound to another point o.
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Figure 3.10: Affine space (P, L, ), its geometric vectors (z,y) € A = P x P and free vector
space L and the canonical assignment of pairs of points (z,y) to the free vector
A(zy)- Operations @, B, combining vectors with vectors, and 4, combining points
with vectors, are illustrated.

The above rules are known as axioms of affine space and can be used to define even more
general affine spaces.

§1 Remark on notation We were carefully distinguishing operations (+, ) over scalars, (®,®)
over bound vectors, ([, [-]) over free vectors, and function # combining points and free vectors.
This is very correct but rarely used. Often, only the symbols introduced for geometric scalars
are used for all operations, i.e.

b= e m 4+ (3.13)
L0, (3.14)

§2 Affine space Triple (P, L, ) with a set of points P, linear space (L,H,[:]) (over some field
of scalars) and a function ¢: P x P — L, is an affine space when

Al p(z,2) = p(z,y) He(y, 2) for every three points z,y, z € P

A2 for every o € P, the function ¢,: P — L, defined by ¢,(z) = ¢(o,z) for all x € P is a
bijection [1].

Axiom Al calls for an assignment of pairs of point to vectors. Axiom A2 then makes this
assignmet such that it is one-to-one when the first argument of ¢ is fixed.

We can define another function #: P x L — P, defined by o## = ¢, (&), which means
v(0,0#%%) = & for all #Z € L. This function combines points and vectors in a way that is very
similar to addition and hence is sometimes denoted by + instead of more correct .

In our geometrical model of A discussed above, function ¢ assigned to a pair of points z, y
their corresponding free vector A, ,). Function #, on the other hand, takes a point  and a
free vector ¥ and gives another points y such that the bound vector (x,y) is a representative of
U, 1.e. Ay = 0.
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Figure 3.11: Point x is represented in two affine coordinate systems.

3.5 Coordinate system in affine space

We see that function ¢ assigns the same vector from L to many different pairs of points from P.
To represent uniquely points by vectors, we select a point o, called the origin of affine coordinate
system and represent point x € P by its position vector ¥ = ¢(o,x). In our geometric model
of A discussed above, we thus represent point x by bound vector (o, z) or by point o and free
vector A -

To be able to compute with points, we now pass to the representation of points in A by
coordinate vectors. We choose a basis § = (51, 52, ...) in L. That allows us to represent point
x € P by a coordinate vector

x1
Zg= | 2|, suchthat 7= by + by + -+ (3.15)

The pair (o, 3), where o € P and ( is a basis of L is called an affine coordinate system (often
shortly called just coordinate system) of affine space (P, L, ¢).

Let us now study what happens when we choose another point o' and another basis ' =
(I;{, gé, ...) torepresent z € P by coordinate vectors, Figure 3.11. Point z is represented twice: by
coordinate vector Zg = (0, %)g = A(o.z)s and by coordinate vector g, = (0, x)g = Ay 2)p:-

To get the relationship between the coordinate vectors ¥z and i“’/g,,, we employ the triangle
equality

plo,x) = ¢(o0,0)Hep(d, ) (3.16)
i = @z (3.17)

which we can write in basis 3 as (notice that we replace H by + to emphasize that we are adding
coordinate vectors)

Ty = Th+ 3, (3.18)

and use the matrix A transforming coordinates of vectors from basis 3’ to 8 to get the desired
relationship

—

Tg = AZp +0p (3.19)
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Figure 3.12: Affine space (P, V, ¢) of solutions to a linear system is the set of vectors representing
points on line p. In coordinate system (0,u), vector Z has coordinate 1. The
subspace V' of solutions to the associated homogeneous system is the associated
linear space. Function ¢ assigns to two points 0, Z the vector @ = § — .

Columns of A correspond to coordinate vectors 5{ 8 l_)é gy When presented with a situation in
a real affine space, we can measure those coordinates by a ruler on a particular representation
of L by geometrical vectors bound to, e.g., point o.

3.6 An example of affine space

Let us now present an important example of affine space.

3.6.1 Affine space of solutions of a system of linear equations

When looking at the following system of linear equations in R?

N -

we immediately see that there is an infinite number of solutions. They can be written as

7= [g] +r [_1] reR (3.21)

or as a sum of a particular solution [2,0]" and the set of solutions ¥ = 7[—1,1]T of the
accompanied homogeneous system
1 1], 0
ERH .

Figure 3.12 shows that the affine space (P,V, ) of solutions to the linear system (3.20) is the
set of vectors representing points on line p. The subspace V of solutions to the accompanied
homogeneous system (3.22) is the linear space associated to A by function ¢, which assigns to
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two points 7, € A the vector @ = §f — # € V. If we choose & = [2,0]" as the origin in A and
vector b = (3, F) = & — 3 as the basis of V, vector Z has coordinate 1.

We see that, in this example, points of A are actually vectors of R?, which are the solution to
the system (3.20). The vectors of V are the vectors of R?, which are solutions to the associated
homogeneous linear system (3.22).
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4 Motion

Let us introduce a mathematical model of rigid motion in three-dimensional Euclidean space.
The important property of rigid motion is that it only relocates objects without changing their
shape. Distances between points on rigidly moving objects remain unchanged. For brevity, we
will use “motion” for “rigid motion”.

4.1 Change of position vector coordinates induced by motion

Figure 4.1: Representation of motion. (a) Alias representation: Point X is represented in two
coordinate systems. (b) Alibi representation: Point X move tohetjer with the coor-
dinate system into point Y.

§1 Alias representation of motion'. Figure 4.1(a) illustrates a model of motion using coor-
dinate systems, points and their position vectors. A coordinate system (O, ) with origin O
and basis [ is attached to a moving rigid body. As the body moves to a new position, a new
coordinate system (O',3’) is constructed. Assume a point X in a general position w.r.t. the
body, which is represented in the coordinate system (O, 3) by its position vector . The same
point X is represented in the coordinate system (O, ') by its position vector #'. The motion
induces a mapping fﬁ,?' + Zg. Such a mapping also determines the motion itself and provides
its convenient mathematical model.

!The terms alias and alibi were introduced in the classical monograph [14].
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Let us derive the formula for the mapping a‘c’é, — T between the coordinates a?’é, of vector z’
and coordinates ¥z of vector Z. Consider the following equations:

g o= &+0 (4.1)
Tg = Tj+04 (4.2)
7y = [E;ﬁ b, Egﬁ]fg,mé (4.3)
Fy = R + 0 (4.4)
)

Vector 7 is the sum of vectors #’ and 6’, Equation 4.1. We can express all vectors in (the same
basis 3, Equation 4.2. To pass to the basis 3’ we introduce matrix R = [bl 5 b2 5 b3 5 ], which

transforms the coordinates of vectors from 3’ to 3, Equation 4.4. Columns of matrix R are
coordinates b1, by , b3, of basic vectors b, by, by of basis 3’ in basis 3.

§2 Alibi representation of motion. An alternative model of motion can be developed from
the relationship between the points X and Y and their position vectors in Figure 4.1(b). The
point Y is obtained by moving point X altogether with the moving object. It means that
the coordinates g, of the position vector i’ of Y in the coordinate system (O', ") equal the
coordinates Zg of the position vector & of X in the coordinate system (O, ), i.e

gé/ = fﬁ

g — 6%/ = T

R (G —05) = s
Ys = RITg+ 6'5/ (4.5)

Equation 4.5 describes how is the point X moved to point Y w.r.t. the coordinate system (O, f3).

4.2 Rotation matrix

Motion that leaves at least one point fixed is called rotation. Choosing such a fixed point as
the origin leads to O = O’ and hence to ¢ = 0. The motion is then fully described by matrix R,
which is called rotation matrix.

§1 Two-dimensional rotation. To understand the matrix R, we shall start with an experiment
in two-dimensional plane. Imagine a right-angled triangle ruler as shown in Figure 4.2(a) with
arms of equal length and let us define a coordinate system as in the figure. Next, rotate the
triangle ruler around its tip, i.e. around the origin O of the coordinate system. We know, and we
can verify it by direct physical measurement, that, thanks to the symmetry of the situation, the
parallelograms through the tips of g{ and 5§ and along by and by will be rotated by 90 degrees.
We see that

by = anbi+anb (4.6)
gé = —a91 51 + a 52 (47)

for some real numbers a1 and as;. By comparing it with Equation 4.3, we conclude that

R= {“” _‘m] (4.8)

a21 a1
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—a
19) 21

Figure 4.2: Rotation in two-dimensional space.

We immediately see that

_ 2 2
RTR _ { all a21] {CLH a21:| _ {au + a3 , 0 , ] _ [1 O:| (49)
—az1 an | |an  an 0 afy + ay 0 1

since (a3 + a3;) is the squared length of the basic vector of by, which is one. We derived an
interesting result

R°Y = R (4.10)
R = R' (4.11)

Next important observation is that for coordinates 73 and fé,, related by a rotation, there holds
true

(@) + ()2 = Th Th = (RTp) Rip = T} (R'R) T = Ty 75 = a? + 42 (4.12)
Now, if the basis 8 was constructed as in Figure 4.2, in which case it is called an orthonormal
basis, then the parallelogram used to measure coordinates x,y of & is a rectangle, and hence
22 + 12 is the squared length of Z by the Pythagoras theorem. If 3’ is related by rotation ro j,
then also (2)? + (3//)? is the squared length of #, again thanks to the Pythagoras theorem.

We see that ;ngﬁ is the squared length of & when S is orthonormal and that this length is
preserved by computing it in the same way from the new coordinates of # in the new coordinate
system after motion. The change of coordinates induced by motion is modeled by rotation
matrix R, which has the desired property R'R = I when the bases 3, 8’ are both orthonormal.

§2 Three-dimensional rotation. Let us now consider three dimensions. It would be possible
to generalize Figure 4.2 to three dimensions, construct orthonormal bases, and use rectangular
parallelograms to establish the relationship between elements of R in three dimensions. However,
the figure and the derivations would become much more complicated.

We shall follow a more intuitive path instead. Consider that we have found that with two-
dimensional orthonormal bases, the lengths of vectors could be computed by the Pythagoras
theorem since the parallelograms determining the coordinates were rectangular. To achieve
this in three dimensions, we need (and can!) use bases consisting of three orthogonal vectors.
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Figure 4.3: A three-dimensional coordinate system.

Then, again, the parallelograms will be rectangular and hence the Pythagoras theorem for three
dimensions can be used analogically as in two dimensions, Figure 4.3.
Considering orthonormal bases 3, 3/, we require the following to hold true for all vectors #

with Z3 = [z y z]T and 7, = [« o z']T

@)+ )+ ()7 = 2ty 42
Ty = @37
(RTp) Ry = T[T
7y R'R) @5 = Thig
TiCig = Fyig (4.13)

Equation 4.13 must hold true for all vectors & and hence also for special vectors such as those
with coordinates

of,l1],{ol.]1].]lo],|1 (4.14)

Let us see what that implies, e.g., for the first vector

1
[1 0 0Jc|o| =1 (4.15)
0
c11 = 1 (4.16)

Taking the second and the third vector leads similarly to coo = ¢33 = 1. Now, let’s try the fourth
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vector
1
[1 1 0o]Jc|1]| = 2 (4.17)
0
l+cio+c+1 = 2 (4.18)
cl2+c1 = (4.19)

Again, taking the fifth and the sixth vector leads to c13 + ¢31 = co3 + 32 = 0. This brings us to
the following form of C

1 a2 as
C = —C12 1 C23 (4.20)

—c13 —co3 1

Moreover, we see that C is symmetric since
T
c'=(@R'R) =R'R=C (4.21)

which leads to —ci9 = c12, —c13 = c13 and —co3 = a3, i.e. ¢12 = c¢13 = co3 = 0 and allows us to
conclude that
RR=C=1I (4.22)

Interestingly, not all matrices R satisfying Equation 4.22 represent motions in three-dimensional
space.
Consider, e.g., matrix

10 0
s={01 0 (4.23)
00 —1

Matrix S does not correspond to any rotation of the space since it keeps the plane zy fixed and
reflects all other points w.r.t. this xy plane. We see that some matrices satisfying Equation 4.22
are rotations but there are also some such matrices that are not rotations. Can we somehow
distinguish them?

Notice that |S| = —1 while |I| = 1. It might be therefore interesting to study the determinant
of C in general. Consider that

1 =1/ =|®R)| = [R7[[R] = [R[R] = (IR])* (4.24)

which gives that |[R| = +1. We see that the sign of the determinant splits all matrices satisfying
Equation 4.22 into two groups — rotations, which have a positive determinant, and reflections,
which have a negative determinant. The product of any two rotations will again be a rotation,
the product of a rotation and a reflection will be a reflection and the product of two reflections
will be a rotation.

To summarize, rotation in three-dimensional space is represented by a 3 x 3 matrix R with
R'R = T and |R| = 1. The set of all such matrices, and at the same time also the corresponding ro-
tations, will be called SO(3), for special orthonormal three-dimensional group. Two-dimensional
rotations will be analogically denoted as SO(2).
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4.3 Coordinate vectors

We see that the matrix R induced by motion has the property that coordinates and the basic
vectors are transformed in the same way. This is particularly useful observation when f is
formed by the standard basis, i.e.

17 [o] [o
g=1|1lo],l1].]0 (4.25)
o| [o] |1

b{ b1 11 T12 T13 by r11 b1 + 112 b2 + 11303
by| = R|ba| =721 722 723 | | b2 | = |721b1 +r20bo+ 72303 (4.26)
bé b3 31 T32 733 b3 731 b1 + 139 by + 133 b3
and hence
1 0 11
b{ = 711 b1 + 712 b2 + 713 b3 =r1 |0 +r2| 1] +7r3|0|=]re2 (427)
0 0 1 13

and similarly for b} and b}. We conclude that

11 21 T31

Lo .

00 B B = |rie re e | =R (4.28)
r13 123 T33

This also corresponds to solving for R in Equation 2.13 with A =R

= [5{ b} Eg]R (4.29)

S O =
O = O
- o O
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5 Image coordinate system

Digital image Im is a matrix of pixels. We assume that Im is obtained by measuring intensity of
light by sensors (pixels) arranged in a grid, Figure 5.1.

We will work with images in two ways. First, we will work with intensity values, which are
stored in the memory as a three-dimensional array of bytes indexed by the row index i, the
column index j, and the color index k, Figure 5(a). Color index attains three values 1,2, 3, with
1 corresponding to red, 2 corresponding to green and 3 corresponding to blue colors.

In Matlab, image Im is accessed using the row index i, the column index j and the color index
k as >>Im(i,j,k). The most top left pixel has row as well as column index equal to 1. The red
channel of the pixel with row index 2 and column index 3 is accessed as >>Im(2,3,1).

§1 Image coordinate system For geometrical computation, we introduce an image coordinate
system as in Figure 5(b). The origin of the image coordinate system is chosen to assign coordi-
nates 1,1 to the center of the most top left pixel. Horizontal axis 51 goes from left to right. The
vertical axis 52 goes from top down. The pixel that is accessed as >>Im(i,j,k) is in the image
coordinate system represented by the vector @ = [j,1]". A digital image with H rows and W
columns will be in indexed in Matlab as >>Im(1:H,1:W,1:3) and >>size(Im) will return [H
W 3]. The center of the most bottom right pixel will have coordinates [W, H]" in the image
coordinate system.

The image coordinate system coincides with the Matlab coordinate system image, i.e. com-
mands

>> axis image
>> plot(j,i,’.b’)

plot a blue dot on the pixel accessed as Im(i, j,k);

The image coordinate system is non-standard in two dimensions since it is a left-handed
system. The reason for such a unnatural choice is that this system will be next augmented into
a three-dimensional right-handed coordinate system in such a way that the 53 vector will be
pointing towards the scene.
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Figure 5.1: Image is digitized by a rectangular array of pixels

(a) Image Im is a matrix of pixels. In
Matlab, it is accessed using the row index
i, the column index j and color index k
as >>Im(i,j,k). The most top left pixel
has row as well as column index equal to
1. The red channel of the pixel with row
index 2 and column index 3 is accessed as
>>Im(2,3,1).

(b) The image coordinate system is defined
with horizontal axis 51 and vertical axis gg.
The origin of the coordinate system is cho-
sen to to assign coordinates 1,1 to the most
top left pixel. Notice that pixel, which is
accessed as >>Im(2,3,1), is represented in
the image coordinate system by the vector
i=32]".

Figure 5.2: Image coordinate system.
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6 Perspective camera

Modern photographic camera, Figure 6.1, is an interesting and advanced device. We shall
abstract from all physical and technical details of image formation and will concentrate solely
on its geometry. From the point of view of geometry, a perspective camera projects point X
from space into an image point x by intersecting the line connecting X with the projection center
(red) and a planar image plane (green), Figure 6.1(b).

6.1 Perspective camera model

Let us now develop a mathematical model of the perspective camera. The model will allow us
to project space point X into image point z and to find the ray p in space along the which point
X has been projected.

§1 Camera coordinate system Figure 6.2 shows the geometry of the perspective camera.
Point X is projected along ray p from three-dimensional space to point  into two-dimensional
image. Point x is obtained as the intersection of ray p with planar image plane w. Ray p is
constructed by joining point X with the projection center C. The plane through the projection
center C', which is parallel to the image plane is called the principal plane.

The image plane is equipped with an image coordinate system (§1), (o, ), where o is the
origin and a = [51, 52] is the basis of the image coordinate system. Notice that the basis « is
shown as non-orthogonal. We want to develop a general camera model, which will be applicable
even in the situation when image coordinate system is not rectangular. Point x is represented
by vector 4 in (o, @)

@ =uby +vby ie. Uy = [z] (6.1)

Three-dimensional space is equipped with a world coordinate system (O, ), where O is the
origin and 0 = [cfl, jg, dg] is a three-dimensional orthonormal basis. Point X is represented by
vector X in (O,8). The camera projection center is represented by vector €' in (O, ).

Let us next define the camera coordinate system. The system will be derived from the image
coordinate system to make the construction of coordinates of the direction vector & of p extremely
simple.

Camera coordinate system (C, /) has the origin in the projection center C' and its basis
8= [51, 52, 53] is constructed by re-using the two basis vectors of @ and adding the third basic
vector 53, which corresponds to vector Co. We see that vectors in [ form a basis when point
C' is not in 7, which is satisfied for every meaningful perspective camera. Notice also that the
camera coordinate system is three-dimensional.

Image points 0 and x are in plane 7, which is in three-dimensional space, and therefore we can
consider them as points of that space too. Point z is in (C, ) represented by vector #, which is
the direction vector of the projection ray p along which point X has been projected into z. We
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(a) (b)

Figure 6.1: Perspective camera (a) is geometrically a point (red) and an image plane (green)

(b).

see that vectors i, T, 1;3 form a triangle such that

= d@+bs (6.2)
= u51+v52+153 (6.3)
and therefore
(% -
. . U

Notice that basis 5 has been constructed in a very special way to facilitate construction of .
We can use u, v directly since 3 re-uses vectors of o and the third coordinate is always 1 by
the construction of 53. Although we do not know exact position of C' w.r.t. the image plane, we
know that it is not in the plane m and hence a meaningful camera coordinate system constructed
this way exists.

Notice next that the camera coordinate system is right-handed. This is because when looking
at a scene from a point C' through the image plane, the image is constructed by intersecting
image rays with the image plane, which is in front and hence the vector 53 points towards the
scene. We see that vectors of 5 form a right-handed system.

Let us mention that we have used deeper properties of linear and affine spaces. In partlcular
we were making use of the concept of free vector in the following way. We look at vectors bl, bo
and u as on a free vectors. Therefore, coordinates of the representative of # beginning in o with
respect to representatives of 51, 52 beginning in o equal the coordinates of the representative of
4 beginning in C with respect to representatives of 51, by beginning in C. Hence u, v reappear
as the first two coordinates of .

For usual consumer cameras, vector 53 is often much longer than vectors 51, 52 and often not
orthogonal to them. Therefore, basis § is in general neither orthonormal nor orthogonal! This
has severe consequences since we can’t measure angles and distances in the space using 3, unless
we find out what are the lengths of its vectors and what are the angles between them.
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Va,

Figure 6.2: Coordinate systems of perspective camera.
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§2 Perspective projection Point X has been projected along p into x. Since Z is a direction
vector of p, point X can be represented in (C, 3) by

nx (6.5)

for some real non-negative! 1. The value of i corresponds to the scaled depth of X, i.e. the
distance of X from the plane passing through C and generated by 51, by in units equal to the
distance of C' from 7. Value 7 is not known since it “has been lost” in the process of projection?
but will serve us to parametrize the projection ray in order to get coordinates of all possible
points in space that could project into x.

Let us now relate the coordinates i,, which are measured in the image, to the coordinates
Xg, which are measured in the world coordinate system. First consider vectors X , C and 7.
They are coplanar and we see that there holds

— —

ng = X-C (6.6)

To pass to coordinates, we will use the camera coordinate system, in which we can write
nZs = Xg—Cp (6.7)
" [ﬁf‘] = X5—-Cjs (6.8)

Next we shall pass to the coordinates w.r.t. basis § on the right hand side of Equation 6.8 by
introducing a matrix A, which transforms coordinates of a general vector ¢ from basis d to basis

B, i.e.
Ys = Ays (6.9)

We know from linear algebra (§3) that such a matrix exists. We write

U _la_ = A(X5-Cy)
7 _1“_ = A[1|—6*5] ﬁé] (6.10)
n _ﬁl“_ = P [%] (6.11)
nig = Py [%] (6.12)
with 3 x 4 image projection matrix
P; = [A \—Ad;] (6.13)

'Here we choose @ such that 1 is non-negative. Considering negative 7, as in [15], may be necessary if it is not
clear how has the image coordinate systems been defined or how has Z been chosen. For instance, if Z has
been chosen to point along ray p away from X, n would have to be negative.

2Tt can be recovered when a point X is observed by two cameras with different projection centers.
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53 Projection equation Equation 6.11 describes the relationship between measurement ,, in
the image and measurement X(; in space. It says that Xg is projected into i, since there exists 7
such that Equation 6.11 holds. Notice that n multiple of the vector on the left of Equation 6.11
is obtained by a linear mapping represented by matrix Pz from vector X5 on the right.
When computing , from X];, we actually eliminate 7 using the last row of the (matricidal)
equation (6.11)
p X
-
7, = p?r : (6.14)
pz X
p3 X

where we introduced rows of p1, p2, p3 of P and a 4 x 1 vector X as follows

Ps = | pg and X = [)?] (6.15)

Notice that the projection equation is not linear. It is a rational function of the first order
polynomials in elements of X.

54 Projection ray Having an image point ., we can construct its projection ray p in space.
The ray consists of all points Y that can project to i,. In (C,3), the ray is emanating from the
origin C. We parametrize it by real n and express it in (O, d) by vector X;

. i, .
Yo =1 [ 1“} =g
)?5 = nA_lfg + 65 (6.16)

Notice that )25 (6.16) can also be obtained for a given 1 by solving the system of linear equa-
tions (6.12) for Xs.

6.2 Computing image projection matrix from images of six points

Let us now consider the task of finding the Pz from measurements. We shall consider the situation
when we can measure points in space as well as their projection in the image. Consider a pair
of such measurements [z,y,2]" S [u,v]T. There holds

~ QX (6.17)

>

4

Il

o
S BN SIR

|

for some real A\, 3 x 4 matrix Q and 4 x 1 coordinate vector X. Notice that we introduced new
symbols A\ and Q to emphasize that they are determined by Equation 6.17 up to a non-zero scale

Q=¢ps (6.18)
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We will see that this will have further consequences.
Introduce symbols for rows of Q

al
Q=|aj (6.19)
a3
and rewrite the above matrix equation as
Au = qfX (6.20)
Av = qX (6.21)
A= aqix (6.22)
Eliminate A from the first two equations using the third one
(gsX)u = qiX (6.23)
(@X)v = gqX (6.24)
move all to the left hand side and reshape it using x'y = y'x
X'qr — (ux")gs = 0 (6.25)
X'ga— (vX")gz = 0 6.26)
Introduce vector of parameters (which are elements of Q)
-
a=[al ai ai] (6.27)
and express the above two equations in matrix form
zr y 2z 1 00 00 —uzx —uy —uz —u - 0
0000wy 2z 1 —vx —vy —-vz —v N
M qg =0 (6.28)

Every correspondence [z, y, 2] T “" [u,v]" brings two rows into the matrix M (6.28). We need

therefore at least 6 correspondences in general position to obtain 11 linearly independent rows
in Equation 6.28 to obtain a one-dimensional space of solutions.

If Q is a solution to Equation 6.28, then 7Q is also a solution and both determine the same
projection for any positive 7 since

(7Q) X=7(QX) =7 (AZg) = (TA) Z3 (6.29)

Assuming P3 = 7Q leads to A = n/7. We see that we can’t recover Pg but only its non-zero
multiple. Therefore, when solving Equation 6.28, we are looking for one-dimensional subspace
of 3 x 4 matrices of rank 3. Such a subspace determines one projection. Also note that the zero
matrix does not represent any interesting projection.

Notice that when considering more correspondences, M becomes

1T Y1 2 1 0 0 0 0 —U1r]y —UYr —uUlk1r —uUj
T2 Y2 Z2 1 0 0 0 0 —UT2 —UY2 —U2Z2 —U2Q

Mg = : = .
4 0 0 0 0 1 Yir z1 1 —vV1r1y —U1Y1 —V121 —U1 4 0 (63(])

0 0 0 0 o Yz 22 1 —UV2T2 —V2Y2 —UV2Z2 —UV2
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Matrix M can be more concisely rewritten as
[X{ 07 —wX{

X4 07 —usXJ

0F X5 —weXg

with 0T = [0,0,0,0].

§1 A more general procedure for computing @ We shall next develop and alternative formu-
lation for finding matrix Q. Let us come back to Equation 6.17

A = QX (6.32)

Above, we have eliminated \ assuming 13 = 1. Let us now present an alternative procedure for
eliminating A, which works for any non-zero @ = [u,v,w]", i.e. even when w = 0. The trick is

to realize that
0=1ux (\d)=uxQX=[u], QX (6.33)

This gives three equations for each @ < X correspondence. However, only two of them are linearly
independet since [u],, has rank two. Now, we are in the position to employ Equation 2.90, which
gives

[@],QX = 0 (6.34)
x'Q"[@], = of (6.35)
v(xTQ" @) = w(o") (6.36)
([, ®x")v@") = w0 (6.37)
0 —w v
w 0 —u|®x" |v@") = w0 (6.38)
—v U 0
ol —wx' vX'"
wX' of —ux' [ v@") = w(0h) (6.39)
—vX" X' o
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For more correspondences numbered by i, we then get

ol
ol

w1 XI

w9y X;—

—U1 XIT

—U9 XQT

—w1 Xir
—w2 X;—
OT
OT
Ul XIT

U2 X2T

1]1)(1r ]

V9 X;

—Uul XI

—U2 X;—

OT
OT

(6.40)

which if, for w = 1, is equivalent to Equation 6.30. Notice that v(Q") = q from Equation 6.30.
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7 Camera calibration

Let us now look at a useful interpretation of image projection matrix in space and image equipped
with a cartesian coordinate systems.

7.1 Camera pose

The projection formula 6.10 reveals that the perspective projection depends on matrix A and
vector Cs. The vector Cs represents the position of the camera projection center w.r.t. the world
coordinate system. Columns of matrix A are coordinates of the basic vectors of ¢ in the basis g

= [ b 6] &

To recover the orientation of the camera, we will introduce the focal length f as the distance
of the camera projection center C' from its projection plane 7 (in the world units) and replace
the product f A by the product of two 3 x 3 matrices K and R

fA=KR (7.2)

We will see that this seemingly artificial construction is indeed justified.

Rotation matrix R determines the orientation of the camera in space and altogether with Cs
defines the camera pose. The camera calibration matriz K does not change when moving its
camera in the space.

To obtain K and R, we define, Figure 7.1, the camera cartesian coordinate system (C,~y) with
center (again) in the camera projection center C' and with basis v = [¢1, ¢2, ¢3] such that

& = kb
Co = kiabi + k2o by (7.3)
53 = k13 51 + k‘23 82 +1 53

Parameters k;; are determined to make the basis v orthogonal. Notice that vector ¢3 is orthog-
onal to 7 since it is orthogonal to ¢, €2, which span 7, by construction. Also notice that v is (in
general) not an orthonormal basis since the length of its vectors equals the distance of C' from
m, i.e. the focal length f in the world units.

Equations 7.3 define matrix K as

kin ki ki3
K = [Eiﬁ EQH 535] = 0 koo kos (74)
0 0 1
By this construction, we have
fﬁ = AZ;=K _”Y (7.5)
1
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The world cartesian coordinate system has basic vectors of unit length. The camera cartesian
coordinate system (C,~) has basic vectors of length equal to f. Therefore,

' r{/f
(4, o, di, | = 5r=|=]/s (7.7)
r{/f

for some 3 x 3 orthonormal matrix R with rows r{, rJ, rd.

Consider that 1
a=|d, &, & =x|d, b ds |- KR (7.8)
We can view the matrices 1R and K as coordinate transformation matrices, which transform
a general vector ¢ from the coordinates w.r.t. § to v and then to 3, i.e.

. R S

ylgzKyV:?KRy(; (7.9)
The basis v is orthogonal and all basic vectors have the same length, which is equal to f. It
follows from the orthogonality of the basis v that ¢; - ¢ = f2, ¢ - ¢, = 0 and & - & = f? and
hence using Equation 7.3 leads, for a positive f, to

ke b1 — f =
Ky koo (b1 - b2) + k1o f2 = 0 (7.10)
k%l k%Q Hb2“2 - (k%Q + k’%ﬁ 2=

Let us solve Equations 7.10 for ki1, k12 and kgo. The first equation in (7.10) provides kqj.
Substituting the square of f from the first equation into the second one and dividing it by
k‘%l gives the second equation of (7.11), which allows to compute ki2 from kas. To get koo, we
construct the third equation of (7.11) as follows. We express k11 from the first equation of (7.10)
and k12 from the second equation of (7.11) and substitute them into the third equation of (7.10),
which we then multiply by ||by|[*/f2. Altogether, we get

kin by = f = 0
kiz |01 + ka2 (b1 -b2) = 0 (7.11)
Koo ([01]? [b2]* = (b1 - 52)%) = f2[0u]* = 0
Looking at the third equation of (7.11) we see that
2|15, 112 2
k%2 _ _ _'f H IH - - = — - f — (712)
[01]2[b2]* = (b1 - b2)*  [[b2]* — [|b2]? cos*Z (b1, b2)
and since v was constructed to make koo positive, we obtain
koo = / (7.13)

b sin £ (b1, ba)
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Figure 7.1: Camera internal parameters are related to the geometry of basis 5.
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The second equation of (7.10) now gives

by — —om 51#. by - o cos f(gl,gz) (7.14)
1] 1]
= - ‘fCOSL(gi’ 53) (7.15)
[b1] sin Z (b1, b2)
Finally k11 follows from (7.11)
f
T (710

Considering Figure 7.1 and Equation 7.3, we see that the coordinates of the vector iy, cor-
responding to the principal point, which is the perpendicular projection of C' onto 7, are in

B

k

_— kl?’ N KGE

Uop = 23 | , 1.€. Upq = k (717)
0 23

The horizontal pixel size corresponds to Hng Quantity k17 can thus be understood as f
expressed in the horizontal image units. The angle between the image axes 51, 52 is obtained
fl;om 1312/14111 = — cotan 4(51, 52) The ratio of the lengths of the image axes is determined by
[ba]l /161 = v/ Fern (ki + ki) /Kaa.

Let us now return to Equation 6.11 and substitute there the above results to arrive at the
final projection equation

nis = Ps {)ﬂ (7.18)
" _ﬁf‘_ = A(Xs—Cy) (7.19)
po || = ract-cy (7.20)
fn _ﬁf‘_ = KR(X;—Ch) (7.21)
¢ = xr®- 6 (7.22)
¢ 761‘17 - kR |1]-G] {)ﬂ (7.23)

We have introduced a new parameter ¢ = fn, which is the depth of X in the world units. We
conclude that .
Pﬁz[%KM—;KRC{;] (7.24)

Notice that the last row aj of A provides f since

alT 1 ki1 ki ki3 I'ir 1 k‘nrlT + klgr; + klgr;
A= a; = ? 0 koo kos r;— = ? ]4?221‘;— + kggrg (7.25)
aq 0 0 1 rd s
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and hence |aj | = % Therefore |Pg(3,1:3)| = %

Equation 7.23 is very important in many practical situations when we do not have access to
physical dimensions of the camera but only to images. Then, it is possible to recover matrix
KR [I | — 6_"5] but not image projection matrix Pz. This is so important the we introduce the
camera projection matrix

P— [KR]—KR@;] (7.26)
which is related to the image projection matrix as
P= fPB (727)

In this text, it would be more consistent to associate subscript v with the camera projection
matrix but we will not do that since we want to use the nomenclature of [15] here whenever
possible.

Let us write K explicitly,

f fCOSL(EL,EE)
Il lsin 2o 1o r28)
K= .28
0 B2l sin Z(b1ba) 0
0 0 1
where g, = [uo Uo]T. We see that we can neither recover f nor Hl_ﬁ | from P.
Let us introduce image calibration matriz
Ky — LK (7.29)
to have
Pg = [KﬁR‘ —KﬁRC(;] (7.30)
Writing image calibration matrix Kg explicitly,
1 _cosz(biby)  wg
1 [oal - lrlsin £ (51 ,b2) f (7.31)
Kg=—-K= 1 ___ % 31
g f [B2 sin 2 (b1,b2) 1f
0 7
shows that it is possible to recover both
- 1 1
1] = —— and f = — (7.32)
K11 K33

from image calibration matrix.

There is an important difference between Kg and K regarding the representation of internal
camera calibration information. Image calibration matrix Kg, and also image projection matrix
Pg, captures all calibration information about a perspective image whereas camera calibration
matrix K, and also camera projection matrix P, captures only the calibration information that
can be recovered by auto-calibration from images as we will see later. When the focal length
is known in world units or when pixel sizes are known in world units, it is more appropriate to
use image calibration Kg, or image projection matrix Pg, to represent full internal calibration
information.
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ds
- O 7
dy da
dy
1
?R
T
T
V o
= Ag(s (b) Y= [61762753]: g’y = %R’gb
s = Ky
T

(C) €= [51562763]: 376 = Rg57
V= [ﬁ17ﬁ27ﬁ3]: gu = ng
47

Figure 7.2: Coordinate systems generated by applying %R, K,R, R~ and K~1.
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§1 Coordinate systems generated by applying KR to 75 and R"'K~! to §3 We have seen that
the decomposition of A to K and R introduced the camera cartesian coordinate system (C,~),
Figure 7.2(b)

1
Yy = fR Ys (7.33)
Ky (7.34)

There are three more coordinate systems to consider when looking at how matrices R, K, and
their inverses R™!, K~!, apply to vectors ¢5 and ys, Figure 7.2.

Let us first consider coordinates of a vector ¢ w.r.t. basis § and apply successively R and K.
Coordinate vector Ry can be interpreted as coordinates of i w.r.t. a new basis € = [é7, &, €3],
Figure 7.2(c). Applying further K to ¢, gives the coordinate vector K ., which can be interpreted
as i w.r.t. yet another new basis v = [1i1, M2, 73]. We get from v to [ by using % I

Ye = RUs (7.35)
Yy = Ky (7.36)
| 1.

o = Lo (7.37)

We have introduced two new coordinate systems (C,v), v = [7i1, 72, i3] and (C, €), € = [€}, €2, €3].

Next we consider coordinates of a vector ¢ w.r.t. basis # and apply successively K~' and R™1.
Coordinate vector K~! 3 gives #,. Coordinate vector R™! ¢, can be interpreted as coordinates
of ¥ w.r.t. a new basis k = [El, ko, Eg], Figure 7.2(d). To get from g to ¥s we need to employ

f1

g, = K 'is (7.38)
. = R (7.39)
Us = [l (7.40)

We have thus introduced a new coordinate system (O, k), kK = [El, ko, Eg]

Figure 7.3 summarizes the relationship between coordinates of a vector and between bases
associated with a perspective camera.

We can now see why we have chosen to denote the image projection matrix as Pg and the
camera projection matrix as P. The image projection matrix provides the ray direction vector
Z in basis # while the camera projection matrix provides the ray direction vector Z in basis v.

§2 Recovering camera pose from its projection matrix Let us next consider that we have
already computed the camera projection matrix

Q=¢P =EKR[T| — Cj) (7.41)
consisting of a 3 x 3 matrix M and 3 x 1 vector m

Q= [M|m] (7.42)

48



T. Pajdla. Elements of Geometry for Computer Vision 2020-2-17 (pajdla@cvut.cz)

—~ ys — 1 — ﬂm b - -
A/R 1|5 7 A/R_l/ '_1 f K
5 iR fR
:IUE\l f% T N f % R—l
K f\%/ SN S
b b e

_ i
G K v K1
N N
s B

Figure 7.3: Relationships between (a) coordinates in different bases. e.g. 73 = K¢/, and (b) bases
themselves, e.g. 3 = YK~!, associated with a perspective camera.

To recover camera pose from Q, we need to get Cs from m and to decompose Q into the product
of K in the form of (7.4) and R such that R'R = I and |R| = 1. Consider M in the form

M = |mj (7.43)

Next we notice that the last row of KR has unit norm since it is equal to the last row of rotation
R. Therefore, we need to divide M by the norm of its last row to get a matrix decomposable into
the product of KR. Moreover, it follows from the construction of 8 that ki1 > 0 and koo > 0.
Thus, determinant |KR| = [K| [R| = k11 k22 > 0. Therefore, we also need to multiply M by the
sign of its determinant to get a matrix decomposable into KR.

T T
. . m kin k2 kg | | T
M M 1 1
%H M = Sieth | ‘ m;— = 0 koo kos r; (7.44)
o] o e B el N
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which provides the following set of equations

mj m3 T T
||m3H2 = kQQ rors + kzg r3r3 = kgg (745)

T

= k 7.46

g2 ~ (740
mm s g2 (7.47)
”m3H2 - 22 23 .

T
m, m
ﬁ = k12 koo + k13 ka3 (7.48)
mel

from which ki1, k12, k13, k22, ka3 can be easily computed considering that the most of consumer
digital cameras have ki1 > 0, koo > 0, k13 > 0, kog > 0.
Having k;; computed, we recover R from M as

sign |M
=g 128 i (7.50)
ms]
Camera projection center can be computed in two ways. Either we get
Cs=—M'm (7.51)

or we obtain it by finding a basis ¢ of the one-dimensional right null space of matrix Q, i.e.
solving

Qc=0 (7.52)
and then computing
G| 1
{ ) } = C4c (7.53)

where ¢4 is the fourth coordinate of vector c.

7.2 Camera calibration and angle between projection rays

We have introduced matrices P, R and K, and vector C's which determine the projection from
space to images. However, since K is introduced with Ks3 = 1, the triplet (K, R, 65) does not
contain all information about the camera, which can be obtained by direct measurement of its
physical components in a world coordinate system equipped with a known world unit length
1. The missing element is the scale of P, which is equivalent to knowing the value of the focal
length or the size of pixels, i.e. f, |bi] or |baf, in 1y .

_Knowing K and [ allows to recover |b1| from Equations 7.3 as by = f/k11. Knowing K and
|b1], on the other hand, gives f = |[by | k11.

Therefore, full calibration of the camera is encoded in matrix Pz, Equation 7.24, or, e.g., in
one of the following tuples: (Kg, R, Cs), (K, R, Cs, f), (&, R, Cs, |b1]) or (K, R, Cs, [ba).

We defined the camera calibration matrix K with Kg3 = 1 because we often do not have access
to the world unit when working with images without knowing anything about the camera which
was used to make them. Moreover, a number of important tasks can be done without knowing
the world unit.
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Figure 7.4: A calibrated camera pose can be computed from projections of three known points.

§1 Angle between projection rays Consider two image points i1, and ws,. The direction
vectors of the rays are in § given by

. U1 - Ual
1115:[ i ]7 51725:|: i] (754)

To obtain the angle between the direction vectors by evaluating the scalar product of the vectors,
we need to pass to an orthogonal basis. The “closest” orthogonal basis is v. Hence

T = ST eTp—1=
cos Z(71, T2) = Ty Sk Ky (7.55)
’ |1Zy | Z2y [ (KT Z1 ] [K— 2o '

Notice that we could use the orthogonal basis v to measure angles instead of, e.g., the closest
orthonormal basis € since the unknown scale factor f cancels in the following formula

ST = =T = =T =
COSL("E]_ .’f?) _ xlTExQE _ (f xl’y)(f [BQ’Y) _ wl’ym}y (7 56)
’ |ZrellZ2el 1 Zrell f T2y [F14 172y |

We conclude that we do not need to know f to measure angles between projection rays.

7.3 Calibrated camera pose computation

We have seen how to find (uncalibrated) perspective camera pose from projections of known six
points. In fact, we have recovered the calibration of the camera. Next we shall show that when
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the calibration is known, we are able to find the pose of the camera from projections of three
points. This is a very classical problem which has been known since [16].

Figure 7.4 shows a camera with center C, which projects three points X;, Xo and X3, rep-
resented by vectors Xlg, X5 and ng in (O, 0), into image points represented by Z13, Z2p and
€r343-

§1 Classical formulation of the calibrated camera pose computation We introduce distances
between pairs of points as

dip = H)?ms — Xusll,  doz = || X35 — Xosll, da1 = || X15 — Xss]] (7.57)

Since we see three different points, we know that all distances are positive.
Points X7, X2 and X3 are in (C,y) represented by vectors

— 1=
Zin ] .
N T =Ni—=, =123 (7.58)
Izl T Rl

with 7; representing the distance from C' to X;. Distances n; are positive since otherwise we
could not see the points.

§2 Computing distances to the camera center Calibrated perspective camera measures an-

gles between projection rays
Tl K™K g
[kl [ K128

cij = cos Z(Z,Z;) i=1,2,3, j=(i—1ljnod 3 +1 (7.59)
Hence we have all quantities 7;, cos Z(Z;, ;) and d;;, which we need to construct a set of

equations using the rule of cosines d%j =n? + 7]]2- — 2m;n; cos L(Z;, Zj), i.e.

diy = ni+m —2mnacr (7.60)
diy = m5 45 —2mm3co3 (7.61)
43 = M —2mmen (7.62)

with ¢;; = cos Z(Z;, Z;).

We have three quadratic equations in three variables. We shall solve this system by ma-
nipulating the three equations to generate one equation in one variable, solving it and then
substituting back to get the remaining two variables.

§3 A classical solution Let us first get two equations in two variables. Let us generate new
equations by multiplying the left hand side of (7.60) and (7.62) by the right hand side of (7.61)
and right hand side of (7.60) and (7.62) by the left hand side of (7.61)

diy (5 +m5 —2memzcas) = dag (nf +m3 — 2m M2 C12) (7.63)
A3, (5 +n3 —2menzcas) = dig(n3 +n7 —2m3m c31) (7.64)

We could have made three different choices which equation to use twice but since all d;; # 0,
and hence all sides of the equations are nonzero, all the choices are equally valid.

52



T. Pajdla. Elements of Geometry for Computer Vision 2020-2-17 (pajdla@cvut.cz)

We have now two equations with three variables but since the equations are homogeneous, we
will be able to reduce the number of variables to two by dividing equations by (e.g.) n? (which
is non-zero) to get

iy (7o + i3 — 2mamacas) = dyg (1+nis — 2ma2ci2) (7.65)
d3y (mia +mis —2mamscas) = diz (147i3 —2msces) (7.66)
with 7o = Z—f and 713 = Z—i’ Notice that we have a simpler situation than before with only

two quadratic equations in two variables. Let us proceed further towards one equation in one
variable.
We rearrange the terms to get a polynomials in 713 on the left and the rest on the right

diynis + (—2diymacas)ms = dig (14 07y — 2maci2) — diant
(d3; — d3s) mis + (2d3g c31 — 2d5, o cag) ms = dag — d3; nis (7.67)

to get two quadratic equations

minis+pims = q (7.68)

monis +pams = @

in 713 with

mi = di (7.69)
p1o= —2dima e (7.70)
q = dy (1+ s — 212 c2) — d3ants (7.71)
my = dj —d3 (7.72)
p2 = 2dyzca —2d3 macas (7.73)
¢ = diz—d3i, (7.74)

We have “hidden” the variable 712 in the new coefficients. We can now look upon Equations 7.68

as on a linear system
ma P2 s q2

The matrix of the system (7.75) either is or is not singular.

§4 Case A If it is not singular, we can solve the system by Cramer’s rule [6, 7, 5]

2 mi1 p1 a1 p1
= 7.76
s [m2 p2” qu Pz” (7.76)

mi p1 mi1 q1
= 777
ol el = e & o)

giving

Nz (mips —map1) = qp2—qp (7.78)

M3 (mips —map1) mi g2 —maqi (7.79)
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Eliminating 713 (by squaring the second equation, multiplying the first one by mq ps — ma p1,
which is non-zero, and comparing the left hand sides) yields

(m1p2—map1) (qup2 — q2ap1) = (m1g2 —maqr)” (7.80)
Substituting Formulas 7.69-7.74 into Equation 7.80 yields

0 = ag 77‘112 + as nfz + as nfz + a1 2 + ap (7.81)
with coeflicients
ag = —di3 —djydys — dygdsy — 2d3 dyy 5y + 2d35d5; + 2diy dos (7.82)
+4d3y ¢y dys d3)
a3 = 4diydiscsicoy —A4digdSs cro — 4d3 co3dSs c31 + 4dys c12d3y (7.83)

+dd3y c1a — 4diy dyg ez diy cas — 8diy 33 dig d3y c12 — 8BS cra di
+ddty dyg 12 d3)

ag = 8dSycfydyy +4di3d — 2dasdyy + 2diydiy — 4diydis 3y (7.84)
—4d3ycly — 4diy 3y dys — 2d55 + 8diy a3 Sy a1 cia
+4dfy 5y dys 43y — 4dyy iy dsy + 4diy dis 3y + 8diy dyg ez d3y eag ca

ay = 4dizciadi; +4diydSscia + 4dss cro — 4d3y ca3dSs e31 (7.85)
-8 d%Q dg?, 031 c12 —4 d%2 dég €31 d:?n Co3 — 4 d%Q d§3 €12 d%l
+4diy dig 31 co3 — 8dSg 12 d3y

ap = 2ds3d3y +2diydazd3y — dyzdyy — disdys + 4dYy dS5 5 (7.86)
—d3s — 2diy di

We will use eigenvalue computation to find a numerical solution to Equation 7.81. Construct
the following companion matrix

0 0O 3—2
100 —%
C = 01 0 w (7.87)
0 01 as
a4
and observe that
as 3 az o ay agp
I-C| = nly+ —nh+ — 0+ —mat — 7.88
|12 ‘ Mo + s M2 + ” Uivies s ma + s (7.88)

Therefore, a numerical approximation of 712 can be obtained by computing, e.g., >>eig(C) in
Matlab. Complex solutions are artifacts of the method and should not be further considered.
For every real solution, we can then substitute back to Equation 7.79 to obtain the corresponding

m —m
7713 = M (789)
mip2 —Mmap1

A3y (d33 — d3y niy) + (d33 — d3p) (d33 (1 + nfy — 2mi2 c12) — diy 13y)
2d3, (33 c31 — d3; ca3mz) + 2 (d3; — d33) iy caz o

To get 11, 2 and 73, we consider Equation 7.60, which can be rearranged as

diy = m7 (14 77y — 2ma c12) (7.90)
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and hence yields positive

di2
mo = (7.91)
V1410, —2ma e
N2 = MMme (7.92)
N3 = MMm3 (7.93)

§5 Case B Let us now look at what happens when the matrix of the system (7.75) is singular.
Then, after substituting mi, me, p1 and ps from Equations 7.69-7.74, we have

mipy —mgpr = 0 (7.94)
—2diy dy (macag —cz1) = O (7.95)
Mm2c23 = €31 (7.96)

We used the fact that neither dio # 0 nor dos # 0.

§6 Case B1 When co3 # 0, then we get

c
M2 = —* (7.97)
C23
Substituting it to Equations 7.65 we get

C31 C31 c31 C31
diy (()2 + 03— 2= C23> = di <1 + (=) -2 = 012> (7.98)

C23 93 C23 €23
diy (Cgl + iy — 2 €31 Co m3) = diy (033 + 3y — 231 3 c12) (7.99)

and after some more manipulation obtain a quadratic equation
(d¥5 ¢33) M3 + (—2d¥5 33 ¢31) iz + din 3y — d33 33 — d33 3y + 2d33cracazcar = 0 (7.100)

in n13. We get n1, n2 and n3 from Equations 7.91, 7.92, 7.93.

§7 Case B2 When co3 = 0, then it follows from Equation 7.96 that c3; = 0 as well. Returning
back to equations 7.65, 7.66 provides

diy (nfy +11i5) = das (1 + 772 — 2o cr2) (7.101)
d:?n (77%2 + 7]%3) = dgg (1 + 77%3) (7.102)

Expressing 113 from Equation 7.102 gives

(d%:% - d%l) 77%3 = d:2>,1 77%2 - d%3 (7-103)
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§8 Case B2.1 When d3; # d3,, then we can write

2 2 2
_ d3y s — dig

2
T -
to substitute it into Equation 7.101
d2 2 d2
diy (77%2 + W) = diy (1+nfy — 2ma2ci2)
23 — 431

which we further manipulate to get a quadratic equation in 719

(d%Q — d33 + d§1) Mo + 2 c12 (dyy — d3y) ma + d3; — diy — di3 = 0
We get 11, 2 and n3 from Equations 7.91, 7.92, 7.93.
§9 Case B2.2 Finally, when d3; = d3%,, then we get from Equation 7.103

me =1

and from Equation 7.101

and hence the positive

We get 11, 72 and n3 from Equations 7.91, 7.92, 7.93.

(7.104)

(7.105)

(7.106)

(7.107)

(7.108)

(7.109)

§10 Selecting solutions The above process of 7; computation often delivers several solutions.
It is important to notice that some of them may not satisfy the original Equations 7.62-7.60.
For instance, we always obtain solutions for the case A as well as for some of the cases B but
only one of the cases is actually valid. Hence, we need to select only the solutions that satisfy

Equations 7.62-7.60 and are meaningful, i.e. are real and positive.

§11 A modern (more elegant) solution The classical solution is perfectly valid but it was
quite tedious to derive it. Let us now present another, somewhat more elegant, solution, which

exploits some of more recent results of algebraic geometry [2, 17].

Let us consider Equations 7.60, 7.61, 7.62 and proceed to Equations 7.65, 7.66, but, this time,

using all three pairs to get three equations in 712, 113

fi = diy (niy + i — 2m2ms cas) — diz (1+ iy — 2z c12) = 0
fo = d§1 (nfz + 77%3 — 2m2ms3 023) - dgs (1 + 77%3 —2m3 031) =0
f3 = dis(L+nis—2maen) —diy (1+ i —2maciz) =0
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It is known [2, 17] that solutions to a set of k algebraic equations
filz1,...,zn) =0, i=1...k (7.113)

in n variables, which have a fininte number of solutions, can always be obtained by deriving
a polynomial g(x,) = 0 in the last variable by the following procedure. If the system, does
not have any solution, the procedure will generate polynomial g, = 1, i.e. a non-zero constant,
leading to the contradiction 1 = 0.

The procedure is as follows. First generate new equations by multiplying all f; by all possible
monomials up to degree m

L1y Ty T3y T Ty ooy Ty T, X2 Ty, TN (7.114)
to get equations
fi=0, . fn=0,21fi =0,...,20fn =0, 251 =0, 11 20f1 =0,..., 2" f, =0  (7.115)

The degree m needs to be chosen such that the next step yields the desired result. It is always
possible to choose such m but it may sometimes be found only by using more and more monomials
until the Gaussian elimination of the matrix of coefficients, which combine monomials, does not
produce a row corresponding to an equation in x, only. Let us demonstrate this process by
solving our problem.

We use the following four monomials of maximal degree two

M2, M3, M2 73, Nz (7.116)

Notice that we did not include the second degree monomial n%3 since it turns out that equations
generated by that monomial are not necessary. We obtain 15 = 3 + 4 x 3 equations

jcc; i 77123775’3 1
f M3
3 2,2
[ M2 M3
Tz J1 2
ma fa 771327712
e f3 37713
ms3 f1 T2 171
mafe | =M|M2 | —Mn=0 (7.117)
M3 f3 13 112
12 113 fi 24113
1213 f2 172132
M2 M3 f3 %2
2 N2
Mz 1 T2
77%2 f2 1
2
Nia f3 ] - -
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with
B 0 0 0 0 m1 0 0 —my 0 0 0 my mg  —ma |
0 0 0 0 ms 0 0 mg —mig 0 0 —m3 0 mo
0 0 0 0 —mq 0 0 0 m11 0 0 ms3 —mio me
0 0 0 m1 0 0 —m7 0 0 0 my mg —mo 0
0 0 0 ms 0 0 mg —mio 0 0 —m3 0 mo 0
0 0 0 —m1 0 0 0 mi1 0 0 ms —m1ig me 0
0 mi 0 —mz 0 0 my mg —mgo 0 0 0 0 0
M = 0 ms 0 mg —mio 0 —m3 0 mo 0 0 0 0 0
0 —m7 0 0 miq 0 ms3 —mi2 meg 0 0 0 0 0
my 0 —mry 0 0 my mg —mo 0 0 0 0 0 0
ms 0 mg —mig 0 —ms3 0 mo 0 0 0 0 0 0
—m1 0 0 mi1 0 ms —mi2 meg 0 0 0 0 0 0
0 0 mi 0 0 —mr 0 0 0 my mg —msg 0 0
0 0 mpg 0 0 mg —mig 0 0 —ms3 0 mo 0 0
| 0 0 —m1 0 0 0 mi11 0 0 ms3 —m12 me 0 0|
(7.118)
and

2 2 2 2 2

— 2 _ 2 2 _ 2 _ 2

2 2 2 2 2

Matrix M contains coefficients and vector m contains the monomials.

Notice in Equation 7.117 that the last five monomials contain only on n12. We have deliberately
ordered monomials to achieve this. Next, we do Gaussian elimination (with pivoting) of matrix
M and get a new matrix M.

One can verify that that the 10th row of M has the first nine elements equal to zero. Therefore

Myg.m =0 (7.120)

is a polynomial only in n12. In fact, it is exactly a non-zero multiple of polynomials obtained in
cases A, Bl, B2.1 and B2.2 above.

Discussion of the cases happens in the Gaussian elimination with pivoting, which avoids
dividing by elements close to zero. The resulting polynomial may be of degree four (case A) but
will have lower degrees in other cases.

§12 Computing camera orientation and camera center Having quantities 7, 12, 13, we shall
compute camera projection center C_"(; and camera rotation R from Equation 7.24.

The three points X, Xo and X3 are represented in the world coordinate system (O,d) by
vectors Xlg, X25 and ng. With known 7, 12, 173, we can represent them also in the camera
(orthonormal) coordinate system (C,€) by vectors

. B 7 7 7 '
Ve mmifie =i =y LT Ty g (7.121)
||Ziel | 1f Ziv I [1Zi |

Coordinate vectors Xig are related to coordinate vectors }7;5 as follows

Yie = R(X15—Cs) (7.122)
Yae = R(Xa5—Cj) (7.123)
Vse = R(X35—Ch) (7.124)

There are three vector equations in R3, which is nine scalar equations, and 12 unknowns in R
and C5. Additional seven equations are provided by the fact that R is an orthonormal matrix,
ie.RTR =1 and R| = 1.
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To compute R, we shall next eliminate 65 from Equations 7.122-7.124

Yae = Yie = R(Xy5 — Xi5) (7.125)
Y3 — Y. = R(ng — Xl(;) (7.126)

and use the property (Equation 2.45 in Section 2.3)

S o R-T - o S S
XexYe = W(Xé x Y5) = R(Xs x Ys) (7.127)

of the vector product of any two vectors X , Y in R3 and an orthonormal matrix R to write
(}726 - }716) X (}7236 - }716) = <R (XQ(S — XI(S)) X (R (X35 — Xl&)) (7.128)
= R <(X25 — X15) x (X5 — Xw)) (7.129)

which provides a triplet of independent vectors expressed in the two bases

Zoe =Yae —Vie, Zos = Xos — Xus (7.130)
Z3e = Y3c — Yie, Z3zs = X35 — X1 (7.131)
Zve = Zae x Zse,  Zhs = Zos x Zss (7.132)

Rotation R can then be recovered from

[216 Zoe de] =R [215 Zos 235] (7.133)
as .
R = [Zle Zoe 235] [216 Zos 235] (7.134)
With known R we get C_"(; as
Cs=Xis—R'"Y:, =123 (7.135)
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8 Homography

We shall next investigate the relationship between projections of 3D points by two perspective
cameras into two images. In general, the projections depend on the shape of the scene and
camera poses and this relationship may be very difficult to describe. However, there are several
very important situations when the relationship can be given in a form of a special image
transform, the homography.

Let us first consider the situation when two (different) cameras share a common projection
center. That means, the cameras may have different coordinate systems, different orientations
but must have the same projection center. This situation often arises when photographing with
a camera rotating around its projection center, e.g., when taking images for constructing a
panorama capturing wide view angle. We shall see that the corresponding projections will be
related by a homography.

Next, we shall look at a different situation when the cameras are unconstrained, i.e. they can
be anywhere in the space and with completely different poses and coordinate systems, but 3D
points are forced to lie in a single plane not containing the camera centers. This situation arises,
e.g., when photographing a flat screen, a poster or a facade from different viewpoints. Again,
the corresponding projections of the points in the plane (but not the projections of the points
out of the plane) will be related by a homography.

8.1 Homography between images with the same center

Let us consider two perspective cameras with identical projection centers C' = C’, which project
point X from space to their respective image planes m and 7', Figure 8.1. We introduce image
coordinate systems (o, o) with o = [by, by] in 7 and (o/, o) with o/ = [b7,b}] in 7’ and use them
to construct the corresponding camera coordinate systems (C, 3) with 5 = [51, bo, by = C—)’o] and
(C, B') with B = [b], b5, b, = Co].

Point X is projected to image points along the projection rays, which are intersected with 7
and 7. The projection of X in 7 is represented by vector i, = [u,v]". The projection of X in
7' is represented by vector @, = [u/,v']T.

Vectors @ and Z’ are two direction vectors of the same ray and hence are linearly dependent.
Since they are both non-zero for X # C, their linear dependence is equivalent with

INeR: AT = & (8.1)

To arrive at the relationship between the available coordinates of vectors & and Z’, we shall
now pass from vectors to their coordinates. There holds

A& = (8.2)
ATp = Tg (8.3)
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P

8]

Figure 8.1: Cameras share a projections center. Image projections are related by a homography.

true for some 3 x 3 real matrix H with rank H = 3, which transforms coordinates of a vector from
basis 3 to basis /3’
Considering the choices of camera coordinate systems, we see that

AT5 = Hig (8.5)
u U

A | = H|w (8.6)
1 1

We have obtained an interesting relationship. The above equations tell us that the image
projections are related by a transformation, which depends only on image projections, and to
find it, we do not need to know actual posiitons of points X in space. This is the consequence
of having C = (.

§1 Relating homography matrix to camera projection matrix Matrix H is related to camera
projection matrices. Consider two camera projections given by Equation 6.12

B X L1 X -
(&3 = P [ 15] = [KR |—KRC(;] [ 15] =KR (X5 — Cp) (8.7)
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<y

Figure 8.2: All 3D points are in a single plane. Coordinates in the plane and in the image are
related by a homography.

for all X5 € R3 , which gives

(RTK'T = X5-Cs (8.9)
CRTK'E,, = X5— G (8.10)
and therefore
CRTK T, = (RTKTM (8.11)
leg/ = KRRk ' (8.12)

for all corresponding pairs of vectors Z'g, :E'é,. Let us now compare Equation 8.12 with Equa-
tion 8.5, i.e. with

We see that ,
H=KRR'K! when \= CC (8.14)
This is particularly useful when K = K’ since then
H=KRR'K! (8.15)
which implies that H is similar [5] to a rotation, i.e.

K 'HK =R'R' (8.16)

and hence has one eigenvalue equal to one, the other two eigenvalues are complex conjugate
with modulae [3] equal to one.
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§2 Homographies conjugated to rotations Let us study homographies H conjugated to rota-
tions S = R'R as in Equation 8.16. We shall first check that such homographies are characterized
by the following condition

eig(H) = (1,x + iy, z —iy) for some real z,y such that 2 + % =1 (8.17)

Eigenvalues of a rotation S can be written as (1,z + iy,z — iy) for some real x, y such that
22 + y? = 1. Consider

H—AI| =K' [[H-AI| K| =K "HK—K 'AIK|=|s—\I] (8.18)

an therefore eigenvalues of H are equal to eigenvalues of S.
Next, assume that eigenvalues of H are equal to eigenvalues of a rotation S. Then we can write

SU=UA and HV=VA (8.19)

for a matrix A with the eignvalues on the diagonal and matrices U, resp. V, of eigenvectors of S,
resp. H. Now, if y # 0, the eigenvalues are pairwise distinct. Then it is possible [4, 5] to construct
matrices U, V, from the respective eigenvectors of unit length such that they are regular, and we
can write

A= A (8.20)

vlHV = Uulsu (8.21)
uv'lHvuT! = s (8.22)
Q 'k 'HKQ = S (8.23)
K 'HK = QsqQ! (8.24)

We introduced an upper triangular matrix K and a rotation Q such that VU~™! = KQ, which is
always possible by the Gramm-Schmid orthogonalization process [5]. Matrix QS Q! is a rotation
and thus H is similar to a rotation by an upper triangular matrix.

If y = 0 then the eigenvalues are either (1,1,1) or (1,—1,—1). In the former case, S = I and
hence K~'HK = I implies H = I, and hence H is a rotation. In the latter case, S is a rotation by
180° and H is thus similar to a rotation.

Let us now characterize the homographies conjugated to a rotation algebraicly. The charac-
teristic polynomial of H is as follows

p(A) = ANI—-H=A-1)(A—z—yi)(A—z+y1) (8.25)
= NoQz+ DN +2z+1)A-1 (8.26)
= A\ —trace H \? + (HH + Hoo + H33) A — |H| (8.27)

since z2 + y? = 1. Symbols H;; denote minors after removing row ¢ and column j. We are thus
getting two algebraic constraints on H

traceH = Hjj + Hop + Hgg and [H| =1 (8.28)

which are polynomials of degre two and three in elements of H, respectively, which is a repre-
sentative of the homography. Clearly, any-nonzero multiple of H satisfying Equation 8.28 also
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represents the same homography and therefore rank three matrices constrained by the first equa-
tion in Equation 8.28 are permissible representatives of homographies between images obtained
by a rotating camera with constant internal calibration.

Finally, when K = K’ = I, then H = S, i.e. a rotation, is a representative of such homograpy
and hence all non-zero multiples of rotations are permissible representatives of homographies
between images obtained by a rotating calibrated camera.

8.2 Homography between images of a plane

8.2.1 Image of a plane

Let study the relationship between the coordinates of 3D points X, which all lie in a plane o,
and their projections into an image, Figure 8.2. Coordinates of points X are measured in a
coordinate system (O, ¢) with § = [dy, d2,d3]. Vectors dy,ds span plane o and therefore

—

X; = (8.29)

ow &

for some real x, y.

The points X are projected by a perspective camera with projection matrix P into image
coordinates @, = [u,v]T, w.r.t. an image coordinate system (o,) with a = [by,bs]. The
corresponding camera coordinate system is (C, 8) with 3 = (by, by, bs).

To find the relationship between the coordinates of )?5 and i, we project points X by P into
projections g as

u % y y
Clv|=¢CZz =P { 16} =[p1 p2 pP3 P4 ol = [p1 p2 pa|| v | =H7 (830)
1 1
1

where p1, p2, p3, p4 are the columns of P.

Notice that 3 x 1 matrix ¢, = [z,y,1]" represents point X in the coordinate system (C, )
with the basis 7 = (Ji,cé, cﬁ;), where the d} = CO is the vector assigned to the pair of points
(C,0). If point C is not in o, then vectors dq, d},d} are independent and hence form a basis.
Therefore, matrix

H=[p1 p2 P4 (8.31)

represents a change of coordinates and has rank 3.

When we think about pair (C,o) as about a camera that shares its projection center with
camera (C, ) and imagine that points X are all (accidentally) in the projection plane o, we see
that we have recovered the relationship between cameras sharing their projection center.

8.2.2 Two images of a plane

We shall now consider the situation when all points in the scene are in a single plane. Then,
as we shall see, the projections of the 3D points, which are in the plane, are again related by a
homography even when the camera centers are located at different points in the space.
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Figure 8.3: All 3D points are in a single plane. Two images of the points are related by a
homography.
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Let us consider a plane o and two perspective cameras with (in general different) projection
centers C' and C’, which do not lie in ¢ and the corresponding projection matrices P and P’

= [Pl P2 P3 P4] (8.32)
= [pl Py P53 Pi] (8.33)

P/

where p; € R3 and p/ € R3, i = 1,...,4 stand for the columns of P, P'.
We establish coordinate systems (O, d), (C, ), (C’,f) in the standard way, see Figure 8.3 to
get

x
Xs=1vy (8.34)
0
for some real z, y.
Point X € o is projected to the cameras as
o .
. [ X5 ] 4
¢ = P |2 =[p p2 s pa] || =[P po pu]|w| =60
1 0
L n 1 _1_
- .
- 7)?5* Yy -
(g = P =[pt ps psopa] || =[pl Py pi]|v|=064
L 1
1 L .

for some ¢, ¢’ € R\{0} and two new coordinate systems (C,7) with 7 = (dy, da, dy), where the
dy = CO and (C',7') with 7/ = (dy, dy, d}), where the d} = CO'.
We see that there are two different vectors, i and ¢’, which appear on the right hand side of

the equations in different bases, i.e. as 7, and 7’

7—/

Cig = Gif: (8.35)
('?g = Gy (8.36)
with G = [p1, 2, p4] and 6" = [p{, py, pi].
Coordinate systems (C,7) and (C’,7') are so special that
5= (8.37)
for all points in 0. Consider that
x
o= (X400 = Xrtdie = X g, iy + Ly iy = 1 .
—_ €
g’)"/ = (X+ C/O)T' =X+ dZ/LT’ - X(Jh@v‘ﬁ) + dl’l(d_’hcizﬁa) Y (8'39>
1
and therefore, when C' ¢ o and C’ ¢ o, we get
('l =6 6T (8.40)
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which we can write as

for \=% and H=G'GL. Clearly, H € R3*3, rankH = 3.
We could also interpret this situation such that two images of a plane are related by the
homography, which is a combination of the homographies relating the plane to its two images.

8.2.3 Homography between images of a plane by cameras with the same center

In the derivation of Equation 8.41, we have never asked for centers C', C’ be different. Indeed,
Equation 8.40 is perfetly valid even when C' = C’. At the same time, however, there also holds
Equation 8.14 true, and thus we have

H = ¢¢!

[p, p5 pi][p1 P2 Pa]
H = KRRK!
1

[pi p5 pillp1 P2 P3|

Let us see now purely algebraic argument why the above holds true. Since the cameras have the
. . = T .
same projection center Cs = [01 Co 03] , we can write

ps = —KRCs and pj = —K'R'C; (8.46)
and hence
H = ¢¢ ! (8.47)
—1
= [p1 py pil[p1 P2 p4] (8.48)
o 4 11
= K’R’[i j —05] [i j —05] RK™! (8.49)
— XK'RR'K! (8.50)
Withi:[l 0 0]T andjz[O 1 O]T. We see that there always holds
—1 —1
[p1 p5 pi]lpr P2 pa]  =[pi P5 Pi][P1 P2 ps] (8.51)

true for two cameras with the same projection center irrespectively of where actually the points
in space are since we would get the same images for points obtained by intersecting the rays
with the plane z = 0 in the coordinate system (O, ¢).
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8.2.4 Homographies induced by a plane in the scene

Let us look at Equation 8.40 in more detail. We can write

C,—» — — _1_‘
Fo = ¢cl@=[pi s opil[pop2 ma] (8.52)
(1 0 10 !
= A |01 -Cli||0 1 —Cs| a7 (8.53)
[0 0 0 0
10 —2'7[1 0 —2]"
= A |01 =y |]|0 1 —y|Aa'ts (8.54)
(00 =20 0 —2

We have introduced new symbols to represent vectors

T

égZ[Z‘ y z]T and ééz[x/ y 7 (8.55)

and have written the homography as a product of four matrices. Let us next compute the
product of the two middle matrices

% 1 0 (¢/—ux)/z
@ = A |01 (Y —y)/z | AT'F (8.56)
¢ 0 0 2z

We see that the middle matrix on the right looks almost as the identity plus something. Let’s
express it in that way

% 10 (af —x)/z
Zfé, = A |0 1 (v —y)/z | A% (8.57)
0 0 14 (2 —2)/z

We can now further rearrange expressions as follows

, (' —x)/z
Cc@g, = NI+ @W-y/=|[0 0 1]|atTs (8.58)
(2" = 2)/z
Y <1+(ég—6*5) (751(3) [0 0 1]) AL (8.59)
= A/a! (I — (Cs - C}) 651(3) [0 0 1] A1> Cift (8.60)

We denoted the third coordinate of 65 by 65(3).

Vector 6*1(3) [O 0 1] A~! has a geometrical interpretation. Consider the equation of plane
8

o in coordinate system (O, J)

[00 1 0] [)ﬂ = 0 (8.61)
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where [0 0 1]T is the normal vector of plane ¢ containing point X; written w.r.t. (0,6), ie.
ﬁg = [0 0 1], where § is the dual basis to basis §, Chapter 2.

Next, consider the camera coordinate system (C, §) with 175 — A (X5 — C5). We see that

[0 01 0] [Al?{{*dg] ~ 0 (8.62)
[[0 0 1]a" G(3)] [}ﬂ - 0 (8.63)

provides the unit normal 7 of plane ¢ in the dual basis 5 to basis
iy =[0 0 1]a"" (8.64)

We have obtained the following formula for the homography between points %3, a?/g, in the
two images, which is generated by the plane o

i = A'AT! (I+(@§—C}) i

XeY ) 5 (8.65)

I

where 7i5 is the normal vector of o in B, 65(3) is the distance of o from the camera center C,
and ¢, ¢’ are the distances of points from the respective principal planes in multiples of the
respective focal lengths.

81 One fully calibrated camera We will now consider Equation 8.65 for the situation when
the first camera is fully calibrated, i.e.

P = [I| —C_:;] and Py =[A"[a’]| = [A’\ —A’C_'g] (8.66)

Then, bases 81 and d become identical and Equation 8.65 can be written as
=1 ’ S0 A ﬁzST = ’ {ﬁ’ I / _’ﬁ’ ST ) =
T T = A I—I—(C'(;—C’(;)j Ts= A" — 7T | T = A — 7 T | s (8.67)

where fﬁf are the coordinates of the vector from C to C’ in 3’. Notice that we have used the

fact that ¢ is the standard basis and therefore 75 transforms by the same matrix as X; when
chaning a basis. To stress that, we use 7is instead of 7iz. Symbol d stands for the (non-zero)
distance of the plane ¢ from the center of the first camera, and a non-zero 7" = ¢'/(.

§2 Two internally calibrated cameras Let us next have a look at the situation when K = K’ =
I. Matrices A, A’ become rotations, which we stress by writing

P, = [Ry —R(Zg] and Py = [R’| —R’(jg] (8.68)
with orthonormal matrices R, R’. Equation 8.65 now becomes
7z, =R'R |1+ (C.-C,) L oar)a - R’R_1+EY—’FLT 7 (8.69)
Y v v 66(3) vy v da 7 Y .
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A question arises here. Does every rank three real 3 x 3 matrix represent a homography between
two calibrated images induced by a plane in the scene? We see from the following that the
answer is yes.

Let us consider a real 3 x 3 marix H and its SVD decomposition [5, p. 411]

H=U b vl (8.70)

Now, if |H| > 0, then we may ask for a > b > ¢ > 0 and |U| = |V| = 1. Otherwise, we replace
¢ by —c to have a = b > 0 > c and [U] = |[V|] = 1. Next, when any two of a, b, ¢ are equal, e.g.
a = b, then we can write the decomposition as follows

a b
H = U b vi=vu b vl (8.71)
| C C
1 0
= U(b 1 +] 0 [[o 0 1]]|vT (8.72)
1 c—b
0
= bUVI +U| 0 [[0 O 1]V' (8.73)
c—b

Hence, we need to consider only the situation when a, b, ¢ are pairwise distinct. We can write

H = bUSV' +Uuv' VI =bR+tn'
B ac+b? 0 /b2 =c2VaZ—p2
b(a+c) b(a+c)
S = 0 1 0
Vb2—c2\/a?—b2 0 ac+b?
B b(a+c) b(a+c)
[ VaZ—0?
a+c
u = 0
—Vb2—c2
L a+tc

oo V@B 0 ViR &)

Notice that b is non-zero since it must be greater than c else we would have b = ¢, which we
excluded. Moreover, a 4+ ¢ > 0 since they are either both positive or |a| > |c| and a is positive.
Hence all the formulas above are meaningful. It is easy to verify that S'S = I and |S| = 1 and
therefore R = USV! is a rotation.

Consider a rank three real 3 x 3 matrix H. We see that it must be possible to write a non-zero
multiple of H as S + i,/ ﬁ; for some rotation S and vectors Uy € R3 and unit Ny € R3. Hence,
the following equations

(cH—w, i) (ea—@,@l) =1, |(EH—@,al)|=1, @l =1 (8.74)

have to be satisfied for some real { and some vectors ., € R? and unit 75 € R3. This is a
set of eight algebraic equations in seven variables. Clearly, the constraint ﬁg N5 = 1 can be
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replaced by [O 0 1] fis = —1 to enforce that the plane normal faces the first camera. To get
polynomial equations, we multiply the left equation by 2 = 1/¢2 and the middle equation in
Equation 8.74 by ¥? = 1/£3 to get

=y iil) =iy fil) = %1, [(H—idyil)| = ¢% [0 0 1]i, =1 (8.75)

with @, = 1 ¥y. Interestingly, this system has' 12 solutions in general. Even more interestingly,
there are only four real solutions but with only two oposite values for ). Taking into account

!The following Maple [18] run demontrates the structure of solutions to the system of equa-
tions 8.75.

Linear algebra shortcuts
>with(ListTools) :with(LinearAlgebra) :with(Groebner) :
>E:=LinearAlgebra[IdentityMatrix] (3):
>det:=LinearAlgebra[Determinant]:
>trn:=LinearAlgebra[Transpose]:
>M2L:=proc(M) convert(convert(M,Vector),list); end proc:
>X_:=proc(u) <<0|-u[3]|ul2]>,<ul[3][0]-ul1]>,<-u[2]|u[1]]0>> end proc:
>c2R:=c->simplify ((E-X_(c)) .MatrixInverse (E+X_(c))):
All solutions to a triangular Groebner Basis
>TriangularGBSolve:=proc(Eq,So)
local s, so, Si;
if nops(Eq)>0 then
Si:=[1;
if nops(So)=0 then
Si:=[solve([Eq[1]11)];
else
for so in So do
s:=[solve(subs(so, [Eq[11]1))];
Si:=[op(Si),op(map(f->f union so,s))];
end do;
end if;
TriangularGBSolve(Eq[2..],S81);
else
So;
end if
end proc:

Simulate a calibrated homography
>R0:=c2R(RandomVector(3,generator=-10..10)):
>t0:=RandomVector (3, generator=-10..10) :
>n0:=<-1,-2,-2>/3:

>s0:=3:

>HO:=s0% (RO+t0.trn(n0));
25 30 129

1 gl 31

HO :— | 3800 _ 589 _ 560
31 31 31

81 4 70

31 31 31

Formulas for H and R

>n:=<nl1,n2,n3>:

>t:=<t1,t2,t3>:

>R:=HO-t.trn(n):

>H:=R+t.trn(n):

Equations

>eq:=convert(convert(expand([op(M2L(trn(R).R-s2*E)),det(R)-sB,n3+1]),set),list);

eq := [n3+1,3151/31+ (50/31) #t1 xnl+nl1? %1% + (600/31) nl 2 +nl1? 12> — (168/31) s nl*t3 +nl1? %132 —
52,9407/31— (60/31) #t1n2+n2% %1% 4 (1078/31) #n2# 12+ n2% 2% 4 (28/31) #n2#t34+n2” 3% — s, 10811/31 —
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that point scales ¢, (' have to be positive, we get only two solutions with only one positive v
and two corresponding solutions. Hence, the relative orientation of two calibrated cameras can
be in a generic situation obtained from four coplanar points up to two solutions.

8.3 Spherical image

Consider a camera rotating around a center C and collecting n images all around such that
every ray from C' is captured in some image. We can choose one camera, e.g. the first one, and
relate all other cameras to it as

)\ifﬁl = Hifﬁiv 1=1,....n (8.76)

Since all vectors & were captured, there inevitably will appear a vector with coordinates

X
T = |y (8.77)
0

(258/31) * t1 % n3 + n3% = 1% + (1120/31) % n3 * t2 + n3% % 122 — (140/31) * t3 * n3 + n3% * t32 — % 5154/31 +
(25/31) % t1%n2— (30/31) xt1xnl +nlsn2+t1%+ (300/31) xn2 %12 + (539/31) xnl#t2 +n2xnl 12> — (84/31) %
n2#t3+ (14/31) # nl #t3+n2+nl 132 5505/31 + (25/31) # 1 +n3 — (129/31) #t1 +nl +nlxn3+t1% + (300/31) *
n3%t2+ (560/31) *nl*t2 +n3xnl %122 — (84/31) *t3+n3 — (70/31) x nl +t3 +n3 = nl +t3* 9830/31 — (30/31) *
t1#n3—(129/31) #t1*n2+n2xn3#t1% + (539/31) # n3 %12+ (560/31) n2 % 12+ n2xn3 # 127 + (14/31) % t3 *n3 —
(70/31) x n2 % t3 + n2% n3 3%, —(725/31) % t3 % n3 + (840/31) % t1 % n2 + (126/31) x nl 2 + (1470/31) % t1 % nl —
(1701/31) 1 3+ (406/31) # n2 % 2 + (1700/31) # n2 % t3 — (70/31) # n3 % t2 — (1596/31) # t1 * n3 +7014/31 — s°]

The number of solutions

>G:=Groebner [Basis] (eq,plex(op([t1,t2,t3,n1,n2,n3,s8]))):
>Id:=Polynomialldeals[PolynomialIdeal] ([op(G)]):

>print ("Hilbert dimension =",Polynomialldeals[HilbertDimension] (Id));

>print ("The number of solutions =",Polynomialldeals[NumberOfSolutions](Id));

”Hilbert dimension =", 0
”The number of solutions =", 12
Solve it

>S:=TriangularGBSolve (G, []):

and substite the solutions to get s, R, n, t and select the real solutions only
>sRnt :=map (f->evalf (subs(f, [s,R/s,n,t/s])),S):

>select (f->foldl(‘and‘,true,op(MIM[isreal] “(£f))),sRnt);

[—0.610 —0.220 0761 ] [ —0545] [ —0.626

+3.0 | —0.152 —0.910 —0.385 —0.867 5.640

i | 0778 —0.350 0522 | | —1.000 | | —0.230 | |

I [—0.602 —0.344 0.720] [ —0.500] [ —0.667 ] ]
+3.0 | —0.559 —0.462 —0.688 —1.000 5.330

i 0.570 —0.817  0.860 | | —1.000 | | —0.667 | |

I 0.737 0421 —0529| [—-0545] [ 08587 ]
—3.0 | —0.517 —0.153 —0.842 —0.867 —6.860

I | —0435 0894 0105 | | —1.000| | 0858 |

I 0.636 0411 —0.654] [—0500] [ 0.7347] ]
3.0 | —0.765 —0.809 —0.583 —1.000 —6.600

i | —0.768 0421 —0483 | | —1.000 | | 0.270 | |
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Such vector does not represent any point in the affine image plane 71 of the first camera because
it does not have the third coordinate equal to one. To be able to represent rays in all directions,
we have to introduce spherical image, which is the set of all unit vectors in R? (also called
omnidirectional image). We sometimes use only a subset of the sphere, typically a cylinder,
to capture panoramic image. In such a case, we can remap pixels onto such cylinder and then
unwarp the cylinder into a plane. Notice however, that in such a representation, straight lines
in space do not project to straight lines in images.

All equations we have developed so far work with minor modifications also for vectors with
last zero coordinate. We will come back to it later when studying projective plane which is
somewhere between the affine image plane and full spherical image.

8.4 Homography — summary

Let us summarize the findings related to homography to see where it appears.
Let us encounter one of the following situations

1. Two images with one projection center Let [u,v]" and [«/,v]T be coordinates of
the projections of 3D points into two images by two perspective cameras with identical
projection centers;

2. Image of a plane. Let [u,v]" be coordinates of 3D points all in one plane o, w.r.t.
a coordinate system in o and [u/ ,v’]T coordinates of their projections by a perspective
cameras with projection center not in the plane o;

3. Two images of a plane Let [u,v]" and [u/,v']T be coordinates of the projections of
3D points all in one plane o, into two images by two perspective cameras with projection
centers not in o;

then there holds

u u
JH e R*3, rankH = 3, so that ¥ [u,v]" S [o/,0']T INeR: A| o | =H | v (8.78)
w’ w

true where w = w’ = 1 for perspective images and may be general for spherical images.

In all three cases, coordinates of points are related by a homography.

We have used linear algebra to derive the relationship between the coordinates of image points
in the above form. The homography can be also represented in a different way.

To see that, we shall eliminate \ as follows

u’ u ]’LH h12 hlg u
)\ 1), = H v = hgl h22 ]’L23 v (879)
1 1 h31 h32 h33 1
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= hi1u + hiov + hys (8.80)

o= ho1 u + hoo v + hog (8.81)

Al = hgiu+ hsov+ hss (8.82)
hiiu + hiov + hys

- 8.83

Y h31u + h3ov + hss ( )

o = ho1 u + hoo v + hog (8.84)

h31u + h3ov + hsg

o U 211 u+212 U+Z13
_ _ 31 u+h32 v+h33
[1}’] =h ([1}}) " | hoiuthosvthos (8'85)

h31 u+hszs v+hss

is a mapping from a subset of R? to R? but it is not linear! It contains fractions of affine
functions.

Although we can understand the homography as a linear mapping in certain sense, it is not
a linear mapping in the standard sense.

Matrix H represents a linear mapping from R? to R®. However, we are not interested in the
individual vectors in R3 but in complete one-dimensional subspaces, which correspond to the
direction vectors representing projection rays.

Notice that A can accommodate for any change of the length of [u v 1 ]T (except for making
it zero) since it can be split into &, ¢’ and used as

/

u u
glv | = HE|w (8.86)
1 1
¥ = Hx (8.87)

We can now think about x and x’ as about one-dimensional subspaces of R3 generated by #
and Z’. The “equation”?

x' =Hx (8.88)

then actually means
37 € x and 37’ € x’ such that 7’ = HT (8.89)

Thus the homography can be seen as a mapping between one-dimensional subspaces of R3.
While R? itself is a linear space, the set of its one-dimensional subspaces, in the way we use
them, s not a linear space and therefore the homography is not a linear mapping although it is
represented by a matrix H, which is used to multiply vectors.

It is also important to notice the true relationship between homographies and 3 x 3 real
matrices. Any 3 x 3 real matrix of rank 3 represents a homography but many different matrices
represent the same homography. Let’s see why.

2Monograph [15] very often uses “=" exactly in this sense of equality of one-dimensional subspaces.
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X, &

Figure 8.4: There are two planes in the scene o7 and oy inducing two homographies H;y, Hy
between the two images.

Let us consider He R3*3 and G € R3*3 such that £H = G for some & # 0. We can write

¢y = HF (8.90)
¢y = ¢HE (8.91)
¢y = a7 (8.92)
Ni = 67 (8.93)

We see that H and G represent the same homography. Indeed, two matrices related by a non-zero
multiple represent the same homography. Hence, it suggests itself to associate homographies
with one-dimensional subspaces of 3 x 3 matrices.

8.5 Constraint on the homographies of induced by two planes

Let us now consider the situation when there are two planes o1 and o9 in the scene, Figure 8.4.
Then, the planes induce two homographies Hy, Hy between the two images. We can write,
Equation 8.65,

= = 1
! =l /I a—1 / ST _ N
T @5 = A'A I+(Cs—Cp) =——1i,5| 75 =H1 73
B ( B 061(3) 18
= - 1
02
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which means that thare are matrices Hy, Hp such that for every point Z3 in image one and the
corresponding point ', in image two there are real 1, 7 such that Equaitons 8.94 hold true.

We are interested in finding the constraints on arbitrary representatives of the two homogra-
phies, i.e. matrices G = A1 H; and Go = A9 Hy for some real A\, \g. We see that there follows
from Equations 8.94 that

I |
MG = AAM 14+ (Ch—Cp) =——1] A(I+ 1575
B Cs.(3) 18 18

. 1
MGy = MM T+ (Ch—Co) m——iiy; | = A(T+ 15755 (8.95)
052(3>

and thus N
—1
Gy Gy = )\ (I + tg ’U2ﬁ) (I + tﬁ UI,B) (896)

which can be rewritten using

-1 tﬁ 23
I+41 ) -2 8.97
(1 -+ e (8.97)
as T
A tp(v]. 3)
2lale =1— 515—2/3 (8.98)

Now, we see that for 5 # U5 there is a two-dimensional space of eigenvectors ws of Gy ey
since for every non-zero wz such that (¥ 53— UzB)Tu_)’ﬁ = 0 are getting

PogT T
A1, o (U5 —T5)\ .
Aelems =1 — 2 257 5y =@ 8.99
N, 2 G105 ( 1+172Tgt6 g = Wg (8.99)

We also see that fg is an eigenvector.
Vectors wg represent projections of the points on the intersection line [ of planes o1, 03 into
the first image. Line [ is in both planes and therefore maps identically by H; and Hs.

8.6 Computing homography from image matches

Let us turn to the computational aspect of the homography relationship between images. Our
goal is to find the homography mapping from a few pairs of corresponding image points. We
shall see that this problem leads to solving a system of linear equations.

8.6.1 General perspective cameras

Our goal is to find matrix H in Equation 8.78 without assuming any knowledge about cameras.
Let us introduce symbols for rows of homography H

h{ u
H= | hj and for the vector x= | v (8.100)
hy I
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and rewrite the above matrix Equation 8.78 as

M/ = hlx (8.101)
A/ = hgx (8.102)
A = hix (8.103)
Eliminate A from the first two equations using the third one
(hix)u’ = hix (8.104)
(hix)v' = hgx (8.105)
(8.106)
move all to the left hand side and reshape it using x'y = yx
x'h — (Wx")hy = 0 (8.107)
x'hy — (Wx")hy = 0 (8.108)
(8.109)
Introduce notation
h=[n/ hJ nj] (8.110)
and express the above two equations in a matrix form
uwov 1 000 —du —vv —d
[0 00 uwwov 1l —vu —vv —v/]h_o (8.111)
Every correspondence [u,v]" “ [o/,v']T brings two rows to a matrix
uwv 1 000 —vu —uv —u
000 wuwvl —=u —v = |y = ¢ (8.112)
M h = 0 (8.113)

If £€G = H, £ # 0 then both G,H represent the same homography. We are therefore looking
for one-dimensional subspaces of 3 x 3 matrices of rank 3. Each such subspace determines one
homography. Also note that the zero matrix, 0, does not represent an interesting mapping.

We need therefore at least 4 correspondences in a general position to obtain rank 8 matrix
M. By a general position we mean that the matrix M must have rank 8 to provide a single
one-dimensional subspace of its solutions. This happens when no 3 out of the 4 points are on
the same line.

Notice that M can be written in the form

wp vy 1 0 0 0 —uwjuy —ujvr —uf
upg va 1 0 0 0 —uhug —ubve —uf

M= 0O 0 0 u v 1 —Ullul _Ullvl _,Ui (8114)
0 0

ug ve 1 —vhus —vhvy —l
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with indices naming different points, which can be rewritten more concisely as

[x] 0" —wujx]]
T T /o1
X9 0 —u5xy
M= : 8.115
or XI —v] xir ( )
T T /o1

with 0T = [0,0,0].

§1 A more general procedure for computing H Let us next give a more general procedure
for computing H, which will be analogical to the general procedure for computing Q in § 1.
We start from Equation 8.78

Ax =Hx (8.116)
with x = [u,v,w]" and x’ = [u’,v’,w']" and follow the derivation in §1 to get
Ax’ = Hx (8.117)
[x'] Hx = 0 (8.118)
«H [x']] = of (8.119)
v(xTH [x'])) = w(0T) (8.120)
('], ®@x")v@E") = wv(") (8.121)
0 —w'
w’ 0 —u |®x" |v@E") = v (8.122)
" 0
of —w'x"  w'xl
w'x" ol —u'x" | v@H") = v(") (8.123)
—v'xT w/xT or
For more correspondences numbered by i, we then get
[ o' —wix{  v{x{ ]
of  —wix] wixg
wix] of  —ulx]
whxd 0T —wbxd [w@ET) = o0 (8.124)
—vlx]  ulx| or
—vhxd  uhx] or

which is, for w = 1, equivalent to Equation 6.30. Notice that v(H") = h from Equation 8.113.
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8.6.2 Calibrated cameras

Let us now look at some situations when cameras have constant intternal calibration or are fully
calibrated.

§1 Homography induced by rotating a calibrated camera This is a simple situation. Let
us construct a rotation matrix representing a homography from one and half matching image
points. Consider two distinct image points x, y in the first image that are mapped on points
x’, y' in the second image as [x'/|[x’|| y'/|ly'||] =R [=/||x]| y/llyl|] by a rotation R. We can
decompose R into a composition of two simple rotations R = Ry Ry such that

0 0 0 0
[/l y'/lly'Il]=Re | O € |, [0 &|=Rra[x/lIxll y/llyll] (8.125)
1y L9

with &, 1 such that €2 + 2 = £% + ¢/* = 1. Write

Ri = [I‘H rio rlg]T and Ry = [r21 roo 1"23] (8.126)
to see that
rin = s (/x| < y/llyID/1 /=< y/lyIDI (8.127)
rig = (x/[[x[| x r10)/l|(=x/l[x[| x r11)]| (8.128)
ri3 = Ti1 X T12 (8.129)
ror = so (x'/|IX'|| < y"/lly DN/ > v /vy DI (8.130)
rog = (x'/||x'| x r2)/|[(x"/||x[| x r21)] (8.131)
roz = T921 X I99 (8132)

where the signs s1,s2 € {+1,—1} are chosen to make, e.g., £ > 0, ¢’ > 0. Notice that this
procedure sets R even when vectors [x/|[x|| y/|ly||] can’t be exactly transformed to vectors
[x'/|Ix']| y'/Ily'l|] by a rotation, which is often the case when they are estimated form noisy
measurements. Nevertheless, if the error affecting the vectors is small, R so obtained is still close
to the true rotation between the cameras.

§2 Homography induced by rotating a camera with constant internal calibration Consider
a point x = [m Y 1]T in the first image that is mapped on a point x’ = [:z:’ y 1]T in the
second image by Ax’ = K"'RK x with rotation R and a camera calibration matrix X.

We have seen, Equation 8.28, that the following two equations have to be satisfied

0 = traceH — (Hy; + Hoo + Hs3)
= hi1 + hag + hgz — hi1 hag — hi1 haz + hig hot + hig hat — hao haz + haz hao
- (8.133)

= hi1 haa h3s — hi1 has h3a — hi2 hot haz + hio hag hat1 + hig hat h3a — hiz hoo hai
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with hjj, i,j = 1, 2,3 denoting the elements of H. It is easy to check in the Maple [18] computer
algebra system® that the Hilbert dimension [2] of the system 8.133 is equal to seven. Therefore,
we will need seven independent linear equations to reduce the Hilbert dimension to zero and

3Maple [18] script analyzing the computation of a homography induced by a rotating camera with constant
internal parameters. We note that some of the functions used here have been defined in previous Maple
examples.

Setup the equations

>H:=<<h11|h12|h13>,<h21|h22|h23>,<h31|h32|h33>>:

>Heq:=[det (H)-1,simplify(det (H-E), [det (H)=11)1;

>HilbertDimension(Heq) ;

7

Simulate projections
>K:=<<10|1|5>,<0|12|6>,<0|0|1>>:

>R1:=c2R(<1,2,3>): R2:=c2R(<3,4,5>): t:=<<2,1,3>>:
>P1:=K.<R1|-R1.t>: P2:=K.<R2|-R2.t>:
>X:=<<0]11110>,<010[111>,<0[01010>,<1]1]1]1>>:
>x1:=a2h(h2a(P1.X)):

>x2:=a2h(h2a(P2.X)):
>HO:=P2[..,[1,2,4]].inv(P1[..,[1,2,4]1]):

Check eigenvalues of HO

e:=Eigenvalues(HO) ,abs™ (trn(e));

77
5 %3

85

Add two 1ndependent linear equations per a corresponding pair of image points
eq:=[op(Heq), op(Flatten(map(i->M2L((X_(x2[..,i]) .H.x1[..,i1)[1..2]1),[1,2,3,4]1)))1];
[ ha1 + hoa + has — hi1 hoa — hay has + hiz hor + his har — haa has + has hsz i
h11 haa h3z — hi1 hos h32 — h12 ho1 has + hi2 has hs1 + his ha1 haa — hiz hao har — 1

54252 182484
h2 + =65 hs1 h2 + “e5 hso h23+ 113 h33

22 24068 80956
+5 hi1 T6E ha1 + 4 h1 =65 hs2 + his 7113 4 has

hz + 7176 hs1 — 18 hao + 2484 has — hos + 138 h33

c= 52 hiy — &hﬂ 4 18h1 — 288 Ao + hus — 16 has
h2 n 9522h _ ﬁh + 52164 has — has + 2070h
? hin — 552 126 hi2 838§2 hsa + his — 41 h33
_% hot + 123228 hsi 666 s + 16247263556 has — h23 4 2466 hss
[ 3 hur = 258 -+ 99 o — 20928+t — 8 ,
Solve it

>Basis(eq,plex(op(indets(H))));

[3825 h11 — 3319,450 hio — 43,3825 his — 7337,85 ha1 + 36,5 has — 4,85 has — 522,3825 ha1 + 38,450 hso
11,3825 hgs — 4376]

We are getting one solution but we have used eight linear equations although seven linear
equations should be sufficient to get a finite number of solutions. Let us use seven linear
equations only.

>Basis(eq[1..nops(eq)-1],plex(op(indets(H)))):

We see that we are getting a degree six polynomial in hss

+

>B[1];
1384905521719726207524518830400390625 hS5 + 4889332606744002799184541025140000000 h3;
3004780464450070944458597429463562500 hi, - 62963310535984882573971620665889376000 hi, -

1098716737305688573847805032564563200 h; + 231760248490986847248483050694397009920 h33
176966810281848547933751731455841501184

and six solutions for H
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thus obtain a finite number of solutions ?7?7. We see that we can use four points to add eight
independent linear equations and so obtain a single solution. However, if point measurements
in images were affected by measurement noise, using all eight equations would almost surely
produce an inconsistent system. Therefore, it make sense to use only seven linear equations,
which give six solutions and produce six homographies conjugated to a rotation for any four (or
more precisely, 3 + %) points in two images. If the error in the measuerement is small, one of
the so obtained H is close to the actual homography between the images.

§3 Homography induced by a plane observed by a moving calibrated camera Let us first
consider a point x = [z y 1]T in the first image that is mapped on a point x’ = [2/ ¥/ l]T
in the second image by Ax’ = (R +un')x with rotation R, unit real vector n and a vector u.

Paragraph §2 shows how to decompose a homoghraphy, represented by H, between two cali-
brated images induced by a plane in the scene into R, t '/ Cs and 7 fiy. Let us now show how to
estimate a decomposable H directly from image data. We will parameterize rotations using the
Cayley parameterization [|

cffcgfcngl 2 (cl co +03) 2 (e1 c3—c2)
c%;—cg+c§+)1 61 +C2+63+1 c%?—c%—&-cg—&-)l
_ 2(c1ca—c3 —q+%—%+1 2 (ca2czter
R(Cl’ 2, 63) T | At tci+l c2+cs+ci+l cl+02+03+1 (8'134)
2 (c1 c3+e2) 2 (c2 c3—c1) —01—02+03+1

c%-‘rcg-i-c%-i-l c%+c%+c§+1 cl+02+c3+1

for c1, co, c3 € R, which excludes rotations by 180°, since two perspective cameras can’t look the
opposite directions when seeing a non-degenerate piece of a plane in space. Similarly, we will
assume that 773 = 1 since the first (as well as the second) camera has to look at the plane. We
are free to orient the plane normal towards the first camera to remove unnecessary ambiguity
and to reduce the number of solutions to one half.

When the data is exact, we see that we are getting 11 solutions in general, out of which three

>S:=TriangularGBSolve (B, [1):
>dg:=Digits: eDigits:=10:
>Sr:=convert (map(s->evalf(subs(s,H)),S),rational);

>Digits: —dg
r 3319 7337 27989 11116 46056 _ 51941 174177 213038
3825 450 3825 113075 68877 11543 3866 144175 5423
_ 36 4/5 522 _ 55317 29162 62207 __ 40431 36210 710577
85 85 | 33688 20109 6739 |’ 1690 11627 12973
_ .38 11 4376 _ 4819  _ 3479 9932 _ 57914 6959 43100
L 73825 450 3825 93927 158824 7517 70849 87760 19401
r 40441  _ 20953 __ 69409 91103 _ 63957 ;  _ 19612 , 16799 ;, _ 137213 | 23642 ;
1236 8193 809 21006 17956 20061 ' 28267 6863 1355
132430  _ 26276  _ 1327299 178138 _ 43433 ;, 114375 , 27263 ; _ 78611 , 135829 ,
2457 4897 11857 |7 16263 4596 43187 11331 2342 4558
72875 5270 _ 94659 15541 _ 5675 , 3263 4388 , 24252 | 122693 ;
L 39356 22337 37021 42367 ~ 17974 533530 462787 8569 46803
r 91103 , 63957 ,  _ 19612 _ 16799 ;, _ 137213 _ 23642 ;
21006 ' 17956 20061 28267 6863 1355
178138 | 43433 ; _ 114375 _ 27263 ; _ 78611 _ 135829 ,
16263 4596 43187 11331 2342 4558
15541 | 5675 3263, 4388 , 24252 _ 122693 ;
42367 T 17974 533530 ' 462787 8569 46803

Notice that the first solution is equal to the simulated homography, while the othter
solutions (shown only up to 10 digits precision to avoid too long expressions) are
‘artifacts’’ of the formulation.
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are real®. The ideal generated by the equations from four co-planar points is radical but it is
not prime [2]. We see that the corresponding variety is a union of three irreducible variaties,
each consisting of a single real point, and a component consisting of eight non-real points.

“Maple [18] script analyzing the computation of a homography between two calibrated images induced by a
plane in a scene observed by the cameras. We note that some of the functions used here have been defined in
previous Maple examples.

Constraints on a homography induced by a plane between calibrated images
>n:=<nl,n2,n3>:
>t:=<t1,t2,t3>:
>R:=c2R(<c1,c2,c3>):
>H:=R+t.trn(n);
L eilil |yl 2 _pelebed L yypy g __eladed 4 y1p3

c12+4+c22+¢e3241 cl§+02§+c3§+1 cl12+4¢c22+4¢3241
P clc2—c3 _cl®—c2+4c3°—-1 c2c3+cl
Hi=12 c12+c22+4c32+1 +t2nl c124c22+c32+1 +2n2 2 (:122+c222+{:3§+1 +1t2n3
cl c3+c2 _ —c2c3+cl _cl”+c2%—c3°—1
2 c12+c22+4c32+1 +t3nl 2 c124c22+c32+1 +t3n2 c12+c22+c32+41 +t3n3

Simulate projections
>R1:=c2R(<1,2,3>): C1:=<<2,1,3>>: P1:=<R1|-R1.C1>:
>R2:=c2R(<3,4,5>): (2:=<<2,3,1>>: P2:=<R2|-R2.C2>:
>H0:=P2[..,[1,2,4]].inv(P1[..,[1,2,4]1]);
>X:=<<0110110]0>,<0[0[10/10>,<0[0]0]0 >,<1|1]1][1>>:
>x1:=a2h(h2a(P1.X)):
>x2:=a2h(h2a(P2.X)):
Setup equations
>eq:=[n3+1, op (numer (normal (Flatten(
map (i->M2L((X_(x2[..,1i]) .H.x1[..,i])[1..2]),[1,2,3,4])
)T
Solve them
>B:=Basis(eq,plex(cl,c2,c3,n1,n2,n3,t1,t2,t3)):
and analyze the ideal
>Bi:=PolynomialIdeals[PolynomialIdeal] ([op(B)]):
print("Hilbert dimension =",PolynomialIldeals[HilbertDimension] (Bi));
print ("The number of solutions =",Polynomialldeals[NumberOfSolutions] (Bi));
print("Is radical =",Polynomialldeals[IsRadicall (Bi));
print("Is prime =",Polynomialldeals[IsPrime] (Bi));
print("Is primary =",PolynomialIldeals[IsPrimary] (Bi));
print("Is maximal =",Polynomialldeals[IsMaximal] (Bi));
”Hilbert dimension =", 0
”The number of solutions =", 11
”Is radical =", true
”Is prime =", false
”Is primary =", false
”Is maximal =", false
We see that the ideal can be obtained as an intersection of four prime ideals
>Bd:=Polynomialldeals[PrimeDecomposition] (Bi):
BB:=map(i->Basis(i,plex(cl,c2,c3,n1,n2,n3,t1,t2,t3)),[Bd]):
map (b->[HilbertDimension(b),
PolynomialIdeals [NumberOfSolutions] (PolynomialIdeals[PolynomialIdeal] (b))],
BB);
[[0, 1], [0, 1], [0, 1], [0, 8]]
which consists of single and eight points, respectively. There are 11 solutions for t3
>PolyVarMonomials ([B[1]],plex(op(indets(B[1]))));
[¢311, 310 ¢3% 138,437, 3%, ¢3%, 3%, ¢3% 32,13, 1]

Let us get solutions to all variables
>S:=TriangularGBSolve (B, [1): mnops(8);
11
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When the data are affected by measurement noise, however, the same formulation produces
12 solutions, out of which, now, four are real. The ideal generated by corrupted measurements
is now prime, primary and maximal [2].

We see that we are also getting 11 solutions. Let’s select the real ones and substitute back

to H, R, n, t

>sH:=map (f->evalf ([subs(f,H),subs(f,R),subs(f,n),subs(f,t)]),S):
>sH:=select (f->MTM[isreal] (£[1]),sH): nops(sH);
3
to see that we are left with only three solutions. Let’s compare it to the simulation.
>[HO,R0,-n0/n0[3],-t0*n0[3]];
r [ 247 104 4 r 145 40 28 ] r2 8 77
255  25% 17 153 53 153 5 153
518 113 2 233 01 40 14 14
765 765 153 765 3 5 51
v 76 183 76 _535 145 -1 25
L L ~765 765 153 L — 765 765 153 L i L — 153 1
>convert (sH,rational);
r 247 104 4 7 r 145 40 28 ] r_2 7 8 7 7
2 2 1 157 173 153 5 15z
3 ) _233 BoW 14 11
765 765 153 765 765 153 5 51
) 76 187 78 233 1d ] P
L L 765 765 153 | L ~ 765 765 153 L i 153 |
rr_ 247 104 4 37428 16 38 20 7 ]
2 2 17 1 7 T 2 153
3t 118 P 1 18 183 38 8
765 765 153 15 765 153 25 51
35 76 187 O N § 0 ] 55
L L 765 765 153 9 153 153 53 1 |
C 247 104 4 2249 3068 16 28 52 7 7
255 255 7 3825 3825 153 25 153
316 113 2 596 403 52 29 50
765 765 153 765 765 153 25 153
32 76 167 832 1076 143 1 8
L L ™75 765 153 3825 3825 153 51 d

We see that the first
the measurement range.
>x1:=x1+<RandomMatrix(2,4,generator=rand(-1..1)/1000),<0[0[0]0>>:
>x2:=x2+<RandomMatrix(2,4,generator=rand(-1..1)/1000),<0|0|0[0>>:

>eq:=[n3+1,op (numer (normal (Flatten(map (i->M2L((X_(x2[..,i]) .H.x1[..,i1)[1..2]1),[1,2,3,41)))))]:
and analyze the ideal

>B:=Basis(eq,plex(cl,c2,c3,n1,n2,n3,t1,t2,t3)):

Bi:=Polynomialldeals[PolynomialIldeal] ([op(B)]):

print("Hilbert dimension =",PolynomialIldeals[HilbertDimension] (Bi));

print ("The number of solutions =",Polynomialldeals[NumberOfSolutions] (Bi));

print("Is radical =",Polynomialldeals[IsRadicall (Bi));

print("Is prime =",Polynomialldeals[IsPrime] (Bi));

print("Is primary =",PolynomialIldeals[IsPrimary] (Bi));

print("Is maximal =",Polynomialldeals[IsMaximal] (Bi));

solution equals the sumulation. Let’s next add noise of about 0.1% of

”Hilbert dimension =", 0

”The number of solutions =", 12
”Is radical =", true

”Is prime =", true

”Is primary =", true

”Is maximal =", true

We see that the ideal is prime and consists of a single component of 12 points
>Bd:=Polynomialldeals[PrimeDecomposition] (Bi):
BB:=map(i->Basis(i,plex(cl,c2,c3,n1,n2,n3,t1,t2,t3)),[Bd]):
map (b->[HilbertDimension(b),
PolynomialIdeals [NumberOfSolutions] (PolynomialIdeals[PolynomialIdeal] (b))],
BB);
[0, 12]]

There are 12 solutions for t3
>PolyVarMonomials ([B[1]],plex(op(indets(B[1]))));
[£312, 311, ¢310 ¢3% ¢3% 137, 3%, ¢3°,¢3%, ¢33, 132,13, 1]

83



T. Pajdla. Elements of Geometry for Computer Vision 2020-2-17 (pajdla@cvut.cz)

We also see that for small noise, one of the four solutions is reasonably close to the true
simulated solution.

>S:=TriangularGBSolve (B, []): mnops(S); map(f->simplify(eval(B,f)),S);
12

out of which four are real

>sH:=map (f->evalf ([subs(f,H),subs(f,R),subs(f,n),subs(f,t)]),S):
>sH:=select (f->MTM[isreal] (£ [1]),sH): nops(sH);

4

Let’s compare them to the simulation.

>_[eva1f [3] (HO) ,evalf[3] (RO) ,evalf[3] (-n0/n0[3]),evalf[3] (-t0*n0[3])];

0.969 0.408 0.235 0.948 0.261 0.183 —0.400 —0.052

—0.413 0.148 —0.013 —0.303 0.916 0.261 —2.800 0.274

| | —0.042 0.099 1.090 —0.099 —0.303 0.948 —1.000 —0.144

>map (f->print (evalf [3] (£)),sH):

[ [ —0.969 —0.410 —0.237 —0.833  0.543 0.105 —0.398 0.342
0.413 —-0.147  0.014 0.543  0.767 0.342 —2.790 0.328
| | 0.042 —-0.099 —1.090 0.105  0.342 —0.934 —1.000 0.158
[ [ —0.969 —0.410 —0.237 —0.820 —0.563 —0.104 —1.120 0.133
0.413 —0.147  0.014 —0.358 0.646 —0.674 1.150 —0.688
| | 0.042 —0.099 —1.090 0.446 —0.516 —0.731 —1.000 0.361
[ 0.969  0.410 0.237 0.948 0.261  0.183 —0.398 —0.053
—0.413  0.147 —0.014 —0.303 0.916  0.262 —2.790 0.276
| | —0.042  0.099 1.090 —0.099 —-0.304  0.948 —1.000 —0.145
[ [ 0969 0.410 0.237 0.568 0.803 —0.105 —1.120 —0.341
—-0.413  0.147 —-0.014 —0.780 0.525 —0.342 1.150 —0.328
| —0.042  0.099 1.090 —0.219 —0.282 0.934 —1.000 —0.158

We see that the third solution corresponds to the simulation.
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9 Projective plane

9.1 Motivation — perspective projection in affine space

§1 Geometric model of perspective projection in affine space The perspective projection
of a point X by a camera with projection center C' can be obtained geometrically in 3D affine
space by taking all lines passing through the points C' and X and finding the intersections with
the (affine) image plane 7.

Three different situations may arise, Figure 9.1.

1. If X = C, then there is an infinite number of lines passing through C' = X, which intersect
7 in all its points, and therefore the projection of X contains the whole plane .

2. If point Y # C lies in the plane o, which is parallel to m and passing through C, then the
line passing trough C' and Y (which there is exactly one) does not intersect the projection
plane 7, and therefore, the projection of X is empty.

3. If X does not lie in the plane o, then there is exactly one line passing through points C
and X and this line intersects the projection plane 7 in exactly one point x. Hence the
projection of X contains exactly one point x.

Let us compare this affine geometrical model of the perspective projection with the algebraic
model of the perspective projection, which we have developed before.

§2 Algebraic model of perspective projection in affine space The projection Zg of X5 by a
perspective camera with image projection matrix

Py = [A\ —AC_”(;] (9.1)
is R
nip=[a] —ads] [)ﬂ (9.2)
for some n € R.

We shall analyze the three situations, which arise with the geometrical model of affine pro-
jection.

1. If X = C, then

nfﬁz[M —Adg][(ﬂ =0 (9.3)
i.e. we obtain the zero vector. What does it say about Z3? Clearly, 3 can be completely
arbitrary (even the zero vector) when we set n = 0. Alternatively, we can choose 1 # 0
and thus enforce 73 = 0. Both choices are possible. We shall use the latter one since we
will see that it better fits the other cases. We will use Z3 = 0 to (somewhat strangely)
represent all non-zero vectors in R3.
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/X

Figure 9.1: Geometric model of perspective projection in affine space. Point C' has infinite
(i.e. not unique) projection, point X has exactly one projection z. Point Y has no
projection.

2. If point Y # C lies in the plane o, then

775,6’:[1\! —Aéa] {%}=A(Y5—65) (9.4)
which, taking into account rank A = 3, implies
nA~'Es = Y5 - Cs (9.5)
Matrix A~! transforms ¥ into &5 and therefore its columns
Wt = (B s G (0.6
are the basic vectors of the camera coordinate system in the world basis §. Hence
U] [515 bas 535] Fs = Y5 — Gy (9.7)

which means that vector Y5 — Cs can be written as a linear combination of the camera
coordinate system basic vectors

npbis +1qbas + 11 bzs = Vs — Cs (9.8)

with p,q,r € R. Now, since Y lies in a plane parallel to m, vector }_’;; — (75 can be written
as a linear combination of the first two basic vectors of the camera coordinate system, and
therefore r = 0, i.e.

p

ig=|q (9.9)

0
We also see that n # 0 since otherwise we would get the zero vector on the left but that
would correspond to Y = C, which we have excluded.
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Table 9.1: Comparison of the geometrical and algebraic projection models in affine space.

Point position Projection
Geometrical model in aff. space ‘ Algebraic model in aff. space

-

Xd¢o one point of 7 n#0,Tz=|v ,(fﬂ#ﬁ)
- 1 |
-

C#Xeo no point n#0,T3=|v ,fg;é(_f
L O )

X=C all points of 7 n # 0, fﬁzﬁ

3. If X does not lie in the plane o, then the coefficient € R in the linear combination

77A_1 fg = )?5 — C_;(; (9.10)
npbis +nqbos +nrbss = X5—Cs (9.11)
is non-zero. In that case we can write
p_ — —
nla| = AXs—Cs) (9.12)
T_
P
r — —
mr) | 4] = A(Xs—Cs) (9.13)
1 i
0
77/ v = A(X;—Cy) (9.14)
1

As in the case two, n # 0 since otherwise we would get the zero vector on the left and that
would correspond to X = C', which we have excluded.

The comparison of the two models of perspective projection, Table 9.1 shows that
1. We can always assume 1 # 0.

2. The “projection” of C is represented by the zero vector while the projections of all other
points are represented by non-zero vectors.

3. The algebraic projection model can represent projections of all points in the affine space.

4. The geometrical projection model is less capable than the algebraic projection model since
it can’t model the projection of points in ¢ different from C.

The previous analysis clearly shows that the affine geometrical model of the perspective pro-
jection is somewhat deficient. It can’t model projections of some points in the space. This
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A3 A3 A3 A3
A2 A2 2 P A?

: °0 0 0

@ (b) (© () ©

Figure 9.2: (a) Two dimensional affine plane A% can be (b) embedded in the three dimensional
affine space A3. There is a point O € A3, O ¢ A%. (c) For each point X in A2, there
is exactly one line through X and O in A3. (d) There is exactly one pencil of lines
through O, which do not correspond to any point in A2, in A3. (e) Each line in the
pencil corresponds to a set of parallel lines with the same direction in A2.

deficiency leads to inventing a generalized model of the geometry around us in order to model
the perspective projection completely by intersections of geometrical entities. This generaliza-
tion of the affine space is called the projective space.

Let us look at the most important projective space, which is the projective plane. We shall first
develop a concrete projective plane by improving the affine plane exactly as much as necessary
to achieve what we want, i.e. to be able to distinguish projections of all points in the space.
In fact, this will be extremely easy since we have already done all the work, and we only need
to “upgrade” the notion of point, line, intersection and join (i.e. making the line from two
distinct points). Later, we shall observe that such an “upgrade” will also lead to an interesting
simplification and generalization of the principles of geometry.

9.2 Real projective plane

9.2.1 Geometrical model of the real projective plane

A real affine plane A? can be imagined as a subset of a real affine space A3, Figure 9.2. There
is a point O in A%, which is not in A2. For each point X in A2, there is exactly one line in A3,
which passes through X and O. Now, there is a set of lines in A3, which pass through O but
do not pass through any point of A%, This is the set of lines parallel to A% that pass through
O. These lines fill the plane of A%, which is parallel to A? and which contains the point O.
The set of all lines in A? passing through O will be called the real projective plane and denoted
as P2. The lines of A3 passing through O will be called the points of the real projective plane.!
The lines in A% passing through O, which intersect A2, are in one-to-one correspondence with
points in the affine plane A? and hence will be called the affine points of the projective plane? of

!The previous definition can be given without referring to any affine plane. We can take a point O in A3 and the
set of all lines in A® passing through O and call it a projective plane. In the above example, however, we have
obtained the projective plane as an extension of a given affine plane A%. In such a case, we can distinguish
two sets of points — affine points and ideal points — in the projective plane.

#Vlastni body in Czech. Finite points in [15].
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A3 A?

et

Figure 9.3: Algebraic model of the real projective plane.

the projective plane. The set of lines in A passing through O, which do not intersect A2, are
the “additional” points of the projective plane and will be called the ideal points of the projective
plane®.*

To each ideal point P (i.e. a line [ of A% through O parallel to A?), there corresponds exactly
one set of parallel lines in .42 which are parallel to [ in A3. Different sets of parallel lines in
A? are distinguished by their direction. In this sense, ideal points correspond to directions in
A? and can also be understood as points where parallel lines of A? intersect. Notice that the
parallel lines of A% do not intersect in A%, because P is not in A%, but they intersect in the real
projective plane obtained as the extension of A2.

9.2.2 Algebraic model of the real projective plane

We shall now move from the geometrical model in A% to an algebraic model in R? which allows
us to do computations.

Let us choose a coordinate system (O bl, b, b3) in A3 with the origin in O, with basic vectors
b1, by from the coordinate system (0, by, by) in A% and with by = (O, 0), Figure 9.3.

Lines in A3, which pass through O, correspond to one-dimensional subspaces of R? and
therefore, in R?, points of the real projective plane will be represented by one-dimensional
subspaces.

The real projective plane is the set of all one-dimensional subspaces of R3.

The affine plane is a subset of the set of all one-dimensional subspaces of R?, which we obtain
after removing all one-dimensional subspaces that lie in a two-dimensional subspace of R3.

There are (infinitely) many possible choices of sets of one-dimensional subspaces which can

#Nevlastni body in Czech. Points at infinity in [15].

4Notice that words “point” and “line” actually need to be accompanied by adjectives for the above to make
sense beacause lines of A% become points of A%. Also notice that this division of the points of the projective
plane makes sense only when we start with a given affine plane or when we start with a projective plane and
select one plane of lines in A? as the set of ideal points.
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RS

Figure 9.4: Points of the real projective plane are represented by one-dimensional subspaces of
R3. One selected two-dimensional affine subspace determines the ideal points.

model the affine plane within the real projective plane. The choice of a particular subset, which
will model a concretel affine plane, can be realized by a choice of a basis in R3.

Let us select a basis 3 = (51, 52, 53) of R3. Then, all the one-dimensional subspaces generated
by vectors

T
Tg= |y z,yeR (9.15)
1

will represent affine points, point X in Figure 9.4, and all the one-dimensional subspaces gener-
ated by vectors

—

x
Zg= |y r,yeR, z#0ory+#0 (9.16)
0

will represent the ideal points, e.g. point Y in Figure 9.4.

It is clear that the affine points are in one-to-one correspondence with all points in a two-
dimensional affine space (plane) and the ideal points are exactly what we need to add to the
affine points to get all one-dimensional subspaces of R3.

9.2.3 Lines of the real projective plane

Let us look at lines now. Lines, e.g. [ in Figure 9.5, in the affine plane contain points represented
by one-dimensional subspaces generated, e.g., by @ and 3. This set of one-dimensional subspaces
of points on [ fills almost a complete two-dimensional subspace of R? with the exception of one
one-dimensional subspace, generated by Z, which represents an ideal point. After adding the
subspace generated by Z to the set of all one-dimensional subspaces representing points on [,
we completely fill a two-dimensional subspace of R3, which hence corresponds to the projective
completion of the affine line [, which we will further call line, too.

Hence, in the real projective plane, lines correspond to two-dimensional subspaces of R3.

We would like to do calculations with lines as we do calculations with points. Let us de-
velop a convenient representation of lines now. A straightforward way how to represent a
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A2

.AS

Figure 9.5: Lines of the real projective plane correspond to two-dimensional subspaces of R? but
can be also represented by one-dimensional subspaces of R3.

two-dimensional subspace in R? is to select a basis (i.e. two linearly independent vectors) of the
subspace, e.g. & and ¥ for the line [. There are many ways how to choose a basis and therefore
the representation is far from unique. Moreover, having two bases, it is not apparent whether
they represent the same subspace.

For instance, two pairs of linearly independent vectors (#1, 1) and (¥2, ¥2) represent the
same line if and only if they generate the same two-dimensional subspace. To verify that, we,
for instance, may check whether

rank[:i’w ?]1,3 l_"gﬁ g25]=2 (917)

where we write all the four vectors 2y, ¥/, Z2, ¥» w.r.t. a basis 3 of R3.

Yet, there is another quite convenient way how to represent a two dimensional subspace in
R3. Since 3 = 2 + 1, we can find for each two-dimensional subspace, specified by a basis (&, %),
exactly one one-dimensional subspace of the three-dimensional dual linear space. Call the basis
of this new one-dimensional subspace [. Then there holds

»T

5 [T 75]=0 (9-18)

where 3 is the dual basis to 8. Therefore, we can represent lines in the real projective plane by
one-dimensional subspaces in this way.

We have developed an interesting representation of points and lines where both points and lines
are represented by one-dimensional subspaces of R?. Points are represented by one-dimensional
subspaces of V' = R3, which is connected by ¢ to the three-dimensional space A3 of the geomet-
rical model of the real projective plane. The lines are represented by one-dimensional subspaces
of the space V, which is the space dual to V. Using the basis 3 in V, which is dual to basis
B in V, the coordinates l;; as well as coordinates of F3 become vectors in R? which satisfy
Equation 9.18.
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A3 A2

Figure 9.6: The ideal line is the set of all projective points (i.e. all lines of A3 through C,
which have no intersection with A2. It is a plane o. There is exactly one, which is
perpendicular to sigma, which is generated by vector [.

The line of A® generated by [in Figure 9.5 is shown as perpendicular® to the plane generated
by Z, 9. Indeed, in the geometrical model of the real projective plane, we can use the notion of
perpendicularity to uniquely construct the (perpendicular) line to the plane corresponding to I

in A2

9.2.4 Ideal line

The set of all one-dimensional subspaces of R3, which do not correspond to points in the affine
plane, i.e. the set of all ideal points, forms itself a two-dimensional subspace of R? an hence a
line in the projective plane, which is not in the affine plane. It is the ideal line® of the projective
plane associated with the selected affine plane in that projective plane. It is represented by
vector foo in Figure 9.6.

For each affine plane, there is exactly one ideal line (a two-dimensional subspace of R?).
Conversely, by selecting one line in a projective plane (i.e. one two-dimensional subspace of R?)
the associated affine plane is determined as the set of all points (one-dimensional subspaces of
R?) which are not contained in the selected ideal line (two-dimensional subspace).

9.2.5 Homogeneous coordinates

Once a coordinate system is fixed in an affine plane, every point of the affine plane has unique
coordinates, which are the coordinates of its vector in the basis of the coordinate system.

5In A3, line and plane are perpendicular when they contain the right angle. The right angle is one quarter of a
circle.
®Nevlastn{ pifmka in Czech, line at infinity in [15].
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A point in a real projective plane is represented by a one-dimensional subspace of R3. One-
dimensional subspaces are represented by their bases consisting of a single non-zero vector.
There are infinitely many bases representing the same one-dimensional subspace. Two basic
vectors of the same one-dimensional subspace are related by a non-zero multiple.

Hence, when talking about coordinates of a point in the projective space, we actually talk
about coordinates of a particular basic vector of the one-dimensional subspace that represents
the point.

For instance, vectors

1 2
O and | O (9.19)
1 2

are basic vectors of the same one-dimensional subspace since they are related by a non-zero
multiple. These are two different “coordinates” of the same point in the real projective plane.

Hence, the “coordinates” of a point in the real projective plane are not unique. This is
so radically departing from the fundamental property of coordinates, their uniqueness, that it
deserves a new name. To distinguish the coordinates of a point in the affine plane, which are
unique, from the “coordinates” of a point in the projective plane, which are not unique, we shall
introduce new name homogeneous coordinates.

Homogeneous coordinates of a point in the real projective plane are the coordinates of a basic
vector of the one-dimensional subspace, which represents the point.

Homogeneous coordinates of a line in the real projective plane are the coordinates of a basic
vector of the one-dimensional subspace, which represents the line.

A point in an affine plane can be represented by affine as well as by homogeneous coordinates.
Let us see the relationship between the two.

Let us have a point X in a two-dimensional real affine plane, which is represented by coordi-

[w} (9.20)

nates

Y

By extending the real affine plane to the real projective plane with the ideal line identified with
the two-dimensional subspace z = 0, we can represent point X by a one-dimensional subspace
of R3 generated by its basic vector

x

Y (9.21)
1

Thus, X has affine coordinates [:p y]T and homogeneous coordinates [u v w]T, where u =
Az, v=Ay,and w = A1 for some A€ R, A # 0.
Ideal points do not have affine coordinates. Their homogeneous coordinates are

[« y 0] (9.22)

where x,y € R and either x # 0 or y # 0.
The zero vector 0 is not a basis of any one-dimensional space and thus represents neither a
point nor a line.
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Figure 9.7: A point z is incident with a line [ if and only if it can generate the line with another
point 3. Lines in A% representing the point and the line are perpendicular to each
other.

9.2.6 Incidence of points and lines

We say that a point x is incident with line [ if and only if it can generate the line with another
point y, Figure 9.7. In the representation of subspaces of R?, it means that

I3 75 =0 (9.23)

This means that the one-dimensional subspace of R? representing the line is orthogonal to the
one-dimensional subspace of R? representing the point w.r.t. the standard (Euclidean) scalar
product. In the geometrical model of the real projective plane it means that the line of A3
representing x is perpendicular to line of A% representing .

Let us write explicitly the coordinates of the bases generating the one-dimensional subspaces
as

2
I
SIS
ot

then we get
ar+by+cz=0

and for affine points represented with z = 1 this formula reduces to
ar+by+c=0

which is the familiar equation of a line in the two dimensional real affine plane.
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A2

.AS

Figure 9.8: The join of two distinct points is the unique line passing through them.

9.2.7 Join of points

Every two distinct points x and y in the real projective plane are incident with exactly one line
[. The join of two distinct points is the unique line passing through them.

In the real projective plane, two distinct points are represented by two different one-dimensional
subspaces with bases Z and .

The homogeneous coordinates of this line, i.e. the coordinates of the basic vectors of the one-
dimensional subspace representing the line, can be obtained by solving the following system of
homogeneous equations for coordinates of the vector I

f/j = 0 (9.24)

=T
3
=T,
w.r.t. B and B in R?. The set of solutions forms the one-dimensional subspace that represents
the line [.

We have seen in Section 2.3 that vector 5 can be conveniently constructed by the vector
product as

—

[ = 2% s (9.26)

Notice, that in the real projective plane as well as in the real affine plane, there is exactly one
line incident with two distinct points.

9.2.8 Meet of lines

Every two distinct lines k£ and [ in a projective plane are incident exactly to one point . The
meet of two distinct lines is the unique point incident with them.

In the real projective plane, two distinct lines are represented by two different one-dimensional
subspaces with bases k and [.
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./42

Figure 9.9: The meet of two distinct lines is the unique point incident with them.

The homogeneous coordinates of this point, i.e. the coordinates of the vectors in the one-
dimensional subspace representing the point, can be obtained by solving the following system
of homogeneous equations for coordinates of the vector # w.r.t. 8 in R3

i

T,

groe = 0
ST,

The set of solutions forms the one-dimensional subspace that represents point x. To get one
basic vector in the subspace, we may again employ the vector product in R3 and compute

fg = EBXfB

Notice, that in the real projective plane there is exactly one point incident to two distinct lines.
This is not true in an affine plane because there are (parallel) lines that have no point in
common!

9.3 Line coordinates under homography

Let us now investigate the behavior of homogeneous coordinates of lines in projective plane
mapped by a homography.

Let us have two points represented by vectors ¥z, ¢3. We now map the points, represented
by vectors Zg, 3, by a homography, represented by matrix H, to points represented by vectors
5:’;5,, gj’é, such that there are A1, Ao € R, A1\ # 0

M Zg = Hip (9.27)
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Homogeneous coordinates pj of the line passing through points represented by 7'z, yz and
homogeneous coordinates p?%, of the line passing through points represented by f,g’” 37['3, are
obtained by solving the linear systems

Py@s=0 and P53 =0 (9.29)
ST - S T o
Py 5 =0 P 5 =0 (9.30)

for a non-trivial solutions. Writing down the incidence of points and lines, we get
MPREHTE =0 o pLHTE, =0
Moy G =0« pRH G =0

We see that p’ é, and H_Tﬁﬁ- are solutions of the same set of homogeneous equations. When Z'g,
Y3 are independent, then there is A € R such that

Ap, =H T (9.31)

since the solution space is one-dimensional. Equation 9.31 gives the relationship between homo-
geneous coordinates of a line and its image under homography H.
9.3.1 Join under homography

Let us go one step further and establish formulas connecting line coordinates constructed by
vector products. Construct joins as

pg = Tg x s and ﬁé, = T X Yg (9.32)
and use Equation 2.45 to get
L o
» y o
(M @) x (N2gp) = = (Z3 x yg) (9.34)
! / H_T
g XYy = ——— (& , 9.35
g T
pr, = ————— D3 9.36

9.3.2 Meet under homography

Let us next look at the meet. Let point Z be the meet of lines pand ¢ with line cordinates pj,
3, which are related by a homography H to line coordinates p, é, and (j'é, by

H T 3 (9.37)
H T (9.38)

)\1 ﬁé/

AQ Jé/
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for some non-zero A1, A\s. Construct meets as
Tp=psxqz and T = ﬁé/ X cj’é/ (9.39)
and, similarly as above, use Equation 2.45 to get

@H ' . "
M A [(ET)T]P 7 N A 1] P

T = (9.40)

9.3.3 Meet of join under homography

We can put the above together to get meet of join under homography. We consider two pairs of
points represented by their homogeneous coordinates ', 3, and Zg, wg and the corresponding
pairs of points with their homogeneous coordinates & é,, Yg:, and 23, wj, related by homography
H as

Al fé/ = Hfﬁ, Ao gé/ = Hg:g, A3 Z_:é/ = Hgﬁ , A\ Iﬁé/ = H?Ifﬁ (9.41)

Let us now consider point

Q_]’é/ = (fé/ X gé/) X (Zé/ X 'U_)'é/) (942)
H T H T
= — (¥ U, ——(Z i) 9.43
()\1 )\2 |H_T| (I’B x yﬂ)) X ()\3 )\4 ‘H_T‘ (Zﬁ X wﬁ)) ( )
HEH
m(% x §g) x (Z5 x wWg) (9.44)
HIH
_ 4
NS YOV (9-45)

9.3.4 Note on homographies that are rotations

First notice that homogeneous coordinats of points and lines constructed as combinations of
joins and meets indeed behave under a homography as homogeneous coordinates constructed
from affine coordinates of points.

Secondly, when the homography is a rotation and homogeneous coordinates are unit vecors, all
\’s become equal to one, the determinant of H is one and H~' = H. Therefore, all homogeneous
coordinates in the previous formulas become related just by H.

9.4 Vanishing points

When modeling perspective projection in the affine space with affine projection planes, we meet
somewhat unpleasant situations. For instance, imagine a projection of two parallel lines K, L,
which are in a plane 7 in the space into the projection plane w through the center C, Figure 9.10.

The lines K, L project to image lines k,l. As we go with two points X,Y along the lines &,
away from the projection plane, their images x,y get closer and closer to the point v in the
image but they do not reach point v. We shall call this point of convergence of lines K, L the
vanishing point”.

"Ubéznik in Czech.
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K X

Figure 9.10: Vanishing point v is the point towards projections x an y tend as X and Y move
away from 7 but which they never reach.

9.5 Vanishing line and horizon

If we take all sets of parallel lines in 7, each set with a different direction, then all the points of
convergence in the image will fill a complete line h.

The line h is called the vanishing line or the horizon® when 7 is the ground plane.

Now, imagine that we project all points from 7 to m using the affine geometrical projection
model. Then, no point from 7 will project to hA. Similarly, when projecting in the opposite
direction, i.e. m to 7, line A has no image, i.e. it does not project anywhere to 7.

When using the affine geometrical projection model with the real projective plane to model
the perspective projection (which is equivalent to the algebraic model in R3), all points of the
projective plane 7 (obtained as the projective completion of the affine plane 7) will have exactly
one image in the projective plane m (obtained as the projective completion of the affine plane
m) and vice versa. This total symmetry is useful and beautiful.

8Horizont in Czech
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Figure 9.11: Vanishing line (horizon) h is the line of vanishing points.
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10 Projective space

10.1 Motivation — the union of ideal points of all affine planes

Figure 10.1(a) shows a perspective image of three sets of parallel lines generated by sides of a
cube in the three-dimensional real affine space. The images of the three sets of parallel lines
converge to vanishing points Vi, Vo and V3. The cube has six faces. Each face generates two pairs
of parallel lines and hence two vanishing points. Each face generates an affine plane which can be
extended into a projective plane by adding the line of ideal points of that plane. The projection
of the three ideal lines are vanishing lines l1o = V1 v V5, lo3 = Vo v V3 and l3; = V3 v V. Imagine
now all possible affine planes of the three-dimensional affine space and their corresponding ideal
points. Let us take the union V of the sets of ideal points of all such planes. There is exactly one
ideal point for every set of parallel lines in V, i.e. there is a one-to-one correspondence between
elements of V' (ideal points) and directions in the three-dimensional affine space. Notice also
that every plane 7 generates one ideal line [, of its ideal points and that all other planes parallel
with 7 generate the same [, Figure 10.1.

It suggests itself to extend the three-dimensional affine space by adding the set V to it,
analogically to how we have extended the affine plane. In this new space, all parallel lines will
intersect. We will call this space the three-dimensional real projective space and denote it P3.
Let us develop an algebraic model of P3. It is practical to require this model to encompass
the model of the real projective plane. The real projective plane is modeled algebraically by
subspaces of R3. Let us observe that subspaces of R* will be a convenient algebraic model of P3.

We start with the three-dimensional real affine space A and fix a coordinate system (O, )
with § = (d,], da, d;,) An affine plane 7 is a set of points of A? represented in (O, §) by the set
of vectors

T ={[z,y,2]" laz +by+cz+d=0,a,b,c,deR, a® +b* + * # 0} (10.1)

We see that the point of m represented by vector [m,y,z]T can also be represented by one-

dimensional subspace {\ [z,y,2,1]"| A € R} of R* and hence 7 can be seen as the set
m={{A[z,y,2, 1" [N e R}|[a,b,¢,d] [,y,2,1]" =0, a,b,c,d € R, a® +b° + ¢ # 0} (10.2)

of one-dimensional subspaces of R*.

Notice that we did not require A # 0 in the above definition. This is because we establish
the correspondence between a vector [z,y, z] and the corresponding complete one-dimensional
subspace {\[z,7, z,1]T, A € R} of R* and since every linear space contains zero vector, we admit
Zero \.

Every [z,v, z]T € R3 represents in (O, d) a point of A® and hence the subset

AY = {{\z,y,2,1]T|Ae R} |z,y,z € R} (10.3)

of one-dimensional subspaces of R* represents A3.
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Figure 10.1: (a) A perspective image of a cube generates three vanishing points Vj, Vo and V3
and hence also three vanishing lines l19, l23 and l31. (b) Every plane adds one line
of ideal points to the three-dimensional affine space. Every ideal point corresponds
to one direction, i.e. to a set of parallel lines. Each ideal line corresponds to a set
of parallel planes.

We observe that we have not used all one-dimensional subspaces of R* to represent A3. The
subset
Too = {{A[2,5,2,0]T | Ne R} |z,y, 2 € R, 2® + ¢ + 2% # 0} (10.4)

of one-dimensional subspaces of R* is in one-to-one correspondence with all non-zero vectors of
R3, i.e. in one-to-one correspondence with the set of directions in A3. This is the set of ideal
points which we add to A® to get the three-dimensional real projective space

PP = {{A[z,y, 2, w] T | A e R} [z, y,2,w e R, &® + ¢y + 2% + w® # 0} (10.5)

which is the set of all one-dimensional subspaces of R*. Notice that P? = A% U 7.

§1 Points Every non-zero vector of R* generates a one-dimensional subspace and thus repre-
sents a point of P3. The zero vector [0, 0,0, 0]T does not represent any point.

§2 Planes Affine planes 7,3, Equation 10.2, are in one-to-one correspondence to the subset
mas = {{\[a,b,c,d]"| AN e R} |a,b,c,d € R, a® + b? + 2 # 0} (10.6)

of the set of one-dimensional subspaces of R*. There is only one one-dimensional subspace of R,
{)[0,0,0,1]T| A € R} missing in m4s. It is exactly the one-dimensional subspace corresponding
to the set 7, of ideal points of P3

We can take another view upon planes and observe that affine planes are in one-to-one cor-
respondence with the three-dimensional subspaces of R*. The set 7 also corresponds to a
three-dimensional subspace of R%. Hence 7, can be considered another plane, the ideal plane
of P3.
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The set of planes of P2 can be hence represented by the set of one-dimensional subspaces of
R4
mps = {{\[a,b,c,d]T| N e R} |a,b,c,d e R, a® + b* + ¢ + d* # 0} (10.8)
but can also be viewed as the set of three-dimensional subspaces of R
We see that there is a duality between points and planes of P3. They both are represented by
one-dimensional subspaces of R* and we see that point X represented by vector X = [z, y, z, w]T
is incident to plane 7 represented by vector 7 = [a,b,c,d]", i.e. X o7, when

ﬁsz[a b ¢ d] =ar+by+cz+dw=0 (10.9)

S v e 8

§3 Lines Lines in P? are represented by two-dimensional subspaces of R*. Unlike in P?, lines

are not dual to points.
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11 Camera auto-calibration

Camera auto-calibration is a process when the parameters of image formation are determined
from properties of the observed scene or knowledge of camera motions. We will study camera
auto-calibration methods and tasks related to metrology in images. We have seen in Chapter 7
that to measure the angle between projection rays we needed only matrix K. Actually, it is

enough to know matrix!
w=K K}

to measure the angle between the rays corresponding to image points Z'i3, T2 as
firﬂ KiTKilfQ/g firﬁwfg/g

- = (11.1)
—1 -1 — — — =
[k 5K 2o \/xfﬁwxw \/nggwmb’

cos £ (&1, Za) =

Knowing w is however (almost) equivalent to knowing K since K can be recovered from w up to
two signs as follows.

81 Recovering K from w Let us give a procedure for recovering K from w. Assuming

ki1 k12 kis
K = 0 koo Fkos (11.2)
0 0 1
we get,
1 1 —kiz2  kigkas—kiz koo
ki1 k12 ki3 ki1 kiikae k11 ko2 mi1 Mi2 M1i3
-1 1.
K =] 0 kn k| =]0 2L s =| 0 ma mag (11.3)
0 0 1 0 0 1 0 0 1
for some real mi1, my2, m13, Mmoo and meogz. Equivalently, we get
1 —mi2 m12 M23—"M13 M22
mi1 mi1mMma2 mi1 MmM22 M3
= 1 —ma3
K= 0 P i (11.4)
0 0 1

Introducing the following notation

w1l Wiz w13
= | w12 w22 w23 (11.5)
w13 w23 W33

w=K TK!

n [15], w is called the image of the absolute conic.
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yields
2
Wil W12 w13 miq mi1mi2 mi1m13
2 2
w12 w2 woz | = | mi1 M2 mig + Maoy m12 M13 + Ma2 Ma3g (11.6)
2 2
W13 W23 W33 m11 M3  M12 M13 + Ma22 M23 mis + mas + 1

which can be solved for K~! up to the sign of the rows of K~! as follows. Equation 11.6 provides
equations

2
w11 = My mi1 = S14y/W11

mig = wiz/(s1v/wir) = s1wi2/v/wit
mis = wlg/(81 \/wll) = 81 wlS/\/@

2 / 2
Moy = 824/ Waz — MYy = S24/Waz — Wiy/wi1

M3 = 89 (W3 — w12 W13/wWi1)/4/ Wz — wiy/wi1

w12 = Mi1Mmi2

W13 = Mi1Mi3

Loyl

2 2
W22 = M9 + Moo

U

W23 = M12 M3 + M2 M23

= 52 (wn w23 — W12 wls)/\/ﬁdflwm — w11 W%Q
which can be solved for m;; with s; = +1 and s, = +1. Hence

-1

51 /W11 51 wi2/\/wi1 51 w13/y/W11
K = 0 S2 \/cm s2 (wa3 — w12 w13/wll)/\/‘*m
0 0 1
(11.7)

Signs s1, s are determined by the choice of the image coordinate system. The standard choice
is s1 = s9 = 1, which corresponds to ki1 > 0 and k9o > 0.
Notice that 4/wi1 is never zero for a real camera since mq; = % # 0. There also holds true

1 k3 1
2 2 2 12 2 2
W9y — W wllz\/m —mi, = — = k5, — k%, # 0 11.8
\/ 12/ 11 12 K2, K2 kE, ke koo 22 12 ( )
since |kj2| is much smaller than |keg| for all real cameras.

11.1 Constraints on w

Matrix w is a 3x 3 symmetric matrix and by this it has only six independent elements w11, w12, w13, Wa2, W3
and ws3. Let us next investigate additional constratints on w, which follow from different choices
of K.

§1 Constraints on w for a general K Even a general K yields a constraint on w. Equation 11.6
relates the six parameters of w to only five parameters mi1, mi2, m13, Mmoo and mog and hence
the six parameters of w can’t be independent. Indeed, let us see that the following identity holds
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true
2 2 2 2 2 2
2 W13 W12 Wig wWis 2 W13 W12 12
w — — (W22 — — w3z — —— — 74 —_— w.
(o = P — (= ) (s — 12 - 1)? - 4 T2 (= T
2 2
_ <(m12m13 +m22m23)2 . (m11m13) £m11m12)
mi
2
(m11ma2)? (my1mas)?
—(miy + m3q — s )(mis +m3s + 1 — —a 1)
m1 mp
(m11mas)?(mi1maz)? (m11ma2)? (m11ma3)?
- 4 1 (miy +m3y — — )(mis +m3s +1— —
my m1 mi

(m12m13)(m22m23))2 —4 (mlzm13)2(7712277123)2

((
(2
= 0

Since wy1 # 0, we get the following equivalent identity

(whwds — wiswiy — (Wiwse — wiy) (Wiwss —wiz —wn))”

2
mi2m13 + m22m23)2 - (7711277113)2 - (m22m23)2) —4 (m12m13)2(m22m23)2

_1)

(11.9)

— 4w%3 w%z (wllcUQQ — w%Q) (W11W33 — wi; — wn) =0 (11.10)

which is a polynomial equation of degree eight in elements of w.
We shall see next that it makes sense to introduce a new matrix

1
I o012 o013
w12
Q=012 022 03| =7
013 023 033 wig
w11

w12
w11
w22
w11
w23
w11

w13
w11
w23
w11
w33
w11

(11.11)

which contains only five unknowns, and use Equation 11.10 to get the positive wy; from Q by

solving the following quadratic equation

with

a2

a

ao

ao w%l +ajwip+ap=0 (11.12)
2 2 9 4 2 2 9
—4023°013°012° + 023" — 20237022 033 + 201370127022 033 (11.13)
2 2 4 2 2 2 2 9
—20927033013" + 012°033" + 20937022 013 + 20230127033
2 4 2 9 2 9
+0227 013~ + 0227033" — 2 099 0337012
201520122 20932099 — 20992 033 — 2 012" 11.14
01370127 022 + 2 0237022 022" 033 012" 033 (11.14)
2 2 9 2 9
+4 099 033012° — 20237012" + 20227013
—2 099 0122 + 0222 + 0124 (11.15)

§2 Constraints on w for K from square pixels Cameras have often square pixels, i.e. Hli | =
|bo|| = 1 and Z(by,be) = 7/2, which implies, Equations 7.13, 7.15, 7.16, a simplified

kim0 ki3
K= 0 ki1 kos (11.16)
0 0 1
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Ky

<

K,
Ly
Lo

(a) (b)

Figure 11.1: (a) Parallel lines K, L are projected to lines k, [ with vanishing point represented
by ¥. Vector ¥ is parallel to k, I. (b) Vectors ¥;, 02 contain the same angle as pairs
of lines Kl, K2 or Ll, L2.

This gives also simpler

1 0 —k13
0 1 ks (11.17)
—kiz  —kog ki + kig + k3

1

W= —5
2
kiy

We see that we get the following three identities

Wi = 0 (1118)
wor —wip = 0 (11.19)
Wiy + why —wiwsz + w1y = 0 (11.20)
We also get simpler
1 0 013 1 0 _k13
Q=0 1 o3| =kiw=| 0 1 —ka3 (11.21)
013 023 033 *]{713 *kzg k%l + k%?) + k%3
and use Equation 11.21 to get
ki = o33 — oly — o3 (11.22)
k13 = —013 (11.23)
k23 = —023 (11.24)

11.2 Camera calibration from angles between projection rays
We will now show how to calibrate a camera by finding the matrix w = K~ TK~L

In general, matrix w is constrained by knowing angles contained between pairs of projection
rays. Consider two projection rays with direction vectors 1, 2. Then the angle between them
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C

Figure 11.2: Images of three points with known angles between their rays can be used to calibrate
cameras with square pixels. The position of image center ég/ can be computed
in the ortogonal coordinate system (o0,d’) using the absolute pose problem from
Chapter 7.3. Matrix K is composed from coordinates of ég/.

is related to w and Q by

=T — =T —
Ti5W To Ti507T9
cos £(F1,T5) = 1577726 - 157726 (11.25)
NG e N E L PN

Squaring the above and clearing the denominators gives
(cos Z(F1, 72))* (Z]5 QT15) (T35 Qiap) = (T]5QTap) (11.26)

which is a second order equation in elements of Q. To find ©, which has five independent
parameters for a general K, we need to be able to establish five pairs of rays with known angles
and solve a system of five quadratic equations 11.26 above.

§1 Camera with square pixels A simpler situation arises when the camera has square pixels.
Then, we can use constraints from §2 to recover w and K from three pairs of rays containing
known angles. That amounts to solving three second order equations 11.26 in 013, 023, 033.
However, this is actually exactly the same problem as we have already solved in Section 7.3.
Figure 11.2 shows an image plane m with a coordinate system (o,d’) with &' = (by,bo, b})

—

derived from the image coordinate system (o,«). Having square pixels, vectors 51, by can be
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complemented with 5§ to form an orthogonal coordinates system (O = 0,¢’). Next, we choose
the global orthonormal coordinate system, (O = 0,4), 6 = (dy, d2,d3), such that

7 z _»/
L S S T (11.27)
[[01]] |[D1]] [[D1]]
and hence
loafl 00
=1 0 bll 0 | % (11.28)
0 0 [l

We know angles L(:L‘l, T9), L(¥9,¥3) and L(¥3,71). We also know i image pomts Uly = X15/
uza = X2§/ U3e = X35/ and thus we can compute distances dis = |]X25/ — X15/H dog =
HX35/ XQ(S/H and dg; = ||X35/ X15’H Having that, we can find the pose C(;/ = [Cl,CQ,Cg]T
of the camera center C' in (O,¢’) by solving the absolute pose problem from Chapter 7.3. We
will select a solution with c3 < 0 and, if necessary, use a fourth point in 7 to choose the right
solution among them. To find K, we can form the following equation

o

0= ]10 [KR| —KR@;] (11.29)

—

0
0
0
1

since point o is represented by [0,0,1]" in 3 and by [0,0,0]" in §. Coordinate system (O, §) is
chosen such that R = I and Cs = ||b1|| Cs/ and thus we get

Ol 1Bl
k10| =-—"Cs (11.30)
) f

Now, let us consider matrix K as in Equation 11.16 and use the intepretation of elements of K
from Chapter 7, Equations 7.16, 7.17. We can write

40 ok 11 1)
o f y h ! ! HP I ) Hj I e
K= 0 L & an thus K ' = loaf _ floadl 11.31
g "2 e i (1L31)
0 0 1 0 0 1
and use it in Equation 11.30 to get
k13 C1
kjgs = | e (11.32)
el “
and thus
—C3 0 C1
K= 0 —c3 c2 (11'33>
0 0 1
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11.3 Camera calibration from vanishing points

Let us first make an interesting observation about parallel lines in space an its corresponding
vanishing point in an image. Let us consider a pair of parallel lines K, L in space as shown in
Figure 11.1(a). There is an affine plane o containing the lines. The lines K, L are projected to
image plane 7 into lines k, [, respectively.

Now, first extend affine plane o to a projective plane X usmg the camera center C'. Then,
define a coordinate system (C,§) with orthonormal basis § = (dy, da, ds) such that vectors dy, ds
span affine plane o.

Let K 5 Eg be homogeneous coordinates of lines K, L w.r.t. §. Then

ws = K5 x L (11.34)

are homogeneous coordinates of the intersection of lines K, L in 3.

Next, extend the affine plane 7 to a projective plane II using the camera center C' with the
(camera) coordinate system (C, 3).

Let kﬁ, I 5 be homogeneous coordinates of lines k, [ w.r.t. $. Then

175 = k‘B X ZB (11.35)

are homogeneous coordinates of the intersection of lines &, [ in II.
Now, consider Equation 8.14 for planes Y and II. Since ¢ is orthonormal, we have K’ = I and
thus that there is a homoghraphy
H=KR (11.36)

which maps plane ¥ to plane II. Matrices K and R of the camera are here w.r.t. the world
coordinate system (C,J).
We see that there is a real A\ such that there holds

AUg = KR s (11.37)

true.

§1 Pairs of “orthogonal” vanishing points and camera with square pixels Let us have two
pairs of parallel lines in space, Figure 11.1(b), such that they are also orthogonal, i.e. let K
be parallel with L, and K5 be parallel with Ly and at the same time let K7 be orthogonal to
Ky and Ly be orthogonal to Lo. This, for instance, happens when lines K1, L1, K5, Ly form a
rectangle but they also may be arranged in the three-dimensional space as non-intersecting.

Let lines ki,l1, ko,lo be the projections of Ki, L1, Ko, Lo, respectively, represented by the
corresponding vectors Ele l}g, EQB’ l;B in the camera coordinates system with (in general non-
orthogonal) basis 8. Lines ky and [y, resp. k2 and la, generate vanishing points

271,3 = le X llB
The perpendicularity of w; to s is, in the camera orthogonal basis 4, modeled by

W5 Was = 0 (11.38)
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We therefore get from Equation 11.37

UK TRTTRTIK s = 0 (11.39)
UK K s = 0 (11.40)
Tlgwihs = 0 (11.41)

which is a linear homogeneous equation in w. Assuming further square pixels, we get, § 2,
Ulgwipg = 0
Ui Qg = 0

1 0 o3| [va]

[vir viz vis] | O 1 o | |wva2| = 0
013 023 033 | | V23 |

013
[U23 V11 + V21 V13 V23 V12 + U22V13 V23 U13] 023 = —(v21v11 + v2212)
033 |

Now, we need only 3 pairs of perpendicular vanishing points, e.g. to observe 3 rectangles not all
in one plane to compute 013, 023, 033 and then

ki3 = —o13
ka3 = —o23
k11

2 2
033 — ki5 — ki3

11.4 Camera calibration from images of squares

Let us exploit the relationship between the coordinates of points X, which all lie in a plane
o and are measured in a coordinate system (O,d;,ds) in o, Figure 8.2. The points X are
projected by a perspective camera with the camera coordinate system is (C, ), 5 = (b1, ba, b3)

and projection matrix P into image coordinates [u v]T, w.r.t. an image coordinate system
(o, by, 52), Equation 8.30. See paragraph §1 to recall that the columns of P can be writen as

p— [KR| —KRC"(;] = [J}V oy dsy —C’V] (11.42)

and therefore we get the columns

hi=p1 = di (11.43)
hy =p2 = dy (11.44)
hy=ps = —C, (11.45)

of the homography H mapping o to 7 as defined in Equation 8.31.
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Now imagine that we are observing a square with 4 corner points X, X5, X3 and X4 in the
plane o and we construct the coordinate system in o by assigning coordinates to the corners as

Xis = [0 0 0] (11.46)
dis =X = [1 0 0] (11.47)
dos = X35 = [0 1 0] (11.48)
Xis = [1 1 0] (11.49)

We see that we get two constraints on d};, d;;

d5 dos 0 (11.50)
dlsdys —dgsdys = 0 (11.51)
which lead to
Ak Tk 'dy, = 0 (11.52)
digK "K' dig—dy, K"K 'dy = 0 (11.53)

by using d_;-y = KRJ;(g fori=1,2, and RTR = I.
These are two linear equations on w and hence also, see §1, on €2

dj,Qdy, = 0 (11.54)
CaryQCfIV_CZQrVQCZQV = 0 (1155)

on w in terms of estimated \H
h! Qhy = (11.56)

h! Qh; —hy Qhy (11.57)

One square provides two equations and therefore three squares in two planes in a general
position suffice to calibrate full K. Actually, such three squares provide one more equations than
necessary since {2 has only five parameters. Hence, it is enough observe two squares and one
rectangle to get five constraints. Similarly, one square and one rectangle in a plane then suffice
to calibrate K when pixels are square.

Notice also that we have never used the special choice of coordinates of Xg. Indeed, point X4
could be anywhere provided that we know how to assign it coordinates in (O, d_i, 0?2)

To calibrate the camera, we first assign coordinates to the corners of the square as above,
then find the homography H from the plane to the image

\i Tig = HX s (11.58)

for a; = 1,...,4 and finally use columns of H the find Q.
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12 Two-view scene reconstruction

Imagine two cameras giving two images of the space from two different view points. We will
next investigate how to (re-)construct camera projection matrices and meaningful coordinates of
points in the space such that the reconstructed cameras and the reconstructed points generate
the images.

12.1 Epipolar geometry

Figure 12.1 shows two cameras with different centers C7, C5 and image planes 7y, 7o, observing
a general point X as uj, us. Baseline b connecting image centers C, Cy intersects my, mo in
epipoles e1, ea. Points C1, Co and X form epipolar plane o, which intersects 71 in epipolar line
l1 and o in epipolar line lo. Epipolar line [; passes through epipole e; and through image point
uy. Epipolar line l5 passes through epipole es and through image point us.

Let us next find the relationship between image points, epipoles, epipolar lines as a function
of camera parameters, Figure 12.2.

Assume a world coordinate system (O, §) and cameras C7, Cy with camera projection matrices

P = [K1R1| — KlRléw] and Py = I:KQRQ‘ — KQRQ@%] (12.1)

Point X is projected to image planes 71, mo, with respective coordinate systems (o1, 51), (02, 52),
as

. X, . X
C1 %18, =P1 [ 16] and (2 Z98, = P2 [ 15} (12.2)

for some (; > 0 and (3 > 0, which then leads to

i1 @1p, = KiRi(Xs — Ci5) and (o Tag, = KoRo(X; — Cas) (12.3)
G R{K T = X5 — Cis C2RgKy ' da, = X5 — Cas (12.4)

Consider now that vectors X:(g - C_"h;, )25 - C_;Qd and C_"Qg - C_"l(g form a triangle and hence

Cos —Cis = (X5 —Chs) — (X5 — Chs) (12.5)
Cos —Cis = CR{K['T15, — QR Ky 'Top, (12.6)
with (1 > 0 and (o > 0 for the standard choice of camera coordinate systems.

We shall next eliminate depths (;, (2 by exploiting the vector product identities, see Para-
graph 2.3,

o Oy
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X
m 2
ll o l2
U1 U2
o) e1 b €9

Figure 12.1: Epipolar geometry of two cameras.

for all #, 4 € R3.
We first vector-multiply Equation 12.6 by Cys5 — C'i5 from the left to get

0 = |Cos—Cis| GRIKT'Tus, — |Cos = Cis| GRIKT'Ts,
and then multiply Equation 12.9 by (s fQTBQKQ_ TRy from the left to get
0 = (2@p,K; Ro [625 - 616] . GLR{K T,

which, since (; # 0 and (2 # 0, is equivalent with

0 = Z5K; Ro [025 — 015] ) R{ K175,
- - 1=

0 = &g,Ky EK['Tig

0 = yg,FFia

where we introduced the essential matriz E € R3*3 as
E =R [625 - 6*15] ) R/
and the fundamental matriz F € R3*3 as

F =K, Ry [025 — Cm] . RIK; !

Co

(12.9)

(12.10)

(12.11)

(12.12)
(12.13)

(12.14)

(12.15)

Let us next introduce epipoles to pass from vectors in § to vectors in (31, 52, which are mea-

surable in images.
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X
T X - C_;l X —Ch D)
I I
fl 52
Gy €1 Cy - Cy € Cs

Figure 12.2: Vectors of the epipolar geometry.

The projection e; of the the camera center Cs to the first image as well as the projection es
of the the camera center ' to the second image are obtained as

Gép, = P {Cf‘s] = K1R1(Chs — Cs) (12.16)
; Cuo L
C2€2p, = P2 [ 1 ] = KoRa(Ci5 — Cys) (12.17)

for some (1 > 0 and (o > 0.
We can now substitute Equation 12.16 into Equation 12.15 to get

F = K, Ry [625—615]XRIKI1 (12.18)
— K; 'R [GiR[K ', ] RIK; (12.19)
Te—1\—T
1, (R{K{) .
— ClKQ RQW [elﬁl]x (12‘20)
G- .
= @KQTRQR&TKI[QBJX (12.21)

We used the result from § 2, which shows how the vector product behaves under the change of
a basis.
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Analogically, we substitute Equation 12.17 into Equation 12.15 to get

F = K Ry [525—615] Ry K| (12.22)
X
= K, 'Ro[~GRyK; 'és,]| RIK[' (12.23)
T

= ([erK @], R ) RIK (12.24)
= <’K2|RQTK2T[52BQ]X> R{K| (12.25)
_ S Te-1
= ’K2|[252]XK2R231K1 (12.26)

We used additional properties of the linear representation of the vector product from § 3.
We see from Equations 12.21 and 12.26 that it is possible to recover homogeneous coordinates
of the epipoles from F by solving equations

Féig, =0 and F'éys =0 (12.27)

for a non-zero multiples of €3,, €23,. We also see that matrix F has rank smaller than three

since it has a non-zero null space €,. Since, rank of |:CQ(§ — 015] is two for non-zero Cy5 — C5,
X

F has rank two when camera centers do not coincide.
Let us look at the epipolar lines. Epipolar lines pass through the corresponding points in
images and the epipoles, i.e. [y = x1 v e and lsx = z9 v es. Consider that there holds

T3p,F€1p =0 and F{gF &p, =0 (12.28)
T35,F T15, = 0 Elp F g, = 0 (12.29)
(12.30)

and therefore homogeneous coordinates f151 f252 of epipolar lines generated by ¥y, and Zg,,
respectively, are obtained as

L, =F'@as, and Iy, =Fip, (12.31)

for 53252 #* 62,32 and fl,ﬁl #* 51/31.

12.2 Computing epipolar geometry from image matches

Let us look at how to compute the epipolar geometry between images from image matches. Our
goal is to find matrix G = 7F for some real non-zero 7 using Equation 12.13. Let us introduce

gi1 gi2 4gi13
G = g21 g22 go3 (12.32)
g31 932 933
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and write Equation 12.13 as

911 912 913 U1
T -
0 = 9p,GTup, = [u2i vai wai] | 921 922 gos U1 (12.33)
g31 932 933 w14
911
912
0 = [U2iu1i U2i V1 U2 W13 V24 U1y V24 V1g V24 W13 W2 ULy W24 V14 w2iw1i] .
933

for the i-th pair of the corresponding points Z';3,, 2;3, in the two images. Notice that we can
work even with ideal points when wy; = 0 or wg; = 0.

We can solve this way for a non-zero multiple of F from eight correspondences in a general
position, i.e. not all on a plane or on some special quadrics passing through camera centers [15].
If there is noise in image coordinates, we in general get a rank three matrix.

To avoid this problem, we can use only seven point correspondences to compute a two dimen-
sional space of solutions

G=G; +aGs (12.34)

generated form its basis Gi, Go by a. Then we use the constraint

g111 9112 9113 9211 9212 9213
0=|[G] =[G +aGa| = || g121 G120 G1a3 | + @ | 9201 9202 G203 (12.35)
9131 Y132 Y133 9231 9232 9233

to find «a by solving a third order polynomial

0 = asa®+asa®+a1a+ap (12.36)
a3 = |G
az = g221 9232 g113 — §221 g212 g133 + 9211 9222 g133 + 9231 9112 9223

+9231 9212 G123 — 9211 9223 9132 — 9231 G122 9213 — G231 9222 9113
—g211 9123 §232 + g121 9232 9213 + 9221 G132 9213 + G131 G212 §223
—g121 9212 9233 — G111 9223 9232 — 9221 G112 9233 + G211 9122 §233
+9111 9222 G233 — G131 9222 9213

a1 = g111 9122 9233 t 9111 9222 9133 + 9231 9112 9123 — 9121 9112 9233
—g211 9123 9132 — 9221 §112 9133 — 9231 G122 9113 + G211 9122 9133
+9121 9132 9213 + 9121 9232 9113 + 131 G212 9123 — G121 G212 9133
—9131 9222 §113 + g221 9132 9113 — G111 G123 9232 — G131 9122 9213
+9131 9112 9223 — g111 9223 9132

ag = |Gy

That will give us up to three rank two matrices G.
Notice that we assumed that G was constructed with a non-zero coefficient at G;. We therefore
also need to check G = Gy for a solution.
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12.3 Ambiguity in two-view reconstruction

The goal of scene reconstruction from 1ts two views is to find camera projection matrices Py, Po,
and coordinates of points in the scene X5 such that the points X5 are projected by cameras Py,
P, to observed image points 3,, Z23,

. X . X
CiZ1p, =P1 [ 15} and (2 Top, = P2 [ 16] (12.37)

for some positive real (1, (o.

Assume that there are some cameras Pq, P2, and coordinates of points in the scene X(; such
that Equation 12.43 holds true. Then, for every 4 x 4 real regular matrix H we can get new
camera matrices P{, P} and new point coordinates X 5 as

P, =P H ! P)=pPyH! {%] —H [%} (12.38)

which also project to the same image points
G = P [f‘s] — P H 'H [%] —p] [)ié] (12.39)
(oTos, = P {)?] =PyH 'H {%] =P} [)iél] (12.40)

We see that in general we can reconstruct the cameras and the scene points only up to some
unknown transformation of the space. We also see that the transformation is more general
than just changing a basis in R® where we represent affine points X;;. Matrix H acts in the
three-dimensional affine space exactly as homography on two-dimensional affine space.

Let us next look at a somewhat simpler situation when camera calibration matrices Ki, Ko
are known. In such a case we can make sure that H has a special form which corresponds to a
special change of a coordinate system in the three-dimensional affine space.

12.4 Reconstruction from two calibrated views

Let us further assume that camera calibration matrices Ky, Ko are known. Hence we can pass
from F to E using Equations 12.14, 12.15 as

E = KJ FK; (12.41)

then recover the relative pose of the cameras, set their coordinate systems and finally reconstruct
points of the scene.
12.4.1 Camera computation

To simplify the setting, we will first pass from “uncalibrated” image points g,, T2, using Ki,
Ko to “calibrated”
J_}'171 = K;lflﬁl and fg»m = K;lfgm (12.42)
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and then use camera projection matrices as follows

. X, . X
Cl Lly, = Pl’yl |: 16:| and CQ L2yy = P2’yg |: 16:| (1243)

Matrix H allows us to choose the global coordinate system of the scene as (C1,¢€;). Setting

H! = [gi 0115] (12.44)
we get from Equation 12.38
Py, = [I/0] (12.45)
Py, = [R2 R{ | — Ry (Chs — (715)] = [32 R|| — RoR{ (Cae, — (7161)] (12.46)
= [r|-rd, | (1247)

and the corresponding essential matrix
E=R [6‘61] (12.48)
X
From image measurements, &1,, Z2,,, we can compute, Section 12.2, matrix

G=7E=7R [@1] (12.49)

X

and hence we can get E only up to a non-zero multiple 7. Therefore, we can recover 661 only up
to 7.
We will next fix 7 up to its sign s;. Consider that the Frobenius norm of a matrix G

i G2, = y/trace (GTG) = \/trace <72 [@1]1 RTR [C‘q]x>

lGlr =
ij=1
- 1T 7=
= /7% trace <[C€1] [C'q] > (12.50)
X X
= |r\21Cq |2 = Im| V2] Cq | (12.51)
We have used the following identities
- 1T = - -
¢'ec = 72 [Cq] R'R [Cq] =7° [Cq] [Cq] (12.52)
X X X X
0 z =y 0 —=z Y v 4+ 22 —xy —Tz
= 72| -2 0 =z z 0 —x| =72 —zy 22+22 =yz
Yy — 0 -y x 0 -T2z —yz 2?4y

We can now construct normalized matrix G as

G— o V26 TR| 2| —gnR 7] (12.53)
3 2 |7 C X
Zi,j=1 Gij H €1 H %
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with new unknown s; € {+1,—1} and #,, denoting the unit vector in the direction of the second
camera center in €; basis.
We can find vector 7., = sot., with new unknown sy € {+1, —1} by solving

GU, =0 subject to |[v,] =1 (12.54)
to get
_ 1
G = sR [1761] = 1R[], (12.55)
sa ] s
sG = RI[7.,], (12.56)
[Sgl S g9 $g3] = R[V1 Vo Vg] (12.57)

with unknown s € {+1,—1}, unknown rotation R and known matrices [ g1 g2 gg] = G and
[vi vo v3]=[0a],

This is a matricial equation. Matrices G, [U, ], are of rank two and hence do not determine R
uniquely unless we use R'R = I and |R| = 1. That leads to a set of polynomial equations. They
can be solved but we will use the property of vector product, §2, to directly construct regular
matrices that will determine R uniquely for a fixed s.

Consider that for every regular A € R3*3, we have, §2,

B L AT
(ASL‘B) X (Ayg) =xTgr X Yygr = ﬁ (:EB X yﬂ) (12.58)
which for R gives

(RZg) x (RYs) = R(TsxYs) (12.59)

Using it for 4,7 = 1,2,3 to get
(58 x (s85) = (Rv) x (8) (12.60)
s*(gi x g;) = R(vixvy) (12.61)
(gi x g) = R(vixvy) (12.62)

i.e. three more vector equations. Notice how s disappeared in the vector product.
We see that we can write

[Sg1 582 Sg3 81 X g2 82X g3 g1X83]=
= Rg [Vl Vg V3 V] XV Vg X V3 V1><V3] (1263)

There are two sol_)utions Ry for s = +1 and R_ for s = —1. We can next compute two solutions
tie, = +U,, and t_,, = —U,, and combine them together to four possible solutions
Poyts = By [T —fhq] (12.64)
Poypi— = Ry[I| —t ] (12.65)
Py, = R_[I| —tie | (12.66)
Pypp—— = R_[I| —t_¢ | (12.67)

The above four camera projection matrices are compatible with G. The one which corresponds
to the actual matrix can be selected by requiring that all reconstructed points lie in front of the
cameras, i.e. that the reconstructed points are all positive multiples of vectors Z1., and Zs, for
all image points.
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12.4.2 Point computation

Let us assume having camera projection matrices Py, P2 and image points ¥, Zog, such that

—

X6] and (s 5252 =Py {X6:| (12.68)

Pl — P
C1 1, 1[ ) )

We can get XJ, and (1, (2 by solving the following system of (inhomogeneous) linear equations

} G

T 0 _Pl] o 12.69

[0 fggg —Py X5 ( ’ )
1

12.5 Calibrated relative camera pose computation

In the previous chapter, we had first computed a multiple of the fundamental matrix from seven
point correspondences and only then used camera calibration matrices to recover a multiple of
the essential matrix. Here we will use the camera calibration right from the beginning to obtain
a multiple of the essential matrix directly from only five image correspondences. Not only that
five is smaller than seven but using the calibration right from the beginning permits all points
of the scene generating the correspondences to lie in a plane.

We start from Equation 12.42 to get 1., and Z2,, from Equation 12.43 which are related by

Tog,Ky 'EK'Tig, = 0 (12.70)
Ty BTy, = 0 (12.71)

The above equation holds true for all pairs of image points (Z1,,, Z2,,) that are in correspondence,
i.e. are projections of the same point of the scene.

12.5.1 Constraints on E
Matrix E has rank two, and therefore there holds
[E[=0 (12.72)

true.
We will now derive additional constraints on E. Let us consider that we can write, Equa-
tion 12.48,

E — R [@1] (12.73)

X
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Let us introduce 6_"61 = [:c Y z]T and evaluate

- . Tl P R L 1T =
EE = (R [Cq] R [Cq] [cq] R'R [cq] - [Cq] [cq] (12.74)
X X X X X X

[ 0 z —y 0 —z vy 24y —xy —xz

= —z 0 =z z —x | = —zxy 22422 —yz
 y -z 0 —y x 0 —xz —yz  yr+a?
[ 22 + 9% + 22 rTT TY T2

= z? + y2 + 22 rTY Yy Y=z
| r? + y2 + 22 Tz Yz zz

= |CulP1-C, C (12.75)

We can multiply the above expression by E from the left again to get an interesting equation

ﬁ S a 1
EE'E = E(HC;JPI-—CLICT) =H(LJFE::§tHME(ETE)E

or equivalently

2EE'E = trace (E'E)E

which provides nine equations on elements of E.
In fact, these equations also imply |E| = 0. Consider that Equation 12.77 implies

(2EE" — trace (E'E)I) E=0

(12.76)

(12.77)

(12.78)

For Equation 12.78 to hold true, either E can’t have the full rank, i.e. [E[ = 0, or 2EE" —

trace (E'E) I = 0. The latter case gives

0 =

trace (2EE' — trace (E'E) I) = 2trace (EE') — 3trace (E'E)

(12.79)

Let us check the relationship between trace (E'E) and trace (EE") now. We write

trace (E'E) =

2 2 2 2 2 2 2 2 2
(E1y +E3; +E3y) + (Efg + E3 + E5p) + (Ej3 + E33 + E33)

2 2 2 2 2 2 2 2 2
= (E7; +Ejp +Ei3) + (E3; + E5p + E33) + (E3; + E3p + E33)

— trace (EE")

Substituting the above into Equation 12.79 gets us

0 =

2trace (EE') — 3trace (E'E) = —trace (E'E)

Equation 2EE" — trace (E'E) I = 0 also implies

2EE'
12EE|
23|E|2
23|E|2
|E|

trace (E'E) I
|trace (ETE) I|
(trace (E'E))3
0

0

122



T. Pajdla. Elements of Geometry for Computer Vision 2020-2-17 (pajdla@cvut.cz)

Therefore, Equation 12.77 implies |E| = 0.
Let us now look at constraints on matrix G = 7E, for some non-zero real 7. We can multiply
Equation 12.78 by 73 to get

73 (2EE" —trace(E'E)I) E = 0 (12.87)
(2(7E) (7E") — trace ((tE") (TE))I) (TE) = 0 (12.88)
(2GG" —trace(G'G)I) G = © (12.89)

Clearly, rank (G) = rank (7 E) = rank (E) = 2.
We conclude that constraints on E and G are the same.

12.5.2 Geometrical interpretation of Equation 12.77

c

<y

C_"xg’

Figure 12.3: Identity C., x (Ce, x (Ce, x 7)) = —|C¢, |2(Ce, x 7).

Let us provide a geometrical interpretation of Equation 12.77. We will mutiply both sides of
Equation 12.77 by a vector 7 € R? and write

2EE'E§ = trace(E'E)E7 (12.90)
2R[11]X[@1]z[11]xg - 2\\661\\2R[*€1]Xy* (12.91)
e [ o7 - mefe).s on

(Ca] |Ca] |Ca] 7 = —1Ca1?|Ca] 5 (12.93)

Now, we use that for every two vectors 7, ¢ € R? there holds [Z], ¥ = ¥ x ¥ true to get
Cep X (Coq x (Cq x 7)) = —|Cq H2(061 x ) (12.94)

which is a familiar identity of the vector pruduct in R3, Figure 12.3.
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12.5.3 Characterization of E

Let us next see that a non-zero 3 x 3 real matrix satisfying Equation 12.77 has rank two and
can be written in the form of Equation 12.73 for some rotation R and some vector C,.

Consider a real 3 x 3 matrix E such that Equation 12.77 holds true. We will make here use of
the SVD decomposition [5, p. 411] of real matrices. We can write

E=U b vl (12.95)
C

for some real non-negative a, b, ¢ and some orthogonal real 3 x 3 matrices U, V, such that UT U = T,
and VI V=T [5, p. 411]. One can see that U' U= I, and V' V = T implies |[U| = +1,[V| = +1.
Using Equation 12.95 we get
2 2
EE' =U b? u', E'lE=V b? vl (12.96)

c? c?

and trace (E'E) = trace (VD?V") = trace (VD?V™!) = trace (D?) since matrices D*> and EE' are
similar and hence their traces, which are the sums of their eigenvalues, are equal. Now, we can
rewrite Equation 12.77 as

2 _ -

a a
2U b2 Ul — @+ +A)1|U b vl = o0 (12.97)
2
c | c |
a’ K |
2U b Vi —(@®+ 0+ AU b vl = o0 (12.98)
c3 | c |
Matrices U, V are regular and thus we get
ad a
2 b —(@®+ b+ %) b =0 (12.99)
c3 c
which finally leads to the following three equations
a®—ab®—act=a(a®>-bv*-c*) = 0 (12.100)
bV —ba* b =b(b* -2 —a?) = 0 (12.101)
S—ca?—ch =c(@—d®>=b?) = 0 (12.102)

We see that there are the following two exclusive cases:

1. If any two of a, b, ¢ are zero, then the third one is zero too. For instance, if a = b = 0, then
Equation 12.102 gives ¢ = 0. This can’t happen for a non-zero E.

2. If any two of a, b, c are non-zero, then the two non-zero are equal and the third is zero.
For instance, if a # 0 and b # 0, then Equations 12.100, 12.101 imply ¢* = 0 and thus
a? = b?, which gives a = b since a, b are non-negative, i.e. rank (E) = 2.
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We thus conclude that E can be written as

a 010 0 —a O
E = U a vi=ul|l-10 0| |a 00|Vl (12.103)
| 0 0 1 0 0 0
= w||o 0 vl =w A= | V|0 (12.104)
. ) @] ]
= (sign (|W])) WVT81gn(VT| [avs], (12.105)
= sign (W))W sign ( |VT| ) [sign (|W]) avs], (12.106)
= R[sign(|U|)avs], (12.107)

for some non-negative a and the third column vg of V. Parameter a is zero for E = 0 and positive
for rank two matrices E. We introduced a new matrix W in Equation 12.104, which is the product
of U and a rotation round the z axis. We also used V'V = I, and finally Equation 2.51. In Equa-
tion 12.105 we used (sign (|W]))? = 1, V""" = Vfor V'V = I. Matrix R = sign (|(W)|) WV sign ([v"|)
in Equation 12.107 is a rotation since sign (|(W)|) W as well as V' sign ([V'|) are both rotations.
Finally, we see that sign (|W|) = sign (|U]).

12.5.4 Computing a non-zero multiple of E

Let us now disscuss how to compute a non-zero multiple of matrix E from image matches.

12.5.4.1 Selecting equations

Every pair of image matches (1, , Z2+,) provides a linear constratint on elements of E in the form
of Equation 12.71 and matricial Equation 12.77 gives nine polynomial constraints for elements
of E.

We have already seen in Paragraph 12.2 that a non-zero multiple of E can be obtained from
seven absolutely accurate point correspondences using the constraint [E| = 0. The solution was
obtained by solving a set of polynomial equations out of which seven were linear and the eighth
one was a third order polynomial.

Let us now see how to exploit Equation 12.77 in order to compute a non-zero multiple of E
from as few image matches as possible.

An idea might be to use Equations 12.77 instead of |E| = 0. It would be motivated by the
fact that Equations 12.77 imply equation |E| = 0 for real 3 x 3 matrices E. Unfortunately, this
implication does not hold true when we allow complex numbers in E', which we have to do if we

'"Equation |[E| = 0 can’t be generated from Equations 12.77 as their algebraic combination, i.e. [E| = 0 is not
in the ideal [2] generated by Equations 12.77. It means that there might be some matrices E satisfying
Equations 12.77 which do not satisfy |[E| = 0. We know that such matrices can’t be real. The proof of the
above claim can be obtained by the following program in Maple [18]

>with(LinearAlgebra) :

>with(Groebner) :
>E:=<<ell|el2]el13>,<e21]e22|e23>,<e31|e32|e33>>:
>eM:=2*E.Transpose (E) .E-Trace(Transpose(E) .E) *E:
>eq:=expand (convert (convert (eM,Vector) ,list)):
>v:=indets(eq):
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want to obtain E as a solution to a polynomial system without using any additional constraints.
We have to therefore use |[E| = 0 as well.

The next question is whether we have to use all nine Equations 12.77. It can be shown similarly
as above that indeed none of the equations 12.77 is in the ideal [2] generated by the others?.
Therefore, we have to use all Equations 12.77 as well as |E| = 0. Hence we have altogether ten
polynomial equations of order higher than one.

We have more equations than unknowns but they still do not fully determine E. We have to
add some more equations from image matches. To see how many equations we have to add, we
evaluate the Hilbert dimension [2] of the ideal generated by Equations 12.77 and |[E| = 0. We
know [2] that a system of polynomial equations has a finite number of solutions if and only if
the Hilbert dimension of the ideal generated by the system is zero.

The Hilbert dimension of the ideal generated by Equations 12.77 and |E| = 0 is equal to

>mo:=tdeg(op(v)):

>G:=Basis(eq,mo):

>Reduce (Determinant (E) ,G,mo) ;

ell e22 e33 - ell e23 e32 + e21 e32 el3 - e21 el2 e33 + e31 el2 e23 - e31 e22 el3

which computes the Groebner basis G of the ideal generated by Equations 12.77 and verifies that the remainder
on division of |E| by G is non-zero [2].

2To show that none of the equations 12.77 is in the ideal generated by the others, we run the following test in
Maple.

>with(LinearAlgebra) :
>with(Groebner) :
>E:=<<elllel2]el3>,<e21|e22|e23>,<e31|e32]|e33>>:
>eM:=2*E.Transpose (E) .E-Trace(Transpose(E) .E) *E:
>eq:=expand (convert (convert (eM,Vector) ,list)):
>
>ReduceEqByEqn:=proc(eq,eqn)

local mo,G;

mo:=tdeg(op(indets(eqn)));

G:=Basis(eqn,mo);

Reduce (eq,G,mo) ;
end proc:
>
>for i from 1 to 9 do

ReduceEqByEqn(eq[il ,eq[lop({$1..9} minus {i})11);
end;

el1® 4 ellel2? +elleld?+elle21? 42621 el2e22+2e21 el3e23+elle31?+2e31el2e32+2e3lel3e33—elle22? —elle32? —elle23?—
elle33

el1? e21+2ellel2e2242¢llel3 €23+ €213 + 21 €222 + €21 €232 + €21 €312 +2 €31 €22 €32+ 2 €31 €23 €33 — €21 €122 — €21 €322 —e21 €132 —
e2l e33

el12 e314+2ellel2e32+2ellelld e33+e212 e31+2e21 e22e32+2 €21 €23 e33+e31% +e31 €322 + €31 €332 —e31 €122 —e31 €222 —e31 €132 —
e31e23

el2e11? +e12% +e12e132 +2e22ell e21+e12e222 426221323 +2e32ell e31+e12e32% +2e32e13e33—e12e212 —el12e31% —el2e232 —
el2e33

2el2ell e2l+el2? e224+2e12e13 23+ €22 €212 +e22° + €22 232 +2 €32 €21 €31+ €22 €32% +2e32e23 €33 —e22 €112 —e22 €312 —e22 €132 —
e22e33

2e12ell e3l +e122 e32+2€12e13 €33 +2 €22 €21 €31 + €222 €32+ 2 €22 €23 €33+ €32 €312 + €322 + €32 €332 —e32 112 —e32 €212 —e32 132 —
e32e23

el3 6112 +el3el22+el3% +2e23elle2l+2e23e12e22+e13e23%+2e33elle3l+2e33el2e32+e13e332 —el3e21?—el3e312 —el3e222 —
el3e32

2¢13elle21+2el3el2 €22+ e132 €23+ 23 €212 + €23 €222 + €233 +2 €33 €21 €31+ 2 €33 €22 €32 + €23 €332 —e23 €112 — 23 €312 — €23 €122 —
e23 e32

2el3elle3l+2el3el2e32+e132 e33+2e23 €21 e31+42e23 €22 €32+ €232 €33+ €33 €312 + 33 €322 +33% —e33 €112 —e33 €212 —e33 122 —
€33 e222
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six3. An extra linear equation reduces the Hilbert dimension by one [2]. Hence, five additional
(independent) linear equations from image matches will reduce the Hilbert dimension of the
system to one.

Since all equations 12.71, 12.77 and |E| = 0 are homogeneous, we can’t reduce the Hibert
dimension below one by adding more equations 12.77 from image matches. This reflects the fact
that E is fixed by image measurements only up to a non-zero scale.

To conclude, five independent linear equations 12.71 plus Equations 12.77 and |E| = 0 fix E
up to a non-zero scale.

The scale of E has to be fixed in a different way. For instance, one often knows that some of the
elements of E can be set to one. By doing so, an extra independent linear equation is obtained
and the Hilbert dimension is reduced to zero. Alternatively, one can ask for |E|?> = 1, which
adds a second order equation. That also reduces the Hilbert dimension to zero but doubles the
number of solutions for E.

12.5.4.2 Solving the equations
We will next describe one way how to solve equations
T)9ETi1y, =0, (2EE" —trace(E'E)I)E=0, [E[=0, i=1,...,5 (12.108)

We will present a solution based on [19], which is somewhat less efficient than [20, 21] but
requires only eigenvalue computation.
First, using Equation 2.90 from Paragraph 2.5, we can write

— T — _
L1 17, ® T 9,
7). ® T
_»2 I —%’272
$3,171® ‘T3,2’72 ’U(E) _
), ® T
él|_7171 4r,2v2
x57171® L5,2v5
ﬁT

(12.109)

_ o O O OO

to obtain a 6 x 9 matrix of a system of linear equations on v(E). Row @' can be chosen randomly

to fix the scale of v(E). There is only a negligible chance that it will be chosen in the orthogonal
complement of the span of the solutions to force the solutions be trivial. If so, it can be detected
and a new @' generated.

Assuming that the rows of the matrix of the system are linearly independent, we obtain a
3-dimensional affine space of solutions. After rearranging the particular solution, resp. the basis
of the solution of the associated homogeneous system, back to 3 x 3 matrices Gg, resp. Gi, Go, G3,
we will get all solutions compatible with Equation 12.109 in the form

G=Gyg+ G +yGo + 2G3 (12.110)

3The Hilber Dimension of the ideal is computed in Maple as follows
>with(LinearAlgebra):
>E:=<<ell|el2]|el13>,<e21]e22|e23>,<e31|e32]e33>>:
>eM:=2*E.Transpose (E) .E-Trace(Transpose (E) .E) *E:
>eq:=expand(convert (convert (eM,Vector),list)):
>with(PolynomialIdeals):
>HilbertDimension(<op(eq) ,Determinant (E)>);

6
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for z,y,z e R.
Now, we can substitute G for E into the two remaining equations in 12.108. We get ten
trird-order polynomial equations in three unknowns and with 20 monomials. We can write it as

Mm = 0 (12.111)

where M is a constant 10 x 20 matrix* and

T

3 2 2 3 2
n' =2’ yz’, yx,y’ 2

2

7zyw7 Zy27 z x? 22y7 237x27yx7 y27 Zw? Zy? 227‘%.7 y7 Z? 1] (12‘112>

is a vector of 20 monomials.
Next, we rewrite the system 12.112 as

(23C3 4+ 22Co 4+ 2C1 +Co)c = 0 (12.113)
with
C = 2°C3+2°Co+2C1 + Co (12.114)
containing 10 monomials. Matrices Cgp,...,C4 are constant 10 x 10 matrices
Co = [m1 mp m3 my my; myp my3 Mmy7 Mg m20] (12.115)
C, = [O 0 0 0 ms mg m;y myy mys mlg] (12.116)
Co = [0 00000 0 mg m myg| (12.117)
C3 = [0 0000 O0O0 0 0 my] (12.118)

where m; are columns of M.

Since m contains all monomials in z,y, z up to degree three, we could have written similar
equations as Equation 12.113 with x and y.

Equation 12.113 is known as a Polynomial Eigenvealue Problem (PEP) [22] of degree three.
The strandard solution to such a problem is to relax it into a generelized eigenvalue problem of
a larger size as follows.

“Matrix M can be obtained by the following Maple [18] program
>with(LinearAlgebra) :
>G0:=<<g011|g012|g013>,<g021|g022|g023>,<g031|g032 | g033>>:
>G1:=<<gl11|g112]g113>,<g121|g122|g123>,<g131|g132|g133>>:
>G2:=<<g211]g212]g213>,<g221|g222|g223>,<g231|g232|g233>>:
>G3:=<<g311|g312|g313>,<g321|g322| g323>,<g331|g332|g333>>:
>trc:=E->simplify ((2+E.Transpose(E)-Trace(Transpose(E) .E)*IdentityMatrix(3,3)).E):
>eq:=[op(convert (trc(G),listlist)),Determinant(G)]:
>mo:=tdeg(x,y,2);

>m:=PolyVarMonomials(eq,mo) ;

2 2

,zyz,zy2,z ;U,z2y,z3,x2,yac,y2,zx,zy,z2,z,y,z,1]
>M:=PolyCoeffMatrix(eq,m,mo) :
>M[1,1];
2912291129121 + 2g133 g113 g131 — g1232 g111 — g1222 g111 + 2g132g112 9131 — g1322 g111 + g1312 g111 + g1122 g111 + g1113 +

2123 g113 g121 — g1332 g111 + g1212 g111 + g1132 g111

3 2 2 3
m:=[z°, ya”,y z,y", 2
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We can write z°c = 2 (zc) and zc = z(c) altogether with Equation 12.113 in a matrix form
as

0 I 0 c I 0 O c
0 0 I zc| = z |0 I O zc (12.119)
—Cy —Cp —Cy 22c 0 0 C3| | 2%

Av = zBv (12.120)

This is a Generelized Eigenvalue Problem (GEP) [22] of size 30 x 30, which can be solved for
z and v. Values of x,y can be recovered from v as x = cg/cip and = cg/cig. It provides 30
solutions in general.

When Cj is regular, we can pass to a standard eigenvalue problem for a non-zero z by inverting
A and using w = 1/z

—Cylcr —cylcs —cylcs | [wie w?c
I 0 0 we | = w | wc (12.121)
0 I 0 c c
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homography, 60

horizon, 99

determinant, 6
inversion, 5
monotonic, 6
permutation, 5

affine coordinate system, 23
affine function, 15

affine space, 21

axioms of linear space, 18
axioms of affine space, 22

ideal line, 92

ideal plane, 102

image calibration matrix, 46
image plane, 34

image projection matrix, 37
basis, 18

bound vector, 17 Join, 95

camera pose, 42 Kronecker product, 12
camera calibration matrix, 42

camera cartesian coordinate system, 42
camera calibration, 42

camera coordinate system, 34

line at infinity, 92
linear function, 15
linear space, 18

camera projection matrix, 46 marked ruler, 15
coordinate linear space, 2 meet, 95

coordinates, 19

cross product, 6 omnidirectional image, 73

origin of affine coordinate system, 23
dual basis, 9

dual space, 9 panoramic image, 73
partition, 19

epipolar plane, 113 perspective camera, 34

epipolar geometry, 113 point at infinity, 89

epipolar line, 113 position vector, 23

epipole, 113 principal plane, 34

essential matrix, 114 principal point, 45

projection center, 34

focal length, 42 projective space, 88

free vector, 20

Frobenius norm, 119 real projective plane
fundamental matrix, 114 affine point, 88, 90
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algebraic model, 89
geometrical model, 88
ideal point, 89, 90
line, 90

point, 88

spherical image, 73
standard basis, 2

three-dimensional real projective space, 101

vanishing point, 98
vanishing line, 99
vector product, 6
vector product, 7

world coordinate system, 34
world unit length, 50

zero bound vector, 17
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