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1 Notation

H . . . the empty set [1]
expU . . . the set of all subsets of set U [1]
U ˆ V . . . Cartesian product of sets U and V [1]
Z . . . whole numbers [1]
Zě0 . . . non-negative integers [2]
(i.e. 0, 1, 2, . . .) Q . . . rational numbers [3]
R . . . real numbers [3]
i . . . imaginary unit [3]
pS,`, q . . . space of geometric scalars
A . . . affine space (space of geometric vectors)
pAo,‘,dq . . . space of geometric vectors bound to point o
pV,‘,dq . . . space of free vectors
A2 . . . real affine plane
A3 . . . three-dimensional real affine space
P2 . . . real projective plane
P3 . . . three-dimensional real projective space
~x . . . vector
A . . . matrix
Aij . . . ij element of A
AJ . . . transpose of A
A: . . . conjugate transpose of A
|A| . . . determinant of A
I . . . identity matrix
R . . . rotation matrix
b . . . Kronecker product of matrices

β “ r~b1,~b2,~b3s . . . basis (an ordered triple of independent generator vectors)
β‹, β̄ . . . the dual basis to basis β
~xβ . . . column matrix of coordinates of ~x w.r.t. the basis β
~x ¨ ~y . . . Euclidean scalar product of ~x and ~y (~x ¨ ~y “ ~xJ

β ~yβ in an

orthonormal basis β)
~xˆ ~y . . . cross (vector) product of ~x and ~y
r~xsˆ . . . the matrix such that r~xsˆ ~y “ ~xˆ ~y

}~x} . . . Euclidean norm of ~x (}~x} “
?
~x ¨ ~x)

orthogonal vectors . . . mutually perpendicular and all of equal length
orthonormal vectors . . . unit orthogonal vectors
P ˝ l . . . point P is incident to line l
P _Q . . . line(s) incident to points P and Q
k ^ l . . . point(s) incident to lines k and l

1



2 Linear algebra

We rely on linear algebra [4, 5, 6, 7, 8, 9]. We recommend excellent text books [7, 4] for acquiring
basic as well as more advanced elements of the topic. Monograph [5] provides a number of
examples and applications and provides a link to numerical and computational aspects of linear
algebra. We will next review the most crucial topics needed in this text.

2.1 Change of coordinates induced by the change of basis

Let us discuss the relationship between the coordinates of a vector in a linear space, which is
induced by passing from one basis to another. We shall derive the relationship between the
coordinates in a three-dimensional linear space over real numbers, which is the most important
when modeling the geometry around us. The formulas for all other n-dimensional spaces are
obtained by passing from 3 to n.

§ 1 Coordinates Let us consider an ordered basis β “
”

~b1 ~b2 ~b3

ı

of a three-dimensional

vector space V 3 over scalars R. A vector ~v P V 3 is uniquely expressed as a linear combination
of basic vectors of V 3 by its coordinates x, y, z P R, i.e. ~v “ x ~b1 ` y ~b2 ` z~b3, and can be

represented as an ordered triple of coordinates, i.e. as ~vβ “
“

x y z
‰J

.
We see that an ordered triple of scalars can be understood as a triple of coordinates of a vector

in V 3 w.r.t. a basis of V 3. However, at the same time, the set of ordered triples
“

x y z
‰J

is also

a three-dimensional coordinate linear space R3 over R with
“

x1 y1 z1
‰J `

“

x2 y2 z2
‰J “

“

x1 ` x2 y1 ` y2 z1 ` z2
‰J

and s
“

x y z
‰J “

“

s x s y s z
‰J

for s P R. Moreover, the
ordered triple of the following three particular coordinate vectors

σ “

»

–

»

–

1
0
0

fi

fl

»

–

0
1
0

fi

fl

»

–

0
0
1

fi

fl

fi

fl (2.1)

forms an ordered basis of R3, the standard basis, and therefore a vector ~v “
“

x y z
‰J

is

represented by ~vσ “
“

x y z
‰J

w.r.t. the standard basis in R3. It is noticeable that the vector
~v and the coordinate vector ~vσ of its coordinates w.r.t. the standard basis of R3, are identical.

§ 2 Two bases Having two ordered bases β “
”

~b1 ~b2 ~b3

ı

and β1 “
”

~b 1
1
~b 1
2
~b 1
3

ı

leads to

expressing one vector ~x in two ways as ~x “ x ~b1 ` y ~b2 ` z ~b3 and ~x “ x1~b 1
1

` y1~b 1
2

` z1~b 1
3
.

The vectors of the basis β can also be expressed in the basis β1 using their coordinates. Let us
introduce

~b1 “ a11~b
1
1 ` a21~b

1
2 ` a31~b

1
3

~b2 “ a12~b
1
1 ` a22~b

1
2 ` a32~b

1
3 (2.2)

~b3 “ a13~b
1
1 ` a23~b

1
2 ` a33~b

1
3

2
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§ 3 Change of coordinates We will next use the above equations to relate the coordinates of
~x w.r.t. the basis β to the coordinates of ~x w.r.t. the basis β1

~x “ x ~b1 ` y ~b2 ` z ~b3

“ x pa11~b 1
1 ` a21~b

1
2 ` a31~b

1
3q ` y pa12~b 1

1 ` a22~b
1
2 ` a32~b

1
3q ` z pa13~b 1

1 ` a23~b
1
2 ` a33~b

1
3q

“ pa11 x` a12 y ` a13 zq~b 1
1 ` pa21 x` a22 y ` a23 zq~b 1

2 ` pa31 x` a32 y ` a33 zq~b 1
3

“ x1~b 1
1 ` y1~b 1

2 ` z1~b 1
3 (2.3)

Since coordinates are unique, we get

x1 “ a11 x` a12 y ` a13 z (2.4)

y1 “ a21 x` a22 y ` a23 z (2.5)

z1 “ a31 x` a32 y ` a33 z (2.6)

Coordinate vectors ~xβ and ~xβ 1 are thus related by the following matrix multiplication
»

–

x1

y1

z1

fi

fl “

»

–

a11 a12 a13
a21 a22 a23
a31 a32 a33

fi

fl

»

–

x

y

z

fi

fl (2.7)

which we concisely write as

~xβ1 “ A ~xβ (2.8)

The columns of matrix A can be viewed as vectors of coordinates of basic vectors, ~b1,~b2,~b3 of β
in the basis β1

A “

»

–

| | |
~b1β1

~b2β1
~b3β1

| | |

fi

fl (2.9)

and the matrix multiplication can be interpreted as a linear combination of the columns of A by
coordinates of ~x w.r.t. β

~xβ1 “ x~b1β1 ` y~b2β1 ` z~b3β1 (2.10)

Matrix A plays such an important role here that it deserves its own name. Matrix A is very
often called the change of basis matrix from basis β to β1 or the transition matrix from basis β
to basis β1 [5, 10] since it can be used to pass from coordinates w.r.t. β to coordinates w.r.t. β1

by Equation 2.8.
However, literature [6, 11] calls A the change of basis matrix from basis β1 to β, i.e. it (seemingly

illogically) swaps the bases. This choice is motivated by the fact that A relates vectors of β and
vectors of β1 by Equation 2.2 as

”

~b1 ~b2 ~b3

ı

“
”

a11~b
1
1 ` a21~b

1
2 ` a31~b

1
3 a12~b

1
1 ` a22~b

1
2 ` a32~b

1
3

a13~b
1
1 ` a23~b

1
2 ` a33~b

1
3

ı

(2.11)

”

~b1 ~b2 ~b3

ı

“
”

~b 1
1
~b 1
2
~b 1
3

ı

»

–

a11 a12 a13
a21 a22 a23
a31 a32 a33

fi

fl (2.12)

3
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and therefore giving
”

~b1 ~b2 ~b3

ı

“
”

~b 1
1
~b 1
2
~b 1
3

ı

A (2.13)

or equivalently
”

~b 1
1
~b 1
2
~b 1
3

ı

“
”

~b1 ~b2 ~b3

ı

A´1 (2.14)

where the multiplication of a row of column vectors by a matrix from the right in Equation 2.13
has the meaning given by Equation 2.11 above. Yet another variation of the naming appeared
in [8, 9] where A´1 was named the change of basis matrix from basis β to β1.
We have to conclude that the meaning associated with the change of basis matrix varies in

the literature and hence we will avoid this confusing name and talk about A as about the matrix
transforming coordinates of a vector from basis β to basis β1.
There is the following interesting variation of Equation 2.13

»

—

–

~b 1
1

~b 1
2

~b 1
3

fi

ffi

fl
“ A´J

»

—

–

~b1
~b2
~b3

fi

ffi

fl
(2.15)

where the basic vectors of β and β1 are understood as elements of column vectors. For instance,
vector ~b 1

1
is obtained as

~b 1
1 “ a‹

11
~b1 ` a‹

12
~b2 ` a‹

13
~b3 (2.16)

where ra‹
11
, a‹

12
, a‹

13
s is the first row of A´J.

§ 4 Example We demonstrate the relationship between vectors and bases on a concrete ex-
ample. Consider two bases α and β represented by coordinate vectors, which we write into
matrices

α “
“

~a1 ~a2 ~a3
‰

“

»

–

1 1 0
0 1 1
0 0 1

fi

fl (2.17)

β “
”

~b1 ~b2 ~b3

ı

“

»

–

1 1 1
0 0 1
0 1 1

fi

fl , (2.18)

and a vector ~x with coordinates w.r.t. the basis α

~xα “

»

–

1
1
1

fi

fl (2.19)

We see that basic vectors of α can be obtained as the following linear combinations of basic
vectors of β

~a1 “ `1~b1 ` 0~b2 ` 0~b3 (2.20)

~a2 “ `1~b1 ´ 1~b2 ` 1~b3 (2.21)

~a3 “ ´1~b1 ` 0~b2 ` 1~b3 (2.22)

4
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or equivalently

“

~a1 ~a2 ~a3
‰

“
”

~b1 ~b2 ~b3

ı

»

–

1 1 ´1
0 ´1 0
0 1 1

fi

fl “
”

~b1 ~b2 ~b3

ı

A (2.23)

Coordinates of ~x w.r.t. β are hence obtained as

~xβ “ A ~xα, A “

»

–

1 1 ´1
0 ´1 0
0 1 1

fi

fl (2.24)

»

–

1
´1
2

fi

fl “

»

–

1 1 ´1
0 ´1 0
0 1 1

fi

fl

»

–

1
1
1

fi

fl (2.25)

We see that

α “ β A (2.26)
»

–

1 1 0
0 1 1
0 0 1

fi

fl “

»

–

1 1 1
0 0 1
0 1 1

fi

fl

»

–

1 1 ´1
0 ´1 0
0 1 1

fi

fl (2.27)

The following questions arises: When are the coordinates of a vector ~x (Equation 2.8) and the
basic vectors themselves (Equation 2.15) transformed in the same way? In other words, when
A “ A´J. We shall give the answer to this question later in paragraph 2.4.

2.2 Determinant

Determinat [4] of a matrix A, denoted by |A|, is a very interesting and useful concept. It can be,
for instance, used to check the linear independence of a set of vectors or to define an orientation
of the space.

2.2.1 Permutation

A permutation [4] π on the set rns“ t1, . . . , nu of integers is a one-to-one function from rns onto
rns. The identity permutation will be denoted by ǫ, i.e. ǫpiq “ i for all i P rns .

§ 1 Composition of permutations Let σ and π be two permutations on rns. Then, their
composition, i.e. πpσq, is also a permutation on rns since a composition of two one-to-one onto
functions is a one-to-one onto function.

§ 2 Sign of a permutation We will now introduce another important concept related to per-
mutations. Sign, sgnpπq, of a permutation π is defined as

sgnpπq “ p´1qNpπq (2.28)

where Npπq is equal to the number of inversions in π, i.e. the number of pairs ri, js such that
i, j P rns, i ă j and πpiq ą πpjq.

5
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2.2.2 Determinant

Let Sn be the set of all permutations on rns and A be an n ˆ n matrix. Then, determinant |A|
of A is defined by the formula

|A| “
ÿ

πPSn

sgnpπq A1,πp1q A2,πp2q ¨ ¨ ¨ An,πpnq (2.29)

Notice that for every π P Sn and for j P rns there is exactly one i P rns such that j “ πpiq. Hence

tr1, πp1qs, r2, πp2qs, . . . , rn, πpnqsu “
 

rπ´1p1q, 1s, rπ´1p2q, 2s, . . . , rπ´1pnq, ns
(

(2.30)

and since the multiplication of elements of A is commutative we get

|A| “
ÿ

πPSn

sgnpπq Aπ´1p1q,1 Aπ´1p2q,2 ¨ ¨ ¨ Aπ´1pnq,n (2.31)

Let us next define a submatrix of A and find its determinant. Consider k ď n and two one-to-
one monotonic functions ρ, ν : rks Ñ rns, i ă j ñ ρpiq ă ρpjq, νpiq ă νpjq. We define k ˆ k

submatrix Aρ,ν of an nˆ n matrix A by

A
ρ,ν
i,j “ Aρpiq,νpjq for i, j P rks (2.32)

We get the determinant of Aρ,ν as follows

|Aρ,ν | “
ÿ

πPSk

sgnpπq Aρ,ν
1,πp1q A

ρ,ν
2,πp2q ¨ ¨ ¨ Aρ,ν

k,πpkq (2.33)

“
ÿ

πPSk

sgnpπq Aρp1q,νpπp1qq Aρp2q,νpπp2qq ¨ ¨ ¨ Aρpkq,νpπpkqq (2.34)

Let us next split the rows of the matrix A into two groups of k and m rows and find the
relationship between |A| and the determinants of certain k ˆ k and m ˆ m submatrices of A.
Take 1 ď k,m ď n such that k `m “ n and define a one-to-one function ρ : rms Ñ rk ` 1, ns “
tk ` 1, . . . , nu, by ρpiq “ k ` i. Next, let Ω Ď exp rns be the set of all subsets of rns of size k.
Let ω P Ω. Then, there is exactly one one-to-one monotonic function ϕω from rks onto ω since
rks and ω are finite sets of integers of the same size. Let ω “ rnszω. Then, there is exactly
one one-to-one monotonic function ϕω from rk ` 1, ns onto ω. Let further there be πk P Sk and
πm P Sm. With the notation introduced above, we are getting a version of the generalized
Laplace expansion of the determinant [12, 13]

|A| “
ÿ

ωPΩ

¨

˝

ź

iPrks,jPrk`1,ns
sgnpϕωpjq ´ ϕωpiqq

˛

‚|Aǫ,ϕω |
ˇ

ˇ

ˇ
Aρ,ϕωpρq

ˇ

ˇ

ˇ
(2.35)

2.3 Vector product

Let us look at an interesting mapping from R3 ˆ R3 to R3, the vector product in R3 [7] (which
it also often called the cross product [5]). Vector product has interesting geometrical properties
but we shall motivate it by its connection to systems of linear equations.

6
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§ 1 Vector product Assume two linearly independent coordinate vectors

~x “
“

x1 x2 x3
‰J

and ~y “
“

y1 y2 y3
‰J

in R3. The following system of linear equations

„

x1 x2 x3
y1 y2 y3



~z “ 0 (2.36)

has a one-dimensional subspace V of solutions in R3. The solutions can be written as multiples
of one non-zero vector ~w, the basis of V , i.e.

~z “ λ ~w, λ P R (2.37)

Let us see how we can construct ~w in a convenient way from vectors ~x, ~y.
Consider determinants of two matrices constructed from the matrix of the system (2.36) by

adjoining its first, resp. second, row to the matrix of the system (2.36)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

x1 x2 x3
y1 y2 y3
x1 x2 x3

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

x1 x2 x3
y1 y2 y3
y1 y2 y3

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0 (2.38)

which gives

x1 px2 y3 ´ x3 y2q ` x2 px3 y1 ´ x1 y3q ` x3 px1 y2 ´ x2 y1q “ 0 (2.39)

y1 px2 y3 ´ x3 y2q ` y2 px3 y1 ´ x1 y3q ` y3 px1 y2 ´ x2 y1q “ 0 (2.40)

and can be rewritten as
„

x1 x2 x3
y1 y2 y3



»

–

x2 y3 ´ x3 y2
´x1 y3 ` x3 y1
x1 y2 ´ x2 y1

fi

fl “ 0 (2.41)

We see that vector

~w “

»

–

x2 y3 ´ x3 y2
´x1 y3 ` x3 y1
x1 y2 ´ x2 y1

fi

fl (2.42)

solves Equation 2.36.
Notice that elements of ~w are the three two by two minors of the matrix of the system (2.36).

The rank of the matrix is two, which means that at least one of the minors is non-zero, and
hence ~w is also non-zero. We see that ~w is a basic vector of V . Formula 2.42 is known as the
vector product in R3 and ~w is also often denoted by ~xˆ ~y.

§ 2 Vector product under the change of basis Let us next study the behavior of the vector
product under the change of basis in R3. Let us have two bases β, β 1 in R3 and two vectors

~x, ~y with coordinates ~xβ “
“

x1 x2 x3
‰J

, ~yβ “
“

y1 y2 y3
‰J

and ~xβ 1 “
“

x 1
1

x 1
2

x 1
3

‰J
,

~yβ “
“

y 1
1

y 1
2

y 1
3

‰J
. We introduce

~xβ ˆ ~yβ “

»

–

x2 y3 ´ x3 y2
´x1 y3 ` x3 y1
x1 y2 ´ x2 y1

fi

fl ~xβ 1 ˆ ~yβ 1 “

»

–

x 1
2
y 1
3

´ x 1
3
y 1
2

´x 1
1
y 1
3

` x 1
3
y 1
1

x 1
1
y 1
2

´ x 1
2
y 1
1

fi

fl (2.43)
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To find the relationship between ~xβ ˆ ~yβ and ~xβ 1 ˆ ~yβ 1 , we will use the following fact. For every

three vectors ~x “
“

x1 x2 x3
‰J

, ~y “
“

y1 y2 y3
‰J

, ~z “
“

z1 z2 z3
‰J

in R3 there holds

~zJp~xˆ ~yq “
“

z1 z2 z3
‰

»

–

x2 y3 ´ x3 y2
´x1 y3 ` x3 y1
x1 y2 ´ x2 y1

fi

fl “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

x1 x2 x3
y1 y2 y3
z1 z2 z3

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ

~yJ

~zJ

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(2.44)

We can write

~xβ 1 ˆ ~yβ 1 “

»

–

r1 0 0s p~xβ 1 ˆ ~yβ 1q
r0 1 0s p~xβ 1 ˆ ~yβ 1q
r0 0 1s p~xβ 1 ˆ ~yβ 1q

fi

fl “

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β 1

~yJ
β 1

1 0 0

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β 1

~yJ
β 1

0 1 0

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β 1

~yJ
β 1

0 0 1

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

fl

J

“

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β A

J

~yJ
β A

J

1 0 0

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β A

J

~yJ
β A

J

0 1 0

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β A

J

~yJ
β A

J

0 0 1

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

fl

J

“

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β

~yJ
β

r1 0 0s A´J

fi

fl AJ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β

~yJ
β

r0 1 0s A´J

fi

fl AJ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β

~yJ
β

r0 0 1s A´J

fi

fl AJ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

fl

J

“

»

–

r1 0 0s A´Jp~xβ ˆ ~yβq
r0 1 0s A´Jp~xβ ˆ ~yβq
r0 0 1s A´Jp~xβ ˆ ~yβq

fi

fl

ˇ

ˇAJˇ
ˇ

“ A´J

|A´J| p~xβ ˆ ~yβq (2.45)

§ 3 Vector product as a linear mapping It is interesting to see that for all ~x, ~y P R3 there
holds

~xˆ ~y “

»

–

x2 y3 ´ x3 y2
´x1 y3 ` x3 y1
x1 y2 ´ x2 y1

fi

fl “

»

–

0 ´x3 x2
x3 0 ´x1

´x2 x1 0

fi

fl

»

–

y1
y2
y3

fi

fl (2.46)

and thus we can introduce matrix

r~xsˆ “

»

–

0 ´x3 x2
x3 0 ´x1

´x2 x1 0

fi

fl (2.47)

and write
~xˆ ~y “ r~xsˆ ~y (2.48)

Notice also that r~xsJ
ˆ “ ´ r~xsˆ and therefore

p~xˆ ~yqJ “ pr~xsˆ ~yqJ “ ´~yJ r~xsˆ (2.49)

The result of § 2 can also be written in the formalism of this paragraph. We can write for every
~x, ~y P R3

rA ~xβsˆ A ~yβ “ pA ~xβq ˆ pA ~yβq “ A´J

|A´J| p~xβ ˆ ~yβq “ A´J

|A´J| r~xβsˆ ~yβ (2.50)
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and hence we get for every ~x P R3

rA ~xβsˆ A “ A´J

|A´J| r~xβsˆ (2.51)

2.4 Dual space and dual basis

Let us start with a three-dimensional linear space L over scalars S and consider the set L‹ of
all linear functions f : L Ñ S, i.e. the functions on L for which the following holds true

fpa ~x` b ~yq “ a fp~xq ` b fp~yq (2.52)

for all a, b P S and all ~x, ~y P L.
Let us next define the addition `‹ : L‹ ˆ L‹ Ñ L‹ of linear functions f, g P L‹ and the

multiplication ¨‹ : S ˆ L‹ Ñ L‹ of a linear function f P L‹ by a scalar a P S such that

pf `‹ gqp~xq “ fp~xq ` gp~xq (2.53)

pa ¨‹ fqp~xq “ a fp~xq (2.54)

holds true for all a P S and for all ~x P L. One can verify that pL‹,`‹, ¨‹q over pS,`, q is itself
a linear space [4, 7, 6]. It makes therefore a good sense to use arrows above symbols for linear
functions, e.g. ~f instead of f .
The linear space L‹ is derived from, and naturally connected to, the linear space L and hence

deserves a special name. Linear space L‹ is called [4] the dual (linear) space to L.
Now, consider a basis β “ r~b1,~b2,~b3s of L. We will construct a basis β‹ of L‹, in a certain

natural and useful way. Let us take three linear functions ~b‹
1
,~b‹

2
,~b‹

3
P L‹ such that

~b‹
1
p~b1q “ 1 ~b‹

1
p~b2q “ 0 ~b‹

1
p~b3q “ 0

~b‹
2
p~b1q “ 0 ~b‹

2
p~b2q “ 1 ~b‹

2
p~b3q “ 0

~b‹
3
p~b1q “ 0 ~b‹

3
p~b2q “ 0 ~b‹

3
p~b3q “ 1

(2.55)

where 0 and 1 are the zero and the unit element of S, respectively. First of all, one has to
verify [4] that such an assignment is possible with linear functions over L. Secondly one can
show [4] that functions ~b‹

1
,~b‹

2
,~b‹

3
are determined by this assignment uniquely on all vectors of L.

Finally, one can observe [4] that the triple β‹ “ r~b‹
1
,~b‹

2
,~b‹

3
s forms an (ordered) basis of ~L. The

basis β‹ is called the dual basis of L‹, i.e. it is the basis of L‹, which is related in a special (dual)
way to the basis β of L.

§ 1 Evaluating linear functions Consider a vector ~x P L with coordinates ~xβ “ rx1, x2, x3sJ

w.r.t. a basis β “ r~b1,~b2,~b3s and a linear function ~h P L‹ with coordinates ~hβ‹ “ rh1, h2, h3sJ

w.r.t. the dual basis β‹ “ r~b‹
1
,~b‹

2
,~b‹

3
s. The value ~hp~xq P S is obtained from the coordinates ~xβ

9
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and ~hβ‹ as

~hp~xq “ ~hpx1~b1 ` x2~b2 ` x3~b3q (2.56)

“ ph1~b‹
1 ` h2~b

‹
2 ` h3~b

‹
3qpx1~b1 ` x2~b2 ` x3~b3q (2.57)

“ h1~b
‹
1p~b1qx1 ` h1~b

‹
1p~b2qx2 ` h1~b

‹
1p~b3qx3

`h2~b‹
2p~b1qx1 ` h2~b

‹
2p~b2qx2 ` h2~b

‹
2p~b3qx3 (2.58)

`h3~b‹
3p~b1qx1 ` h3~b

‹
3p~b2qx2 ` h3~b

‹
3p~b3qx3

“
“

h1 h2 h3
‰

»

—

–

~b‹
1
p~b1q ~b‹

1
p~b2q ~b‹

1
p~b3q

~b‹
2
p~b1q ~b‹

2
p~b2q ~b‹

2
p~b3q

~b‹
3
p~b1q ~b‹

3
p~b2q ~b‹

3
p~b3q

fi

ffi

fl

»

–

x1
x2
x3

fi

fl (2.59)

“
“

h1 h2 h3
‰

»

–

1 0 0
0 1 0
0 0 1

fi

fl

»

–

x1
x2
x3

fi

fl (2.60)

“
“

h1, h2, h3
‰

»

–

x1
x2
x3

fi

fl (2.61)

“ ~h
J

β‹ ~xβ (2.62)

The value of ~h P L‹ on ~x P L is obtained by multiplying ~xβ by the transpose of ~hβ‹ from the
left.
Notice that the middle matrix on the right in Equation 2.59 evaluates into the identity.

This is the consequence of using the pair of a basis and its dual basis. The formula 2.62 can be
generalized to the situation when bases are not dual by evaluating the middle matrix accordingly.
In general

~hp~xq “ ~h
J

β̄
r~̄bip~bjqs ~xβ (2.63)

where matrix r~̄bip~bjqs is constructed from the respective bases β, β̄ of L and L‹.

§ 2 Changing the basis in a linear space and in its dual Let us now look at what happens
with coordinates of vectors of L‹ when passing from the dual basis β‹ to the dual basis β 1‹

induced by passing from a basis β to a basis β 1 in L. Consider vector ~x P L and a linear function
~h P L‹ and their coordinates ~xβ , ~xβ 1 and ~hβ‹ , ~hβ 1‹ w.r.t. the respective bases. Introduce further
matrix A transforming coordinates of vectors in L as

~xβ 1 “ A ~xβ (2.64)

when passing from β to β 1.
Basis β‹ is the dual basis to β and basis β 1‹ is the dual basis to β 1 and therefore

~h
J

β‹ ~xβ “ ~hp~xq “ ~h
J

β 1‹ ~xβ 1 (2.65)

for all ~x P L and all ~h P L‹. Hence

~h
J

β‹ ~xβ “ ~h
J

β 1‹ A ~xβ (2.66)
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for all ~x P L and therefore
~h

J

β‹ “ ~h
J

β 1‹ A (2.67)

or equivalently
~hβ‹ “ AJ~hβ 1‹ (2.68)

Let us now see what is the meaning of the rows of matrix A. It becomes clear from Equation 2.67
that the columns of matrix AJ can be viewed as vectors of coordinates of basic vectors of
β 1‹ “ r~b 1

1
‹,~b 1

2
‹,~b 1

3
‹s in the basis β‹ “ r~b‹

1
,~b‹

2
,~b‹

3
s and therefore

A “

»

—

–

~b 1
1

‹
β‹

J

~b 1
2

‹
β‹

J

~b 1
3

‹
β‹

J

fi

ffi

fl
(2.69)

which means that the rows of A are coordinates of the dual basis of the primed dual space in
the dual basis of the non-primed dual space.
Finally notice that we can also write

~hβ 1‹ “ A´J~hβ‹ (2.70)

which is formally identical with Equation 2.15.

§ 3 When do coordinates transform the same way in a basis and in its dual basis It is
natural to ask when it happens that the coordinates of linear functions in L‹ w.r.t. the dual
basis β‹ transform the same way as the coordinates of vectors of L w.r.t. the original basis β,
i.e.

~xβ 1 “ A ~xβ (2.71)

~hβ 1‹ “ A~hβ‹ (2.72)

for all ~x P L and all ~h P L‹. Considering Equation 2.70, we get

A “ A´J (2.73)

AJA “ I (2.74)

Notice that this is, for instance, satisfied when A is a rotation [5]. In such a case, one often does
not anymore distinguish between vectors of L and L‹ because they behave the same way and it
is hence possible to represent linear functions from L‹ by vectors of L.

§ 4 Coordinates of the basis dual to a general basis We denote the standard basis in R3

by σ and its dual (standard) basis in R3‹
by σ‹. Now, we can further establish another basis

γ “
“

~c1 ~c2 ~c3
‰

in R3 and its dual basis γ‹ “
“

~c ‹
1
~c ‹
2
~c ‹
3

‰

in R3‹
. We would like to find

the coordinates γ‹
σ‹ “

“

~c ‹
1σ‹ ~c ‹

2σ‹ ~c ‹
3σ‹

‰

of vectors of γ‹ w.r.t. σ‹ as a function of coordinates
γσ “

“

~c1σ ~c2σ ~c3σ
‰

of vectors of γ w.r.t. σ.
Considering Equations 2.55 and 2.62, we are getting

~c i
‹
σ‹

J
~cjσ “

"

1 if i “ j

0 if i ‰ j
for i, j “ 1, 2, 3 (2.75)
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which can be rewritten in a matrix form as

»

–

1 0 0
0 1 0
0 0 1

fi

fl “

»

—

–

~c1
‹
σ‹

J

~c2
‹
σ‹

J

~c3
‹
σ‹

J

fi

ffi

fl

“

~c1σ ~c2σ ~c3σ
‰

“ γ‹
σ‹

J γσ (2.76)

and therefore
γ‹
σ‹ “ γ´J

σ (2.77)

§ 5 Remark on higher dimensions We have introduced the dual space and the dual basis in a
three-dimensional linear space. The definition of the dual space is exactly the same for any linear
space. The definition of the dual basis is the same for all finite-dimensional linear spaces [4].
For any n-dimensional linear space L and its basis β, we get the corresponding n-dimensional
dual space L‹ with the dual basis β‹.

2.5 Operations with matrices

Matrices are a powerful tool which can be used in many ways. Here we review a few useful
rules for matrix manipulation. The rules are often studied in multi-linear algebra and tensor
calculus. We shall not review the theory of multi-linear algebra but will look at the rules from
a phenomenological point of view. They are useful identities making an effective manipulation
and concise notation possible.

§ 1 Kronecker product Let A be a k ˆ l matrix and B be a mˆ n matrix

A “

»

—

—

—

–

a11 a12 ¨ ¨ ¨ a1l
a21 a22 ¨ ¨ ¨ a2l
...

...
. . .

...
ak1 ak2 ¨ ¨ ¨ akl

fi

ffi

ffi

ffi

fl

P Rkˆl and B P Rmˆn (2.78)

then kmˆ l n matrix

C “ A b B “

»

—

—

—

–

a11 B a12 B ¨ ¨ ¨ a1l B

a21 B a22 B ¨ ¨ ¨ a2l B
...

...
. . .

...
ak1 B ak2 B ¨ ¨ ¨ akl B

fi

ffi

ffi

ffi

fl

(2.79)

is the matrix of the Kronecker product of matrices A, B (in this order).
Notice that this product is associative, i.e. pAbBqbC “ AbpBbCq, but it is not commutative,

i.e. A b B ‰ B b A in general. There holds a useful identity pA b BqJ “ AJb BJ.

§ 2 Matrix vectorization Let A be an mˆ n matrix

A “

»

—

—

—

–

a11 a12 ¨ ¨ ¨ a1n
a21 a22 ¨ ¨ ¨ a2n
...

...
. . .

...
am1 am2 ¨ ¨ ¨ amn

fi

ffi

ffi

ffi

fl

P Rmˆn (2.80)
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We define operator vp.q : Rmˆn Ñ Rmn which reshapes an mˆn matrix A into a mnˆ 1 matrix
(i.e. into a vector) by stacking columns of A one above another

vpAq “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

a11
a21
...

am1

a12
a22
...

am2

a1n
a2n
...

amn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ (2.81)

Let us study the relationship between vpAq and vpAJq. We see that vector vpAJq contains
permuted elements of vpAq and therefore we can construct permutation matrices [5] Jmˆn and
Jnˆm such that

vpAJq “ Jmˆn vpAq
vpAq “ Jnˆm vpAJq

We see that there holds
Jnˆm Jmˆn vpAq “ Jnˆm vpAJq “ vpAq (2.82)

for every mˆ n matrix A. Hence
Jnˆm “ J´1

mˆn (2.83)

Consider a permutation J. It has exactly one unit element in each row and in each column.
Consider the i-th row with 1 in the j-th column. This row sends the j-th element of an input
vector to the i-th element of the output vector. The i-the column of the transpose of J has 1
in the j-th row. It is the only non-zero element in that row and therefore the j-th row of JJ

sends the i-th element of an input vector to the j-th element of the output vector. We see that
JJ is the inverse of J, i.e. permutation matrices are orthogonal. We see that

J´1

mˆn “ JJ
mˆn (2.84)

and hence conclude
Jnˆm “ JJ

mˆn (2.85)

We also write vpAq “ JJ
mˆn vpAJq.

§ 3 From matrix equations to linear systems Kronecker product of matrices and matrix vec-
torization can be used to manipulate matrix equations in order to get systems of linear equations
in the standard matrix form A x “ b. Consider, for instance, matrix equation

A X B “ C (2.86)
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with matrices A P Rmˆk, X P Rkˆl, B P Rlˆn, C P Rmˆn. It can be verified by direct computation
that

vpA X Bq “ pBJb Aq vpXq (2.87)

This is useful when matrices A, B and C are known and we use Equation 2.86 to compute X.
Notice that matrix Equation 2.86 is actually equivalent to mn scalar linear equations in k l

unknown elements of X. Therefore, we should be able to write it in the standard form, e.g., as

M vpXq “ vpCq (2.88)

with some M P Rpmnqˆpk lq. We can use Equation 2.87 to get M “ BJ b A which yields the linear
system

vpA X Bq “ vpCq (2.89)

pBJb Aq vpXq “ vpCq (2.90)

for unknown vpXq, which is in the standard form.
Let us next consider two variations of Equation 2.86. First consider matrix equation

A X B “ X (2.91)

Here unknowns X appear on both sides but we are still getting a linear system of the form

pBJb A ´ Iq vpXq “ 0 (2.92)

where I is the pmnq ˆ pk lq identity matrix.
Next, we add yet another constraints: XJ “ X, i.e. matrix X is symmetric, to get

A X B “ X and XJ “ X (2.93)

which can be rewritten in the vectorized form as

pBJb A ´ Iq vpXq “ 0 and pJmˆn ´ Iq vpXq “ 0 (2.94)

and combined it into a single linear system

„

Jmˆn ´ I

BJb A ´ I



vpXq “ 0 (2.95)
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3 Affine space

Let us study the affine space, an important structure underlying geometry and its algebraic
representation. The affine space is closely connected to the linear space. The connection is
so intimate that the two spaces are sometimes not even distinguished. Consider, for instance,
function f : R Ñ R with non-zero a, b P R

fpxq “ a x` b (3.1)

It is often called “linear” but it is not a linear function [6, 7, 5] since for every α P R there holds

fpαxq “ αax` b ‰ α pa x` bq “ α fpxq (3.2)

In fact, f is an affine function, which becomes a linear function only for b “ 0.
In geometry, we need to be very precise and we have to clearly distinguish affine from linear.

Let us therefore first review the very basics of linear spaces, and in particular their relationship
to geometry, and then move to the notion of affine spaces.

3.1 Vectors

Let us start with geometric vectors and study the rules of their manipulation.
Figure 3.1(a) shows the space of points P , which we live in and intuitively understand. We

know what is an oriented line segment, which we also call a marked ruler (or just a ruler). A
marked ruler is oriented from its origin towards its end, which is actually a mark (represented

x

y

z

u

v

(a) (b) (c)

Figure 3.1: (a) The space around us consists of points. Rulers (marked oriented line segments)
can be aligned (b) and translated (c) and thus used to transfer, but not measure,
distances.
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a
a

a
a

b

b
b

b
a` b

a` b

a

aa

ab

b

1

1
1

´1

´1

a b

´1 a

(a) (b)

Figure 3.2: Scalars are represented by oriented rulers. They can be added (a) and multiplied
(b) purely geometrically by translating and aligning rulers. Notice that we need to
single out a unit scalar “1” to perform geometric multiplication.

by an arrow in Figure 3.1(b)) on a thought infinite ruler, Figure 3.1(b). We assume that we are
able to align the ruler with any pair of points x, y, so that the ruler begins in x and a mark is
made at the point y. We also know how to align a marked ruler with any pair of distinct points
u, v such that the ruler begins in u and aligns with the line connecting u and v in the direction
towards point v. The mark on so aligned ruler determines another point, call it z, which is
collinear with points u, v. We know how to translate, Figure 3.1(c), a ruler in this space.
To define geometric vectors, we need to first define geometric scalars.

3.1.1 Geometric scalars

Geometric scalars S are horizontal oriented rulers. The ruler, which has its origin identical with
its end is called 0. Geometric scalars are equipped with two geometric operations, addition a` b

and multiplication a b, defined for every two elements a, b P S.
Figure 3.2(a) shows addition a` b. We translate ruler b to align origin of b with the end of a

and obtain ruler a` b.
Figure 3.2(b) shows multiplication a b. To perform multiplication, we choose a unit ruler “1”

and construct its additive inverse ´1 using 1` p´1q “ 0. This introduces orientation to scalars.
Scalars aiming to the same side as 1 are positive and scalars aiming to the same side as ´1 are
negative. Scalar 0 is neither positive, nor negative. Next we define multiplication by ´1 such
that ´1 a “ ´a, i.e. ´1 times a equals the additive inverse of a. Finally, we define multiplication
of non-negative (i.e. positive and zero) rulers a, b as follows. We align a with 1 such that origins
of 1 and a coincide and such that the rulers contain an acute non-zero angle. We align b with 1
and construct ruler a b by a translation, e.g. as shown in Figure 3.2(b)1.
All constructions used were purely geometrical and were performed with real rulers. We can

verify that so defined addition and multiplication of geometric scalars satisfy all rules of addition
and multiplication of real numbers. Geometric scalars form a field [11, 14] w.r.t. to a ` b and
a b.

1Notice that a b is well defined since it is the same for all non-zero angles contained by a and 1.
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o

o o

o
x

xx

y

y

y

~x

~x~x

~y~y

~y

z

zz

z

~x‘ ~y

~y ‘ ~x

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.3: Bound vectors are (ordered) pairs of points po, xq, i.e. arrows ~x “ po, xq. Addition of
the bound vectors ~x, ~y is realized by parallel transport (using a ruler). We see that
the result is the same whether we add ~x to ~y or ~y to ~x. Addition is commutative.

3.1.2 Geometric vectors

Ordered pairs of points, such as px, yq in Figure 3.3(a), are called geometric vectors and denoted
as ÝÑxy, i.e. ÝÑxy “ px, yq. Symbol ÝÑxy is often replaced by a simpler one, e.g. by ~a. The set of all
geometric vectors is denoted by A.

3.1.3 Bound vectors

Let us now choose one point o and consider all pairs po, xq, where x can be any point, Fig-
ure 3.3(a). We obtain a subset Ao of A, which we call geometric vectors bound to o, or just
bound vectors when it is clear to which point they are bound. We will write ~x “ po, xq. Fig-
ure 3.3(f) shows another bound vector ~y. The pair po, oq is special. It will be called the zero
bound vector and denoted by ~0. We will introduce two operations ‘,d with bound vectors.
First we define addition of bound vectors ‘ : Ao ˆAo Ñ Ao. Let us add vector ~x to ~y as shown

on Figure 3.3(b). We take a ruler and align it with ~x, Figure 3.3(c). Then we translate the ruler
to align its begin with point y, Figure 3.3(d). The end of the ruler determines point z. We define
a new bound vector, which we denote ~x ‘ ~y, as the pair po, zq, Figure 3.3(e). Figures 3.3(f-j)
demonstrate that addition gives the same result when we exchange (commute) vectors ~x and ~y,
i.e. ~x ‘ ~y “ ~y ‘ ~x. We notice that for every point x, there is exactly one point x1 such that
po, xq ‘ po, x1q “ po, oq, i.e. ~x‘ ~x1 “ ~0. Bound vector ~x1 is the inverse to ~x and is denoted as ´~x.
Bound vectors are invertible w.r.t. operation ‘. Finally, we see that po, xq ‘ po, oq “ po, xq, i.e.
~x ‘ ~0 “ ~x. Vector ~0 is the identity element of the operation ‘. Clearly, operation ‘ behaves
exactly as addition of scalars – it is a commutative group [11, 14].
Secondly, we define the multiplication of a bound vector by a geometric scalar d : SˆAo Ñ Ao,
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where S are geometric scalars and Ao are bound vectors. Operation d is a mapping which takes
a geometric scalar (a ruler) and a bound vector and delivers another bound vector.
Figure 3.4 shows that to multiply a bound vector ~x “ po, xq by a geometric scalar a, we

consider the ruler b whose origin can be aligned with o and end with x. We multiply scalars a
and b to obtain scalar a b and align a b with ~x such that the origin of a b coincides with o and a b
extends along the line passing through ~x. We obtain end point y of so placed a b and construct
the resulting vector ~y “ ad ~x “ po, yq.
We notice that addition ‘ and multiplication d of horizontal bound vectors coincides exactly

with the addition and multiplication of scalars.

3.2 Linear space

We can verify that for every two geometric scalars a, b P S and every three bound vectors
~x, ~y, ~z P Ao with their respective operations, there holds the following eight rules

~x‘ p~y ‘ ~zq “ p~x‘ ~yq ‘ ~z (3.3)

~x‘ ~y “ ~y ‘ ~x (3.4)

~x‘~0 “ ~x (3.5)

~x‘ ´~x “ ~0 (3.6)

1 d ~x “ ~x (3.7)

pa bq d ~x “ ad pbd ~xq (3.8)

ad p~x‘ ~yq “ pad ~xq ‘ pad ~yq (3.9)

pa` bq d ~x “ pad ~xq ‘ pbd ~xq (3.10)

These rules are known as axioms of a linear space [6, 7, 4]. Bound vectors are one particular
model of the linear space. There are many other very useful models, e.g. n-tuples of real or
rational numbers for any natural n, polynomials, series of real numbers and real functions. We
will give some particularly simple examples useful in geometry later.
The next concept we will introduce are coordinates of bound vectors. To illustrate this concept,

we will work in a plane. Figure 3.5 shows two non-collinear bound vectors ~b1, ~b2, which we call
basis, and another bound vector ~x. We see that there is only one way how to choose scalars x1
and x2 such that vectors x1 d~b1 and x2 d~b2 add to ~x, i.e.

~x “ x1 d~b1 ‘ x2 d~b2 (3.11)

o

x

y

~x

~y “ ad ~x

a
b

a b

Figure 3.4: Multiplication of the bound vector ~x by a geometric scalar a is realized by aligning
rulers to vectors and multiplication of geometric scalars.
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o

x

~x

~b1

~b2

x1 d~b1

x2 d~b2

Figure 3.5: Coordinates are the unique scalars that combine independent basic vectors ~b1, ~b2
into ~x.

Scalars x1, x2 are coordinates of ~x in (ordered) basis r~b1,~b2s.

3.3 Free vectors

We can choose any point from A to construct bound vectors and all such choices will lead to the
same manipulation of bound vector and to the same axioms of a linear space. Figure 3.6 shows
two such choices for points o and o1.
We take bound vectors ~b1 “ po, b1q, ~b2 “ po, b2q, ~x “ po, xq at o and construct bound vectors

~b 1
1

“ po1, b1
1
q, ~b 1

2
“ po1, b1

2
q, ~x 1 “ po1, x1q at o1 by translating x to x1, b1 to b1

1
and b2 to b1

2
by the

same translation. Coordinates of ~x w.r.t. r~b1,~b2s are equal to coordinates of ~x 1 w.r.t. r~b 1
1
,~b 1

2
s.

This interesting property allows us to construct another model of a linear space, which plays an
important role in geometry.
Let us now consider the set of all geometric vectors A. Figure 3.7(a) shows an example of

a few points and a few geometric vectors. Let us partition [1] the set A of geometric vectors
into disjoint subsets Apo,xq such that we choose one bound vector po, xq and put to Apo,xq all
geometric vectors that can be obtained by a translation of po, xq. Figure 3.7(b) shows two such
partitions Apo,xq, Apo,yq. It is clear that Apo,xq XApo,x1q “ H for x ‰ x1 and that every geometric
vector is in some (and in exactly one) subset Apo,xq.

o

o1

b1

b1
1

b2

b1
2

x

x1

~x

~x 1

~b1

~b 1
1~b2

~b 1
2

x1 d~b1

x1 d~b 1
1

x2 d~b2

x2 d~b 1
2

Figure 3.6: Two sets of bound vectors Ao and Ao1 . Coordinates of ~x w.r.t. r~b1,~b2s are equal to

coordinates of ~x 1 w.r.t. r~b 1
1
,~b 1

2
s.
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ooo

xx
y y

(a) (b)

Figure 3.7: The set A of all geometric vectors (a) can be partitioned into subsets which are called
free vectors. Two free vectors Apo,xq and Apo,yq, i.e. subsets of A, are shown in (b).

oo

xx

x1

pp

yy

y1

qq

zz

Figure 3.8: Free vector Apo,xq is added to free vector App,yq by translating po, xq to pq, x1q and pp, yq
to pq, y1q, adding bound vectors pq, zq “ pq, x1q ‘ pq, y1q and setting Apo,xq ‘App,yq “
Apq,zq

Two geometric vectors po, xq and po1, x1q form two subsets Apo,xq, Apo1,x1q which are equal if
and only if po1, x1q is related by a translation to po, xq.
“To be related by a translation” is an equivalence relation [1]. All geometric vectors in Apo,xq

are equivalent to po, xq.
There are as many sets in the partition as there are bound vectors at a point. We can define

the partition by geometric vectors bound to any point o because if we choose another point o1,
then for every point x, there is exactly one point x1 such that po, xq can be translated to po1, x1q.
We denote the set of subsets Apo,xq by V . Let us see that we can equip set V with a meaningful

addition ‘ : V ˆ V Ñ V and multiplication d : S ˆ V Ñ V by geometric scalars S such that it
will become a model of the linear space. Elements of V will be called free vectors.
We define the sum of ~x “ Apo,xq and ~y “ Apo,yq, i.e. ~z “ ~x ‘ ~y is the set Apo,xq ‘ po,yq.

Multiplication of ~x “ Apo,xq by geometrical scalar a is defined analogically, i.e. ad ~x equals the
set Aadpo,xq. We see that the result of ‘ and d does not depend on the choice of o. We have
constructed the linear space V of free vectors.

§ 1 Why so many vectors? In the literature, e.g. in [4, 5, 8], linear spaces are often treated
purely axiomatically and their geometrical models based on geometrical scalars and vectors are
not studied in detail. This is a good approach for a pure mathematician but in engineering we
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x

y

z

t

~u

~v

~w

Figure 3.9: Free vectors ~u, ~v and ~w defined by three points x, y and z satisfy triangle identity
~u‘ ~v “ ~w.

use the geometrical model to study the space we live in. In particular, we wish to appreciate
that good understanding of the geometry of the space around us calls for using bound as well
as free vectors.

3.4 Affine space

We saw that bound vectors and free vectors were (models of) a linear space. On the other hand,
we see that the set of geometric vectors A is not (a model of) a linear space because we do not
know how to meaningfully add (by translation) geometric vectors which are not bound to the
same point. The set of geometric vectors is an affine space.
The affine space connects points, geometric scalars, bound geometric vectors and free vectors

in a natural way.
Two points x and y, in this order, give one geometric vector px, yq, which determines exactly

one free vector ~v “ Apx,yq. We define function ϕ : A Ñ V , which assigns to two points x, y P P
their corresponding free vector ϕpx, yq “ Apx,yq.
Consider a point a P P and a free vector ~x P V . There is exactly one geometric vector pa, xq,

with a at the first position, in the free vector ~x. Therefore, point a and free vector ~x uniquely
define point x. We define function # : P ˆ V Ñ P , which takes a point and a free vector and
delivers another point. We write a#~x “ x and require ~x “ ϕpa, xq.
Consider three points x, y, z P P , Figure 3.9. We can produce three free vectors ~u “ ϕpx, yq “

Apx,yq, ~v “ ϕpy, zq “ Apy,zq, ~w “ ϕpx, zq “ Apx,zq. Let us investigate the sum ~u ‘ ~v. Chose
the representatives of the free vectors, such that they are all bound to x, i.e. bound vectors
px, yq P Ax,y, px, tq P Apy,zq and px, zq P Apx,zq. Notice that we could choose the pairs of original
points to represent the first and the third free vector but we had to introduce a new pair of
points, px, tq, to represent the second free vector. Clearly, there holds px, yq ‘ px, tq “ px, zq. We
now see, Figure 3.9, that py, zq is related to px, tq by a translation and therefore

~u‘ ~v “ Apx,yq ‘Apy,zq “ Apx,yq ‘Apx,tq “ Apx,yq‘px,tq “ Apx,zq “ ~w (3.12)

Figure 3.10 shows the operations explained above in Figure 3.9 but realized using the vectors
bound to another point o.
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x

y

z “ x#~w

px, yq

py, zq

px, zq

~u “ Apx,yq

~v “ Apy,zq

~w “ ~u‘ ~v “ Apo,aq‘po,cq

ϕpx, yq

t

o

a

b

c

Figure 3.10: Affine space pP,L, ϕq, its geometric vectors px, yq P A “ P ˆ P and free vector
space L and the canonical assignment of pairs of points px, yq to the free vector
Apx,yq. Operations ‘, ‘, combining vectors with vectors, and #, combining points

with vectors, are illustrated.

The above rules are known as axioms of affine space and can be used to define even more
general affine spaces.

§ 1 Remark on notation We were carefully distinguishing operations p`, q over scalars, p‘,dq
over bound vectors, p‘,dq over free vectors, and function # combining points and free vectors.
This is very correct but rarely used. Often, only the symbols introduced for geometric scalars
are used for all operations, i.e.

` ” `, ‘, ‘, # (3.13)

” , d, d (3.14)

§ 2 Affine space Triple pP,L, ϕq with a set of points P , linear space pL,‘,dq (over some field
of scalars) and a function ϕ : P ˆ P Ñ L, is an affine space when

A1 ϕpx, zq “ ϕpx, yq ‘ ϕpy, zq for every three points x, y, z P P

A2 for every o P P , the function ϕo : P Ñ L, defined by ϕopxq “ ϕpo, xq for all x P P is a
bijection [1].

Axiom A1 calls for an assignment of pairs of point to vectors. Axiom A2 then makes this
assignmet such that it is one-to-one when the first argument of ϕ is fixed.
We can define another function # : P ˆ L Ñ P , defined by o#~x “ ϕ´1

o p~xq, which means
ϕpo, o#~xq “ ~x for all ~x P L. This function combines points and vectors in a way that is very
similar to addition and hence is sometimes denoted by ` instead of more correct #.
In our geometrical model of A discussed above, function ϕ assigned to a pair of points x, y

their corresponding free vector Apx,yq. Function #, on the other hand, takes a point x and a
free vector ~v and gives another points y such that the bound vector px, yq is a representative of
~v, i.e. Apx,yq “ ~v.

22



T. Pajdla. Elements of Geometry for Computer Vision 2020-2-17 (pajdla@cvut.cz)

o

o 1

x

~x “ ϕpo, xq
~x 1 “ ϕpo1, xq

~o 1 “ ϕpo, o1q

~b1

~b2

~b 1
1

~b 1
2

Figure 3.11: Point x is represented in two affine coordinate systems.

3.5 Coordinate system in affine space

We see that function ϕ assigns the same vector from L to many different pairs of points from P .
To represent uniquely points by vectors, we select a point o, called the origin of affine coordinate
system and represent point x P P by its position vector ~x “ ϕpo, xq. In our geometric model
of A discussed above, we thus represent point x by bound vector po, xq or by point o and free
vector Apo,xq.
To be able to compute with points, we now pass to the representation of points in A by

coordinate vectors. We choose a basis β “ p~b1,~b2, . . .q in L. That allows us to represent point
x P P by a coordinate vector

~xβ “

»

—

–

x1
x2
...

fi

ffi

fl
, such that ~x “ x1~b1 ` x2~b2 ` ¨ ¨ ¨ (3.15)

The pair po, βq, where o P P and β is a basis of L is called an affine coordinate system (often
shortly called just coordinate system) of affine space pP,L, ϕq.
Let us now study what happens when we choose another point o1 and another basis β1 “

p~b 1
1
,~b 1

2
, . . .q to represent x P P by coordinate vectors, Figure 3.11. Point x is represented twice: by

coordinate vector ~xβ “ ϕpo, xqβ “ Apo,xqβ and by coordinate vector ~x 1
β 1 “ ϕpo1, xqβ 1 “ Apo1,xqβ 1 .

To get the relationship between the coordinate vectors ~xβ and ~x 1
β 1 , we employ the triangle

equality

ϕpo, xq “ ϕpo, o1q ‘ ϕpo1, xq (3.16)

~x “ ~o 1
‘ ~x 1 (3.17)

which we can write in basis β as (notice that we replace ‘ by ` to emphasize that we are adding
coordinate vectors)

~xβ “ ~x 1
β ` ~o 1

β (3.18)

and use the matrix A transforming coordinates of vectors from basis β1 to β to get the desired
relationship

~xβ “ A ~x 1
β 1 ` ~o 1

β (3.19)

23



T. Pajdla. Elements of Geometry for Computer Vision 2020-2-17 (pajdla@cvut.cz)

2

10 2

1 ~x
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~b
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p
V

Figure 3.12: Affine space pP, V, ϕq of solutions to a linear system is the set of vectors representing
points on line p. In coordinate system p~o, ~uq, vector ~x has coordinate 1. The
subspace V of solutions to the associated homogeneous system is the associated
linear space. Function ϕ assigns to two points ~o, ~x the vector ~u “ ~y ´ ~x.

Columns of A correspond to coordinate vectors ~b 1
1β ,
~b 1
2β , . . .. When presented with a situation in

a real affine space, we can measure those coordinates by a ruler on a particular representation
of L by geometrical vectors bound to, e.g., point o.

3.6 An example of affine space

Let us now present an important example of affine space.

3.6.1 Affine space of solutions of a system of linear equations

When looking at the following system of linear equations in R2

„

1 1
´1 ´1



~x “
„

2
´2



(3.20)

we immediately see that there is an infinite number of solutions. They can be written as

~x “
„

2
0



` τ

„

1
´1



, τ P R (3.21)

or as a sum of a particular solution r2, 0sJ and the set of solutions ~v “ τ r´1, 1sJ of the
accompanied homogeneous system

„

1 1
´1 ´1



~v “
„

0
0



(3.22)

Figure 3.12 shows that the affine space pP, V, ϕq of solutions to the linear system (3.20) is the
set of vectors representing points on line p. The subspace V of solutions to the accompanied
homogeneous system (3.22) is the linear space associated to A by function ϕ, which assigns to
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two points ~x, ~y P A the vector ~u “ ~y ´ ~x P V . If we choose ~o “ r2, 0sJ as the origin in A and
vector ~b “ ϕp~o, ~xq “ ~x´ ~o as the basis of V , vector ~x has coordinate 1.
We see that, in this example, points of A are actually vectors of R2, which are the solution to

the system (3.20). The vectors of V are the vectors of R2, which are solutions to the associated
homogeneous linear system (3.22).
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4 Motion

Let us introduce a mathematical model of rigid motion in three-dimensional Euclidean space.
The important property of rigid motion is that it only relocates objects without changing their
shape. Distances between points on rigidly moving objects remain unchanged. For brevity, we
will use “motion” for “rigid motion”.

4.1 Change of position vector coordinates induced by motion

o’

X

~x

~x 1

O

O 1

~b1

~b2

~b 1
1

~b 1
2

o’

X Y

~x
~y

~y 1

O

O 1

~b1

~b2

~b 1
1

~b 1
2

(a) (b)

Figure 4.1: Representation of motion. (a) Alias representation: Point X is represented in two
coordinate systems. (b) Alibi representation: Point X move tohetjer with the coor-
dinate system into point Y .

§ 1 Alias representation of motion1. Figure 4.1(a) illustrates a model of motion using coor-
dinate systems, points and their position vectors. A coordinate system pO, βq with origin O

and basis β is attached to a moving rigid body. As the body moves to a new position, a new
coordinate system pO 1, β 1q is constructed. Assume a point X in a general position w.r.t. the
body, which is represented in the coordinate system pO, βq by its position vector ~x. The same
point X is represented in the coordinate system pO 1, β 1q by its position vector ~x 1. The motion
induces a mapping ~x 1

β 1 ÞÑ ~xβ. Such a mapping also determines the motion itself and provides
its convenient mathematical model.

1The terms alias and alibi were introduced in the classical monograph [14].
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Let us derive the formula for the mapping ~x 1
β 1 ÞÑ ~xβ between the coordinates ~x 1

β 1 of vector ~x 1

and coordinates ~xβ of vector ~x. Consider the following equations:

~x “ ~x 1 ` ~o 1 (4.1)

~xβ “ ~x 1
β ` ~o 1

β (4.2)

~xβ “
”

~b 1
1β

~b 1
2β

~b 1
3β

ı

~x 1
β 1 ` ~o 1

β (4.3)

~xβ “ R ~x 1
β 1 ` ~o 1

β (4.4)

Vector ~x is the sum of vectors ~x 1 and ~o 1, Equation 4.1. We can express all vectors in (the same)

basis β, Equation 4.2. To pass to the basis β 1 we introduce matrix R “
”

~b 1
1β

~b 1
2β

~b 1
3β

ı

, which

transforms the coordinates of vectors from β 1 to β, Equation 4.4. Columns of matrix R are
coordinates ~b 1

1β
,~b 1

2β
,~b 1

3β
of basic vectors ~b 1

1
,~b 1

2
,~b 1

3
of basis β 1 in basis β.

§ 2 Alibi representation of motion. An alternative model of motion can be developed from
the relationship between the points X and Y and their position vectors in Figure 4.1(b). The
point Y is obtained by moving point X altogether with the moving object. It means that
the coordinates ~y 1

β 1 of the position vector ~y 1 of Y in the coordinate system pO 1, β 1q equal the
coordinates ~xβ of the position vector ~x of X in the coordinate system pO, βq, i.e.

~y 1
β 1 “ ~xβ

~yβ 1 ´ ~o 1
β 1 “ ~xβ

R´1
`

~yβ ´ ~o 1
β

˘

“ ~xβ

~yβ “ R ~xβ ` ~o 1
β (4.5)

Equation 4.5 describes how is the point X moved to point Y w.r.t. the coordinate system pO, βq.

4.2 Rotation matrix

Motion that leaves at least one point fixed is called rotation. Choosing such a fixed point as
the origin leads to O “ O 1 and hence to ~o “ ~0. The motion is then fully described by matrix R,
which is called rotation matrix.

§ 1 Two-dimensional rotation. To understand the matrix R, we shall start with an experiment
in two-dimensional plane. Imagine a right-angled triangle ruler as shown in Figure 4.2(a) with
arms of equal length and let us define a coordinate system as in the figure. Next, rotate the
triangle ruler around its tip, i.e. around the origin O of the coordinate system. We know, and we
can verify it by direct physical measurement, that, thanks to the symmetry of the situation, the
parallelograms through the tips of ~b 1

1
and ~b 1

2
and along ~b1 and ~b2 will be rotated by 90 degrees.

We see that

~b 1
1 “ a11~b1 ` a21~b2 (4.6)

~b 1
2 “ ´a21~b1 ` a11~b2 (4.7)

for some real numbers a11 and a21. By comparing it with Equation 4.3, we conclude that

R “
„

a11 ´a21
a21 a11



(4.8)
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~b1 ~b1

~b2 ~b2

~b 1
1

~b 1
2

a11

a11

a21

´a21O O

(a) (b)

Figure 4.2: Rotation in two-dimensional space.

We immediately see that

RJR “
„

a11 a21
´a21 a11

 „

a11 ´a21
a21 a11



“
„

a2
11

` a2
21

0
0 a2

11
` a2

21



“
„

1 0
0 1



(4.9)

since pa2
11

` a2
21

q is the squared length of the basic vector of b1, which is one. We derived an
interesting result

R´1 “ RJ (4.10)

R “ R´J (4.11)

Next important observation is that for coordinates ~xβ and ~x 1
β 1 , related by a rotation, there holds

true
px1q2 ` py1q2 “ ~x 1

β 1
J
~x 1
β 1 “ pR ~xβqJ R ~xβ “ ~xJ

β

`

RJR
˘

~xβ “ ~xJ
β ~xβ “ x2 ` y2 (4.12)

Now, if the basis β was constructed as in Figure 4.2, in which case it is called an orthonormal
basis, then the parallelogram used to measure coordinates x, y of ~x is a rectangle, and hence
x2 ` y2 is the squared length of ~x by the Pythagoras theorem. If β 1 is related by rotation ro β,
then also px1q2 ` py1q2 is the squared length of ~x, again thanks to the Pythagoras theorem.
We see that ~xJ

β ~xβ is the squared length of ~x when β is orthonormal and that this length is
preserved by computing it in the same way from the new coordinates of ~x in the new coordinate
system after motion. The change of coordinates induced by motion is modeled by rotation
matrix R, which has the desired property RJR “ I when the bases β, β 1 are both orthonormal.

§ 2 Three-dimensional rotation. Let us now consider three dimensions. It would be possible
to generalize Figure 4.2 to three dimensions, construct orthonormal bases, and use rectangular
parallelograms to establish the relationship between elements of R in three dimensions. However,
the figure and the derivations would become much more complicated.
We shall follow a more intuitive path instead. Consider that we have found that with two-

dimensional orthonormal bases, the lengths of vectors could be computed by the Pythagoras
theorem since the parallelograms determining the coordinates were rectangular. To achieve
this in three dimensions, we need (and can!) use bases consisting of three orthogonal vectors.
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Figure 4.3: A three-dimensional coordinate system.

Then, again, the parallelograms will be rectangular and hence the Pythagoras theorem for three
dimensions can be used analogically as in two dimensions, Figure 4.3.
Considering orthonormal bases β, β 1, we require the following to hold true for all vectors ~x

with ~xβ “
“

x y z
‰J

and ~x 1
β 1 “

“

x1 y1 z1 ‰J

px1q2 ` py1q2 ` pz1q2 “ x2 ` y2 ` z2

~x 1
β 1

J
~x 1
β 1 “ ~xJ

β ~xβ

pR ~xβqJ R ~xβ “ ~xJ
β ~xβ

~xJ
β

`

RJR
˘

~xβ “ ~xJ
β ~xβ

~xJ
β C ~xβ “ ~xJ

β ~xβ (4.13)

Equation 4.13 must hold true for all vectors ~x and hence also for special vectors such as those
with coordinates

»

–

1
0
0

fi

fl ,

»

–

0
1
0

fi

fl ,

»

–

0
0
1

fi

fl ,

»

–

1
1
0

fi

fl ,

»

–

1
0
1

fi

fl ,

»

–

0
1
1

fi

fl (4.14)

Let us see what that implies, e.g., for the first vector

“

1 0 0
‰

C

»

–

1
0
0

fi

fl “ 1 (4.15)

c11 “ 1 (4.16)

Taking the second and the third vector leads similarly to c22 “ c33 “ 1. Now, let’s try the fourth
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vector

“

1 1 0
‰

C

»

–

1
1
0

fi

fl “ 2 (4.17)

1 ` c12 ` c21 ` 1 “ 2 (4.18)

c12 ` c21 “ 0 (4.19)

Again, taking the fifth and the sixth vector leads to c13 ` c31 “ c23 ` c32 “ 0. This brings us to
the following form of C

C “

»

–

1 c12 c13
´c12 1 c23
´c13 ´c23 1

fi

fl (4.20)

Moreover, we see that C is symmetric since

CJ “
`

RJR
˘J “ RJR “ C (4.21)

which leads to ´c12 “ c12, ´c13 “ c13 and ´c23 “ c23, i.e. c12 “ c13 “ c23 “ 0 and allows us to
conclude that

RJR “ C “ I (4.22)

Interestingly, not all matrices R satisfying Equation 4.22 represent motions in three-dimensional
space.
Consider, e.g., matrix

S “

»

–

1 0 0
0 1 0
0 0 ´1

fi

fl (4.23)

Matrix S does not correspond to any rotation of the space since it keeps the plane xy fixed and
reflects all other points w.r.t. this xy plane. We see that some matrices satisfying Equation 4.22
are rotations but there are also some such matrices that are not rotations. Can we somehow
distinguish them?
Notice that |S| “ ´1 while |I| “ 1. It might be therefore interesting to study the determinant

of C in general. Consider that

1 “ |I| “
ˇ

ˇpRJRq
ˇ

ˇ “
ˇ

ˇRJˇ
ˇ |R| “ |R| |R| “ p|R|q2 (4.24)

which gives that |R| “ ˘1. We see that the sign of the determinant splits all matrices satisfying
Equation 4.22 into two groups – rotations, which have a positive determinant, and reflections,
which have a negative determinant. The product of any two rotations will again be a rotation,
the product of a rotation and a reflection will be a reflection and the product of two reflections
will be a rotation.
To summarize, rotation in three-dimensional space is represented by a 3 ˆ 3 matrix R with

RJR “ I and |R| “ 1. The set of all such matrices, and at the same time also the corresponding ro-
tations, will be called SOp3q, for special orthonormal three-dimensional group. Two-dimensional
rotations will be analogically denoted as SOp2q.
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4.3 Coordinate vectors

We see that the matrix R induced by motion has the property that coordinates and the basic
vectors are transformed in the same way. This is particularly useful observation when β is
formed by the standard basis, i.e.

β “

¨

˝

»

–

1
0
0

fi

fl ,

»

–

0
1
0

fi

fl ,

»

–

0
0
1

fi

fl

˛

‚ (4.25)

For a rotation matrix R, Equation 2.15 becomes

»

—

–

~b 1
1

~b 1
2

~b 1
3

fi

ffi

fl
“ R

»

—

–

~b1
~b2
~b3

fi

ffi

fl
“

»

–

r11 r12 r13
r21 r22 r23
r31 r32 r33

fi

fl

»

—

–

~b1
~b2
~b3

fi

ffi

fl
“

»

—

–

r11~b1 ` r12~b2 ` r13~b3

r21~b1 ` r22~b2 ` r23~b3

r31~b1 ` r32~b2 ` r33~b3

fi

ffi

fl
(4.26)

and hence

~b 1
1 “ r11~b1 ` r12~b2 ` r13~b3 “ r11

»

–

1
0
0

fi

fl ` r12

»

–

0
1
0

fi

fl ` r13

»

–

0
0
1

fi

fl “

»

–

r11
r12
r13

fi

fl (4.27)

and similarly for ~b 1
2
and ~b 1

3
. We conclude that

”

~b 1
1
~b 1
2
~b 1
3

ı

“

»

–

r11 r21 r31
r12 r22 r32
r13 r23 r33

fi

fl “ RJ (4.28)

This also corresponds to solving for R in Equation 2.13 with A “ R

»

–

1 0 0
0 1 0
0 0 1

fi

fl “
”

~b 1
1
~b 1
2
~b 1
3

ı

R (4.29)
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5 Image coordinate system

Digital image Im is a matrix of pixels. We assume that Im is obtained by measuring intensity of
light by sensors (pixels) arranged in a grid, Figure 5.1.
We will work with images in two ways. First, we will work with intensity values, which are

stored in the memory as a three-dimensional array of bytes indexed by the row index i, the
column index j, and the color index k, Figure 5(a). Color index attains three values 1, 2, 3, with
1 corresponding to red, 2 corresponding to green and 3 corresponding to blue colors.
In Matlab, image Im is accessed using the row index i, the column index j and the color index

k as >>Im(i,j,k). The most top left pixel has row as well as column index equal to 1. The red
channel of the pixel with row index 2 and column index 3 is accessed as >>Im(2,3,1).

§ 1 Image coordinate system For geometrical computation, we introduce an image coordinate
system as in Figure 5(b). The origin of the image coordinate system is chosen to assign coordi-
nates 1, 1 to the center of the most top left pixel. Horizontal axis ~b1 goes from left to right. The
vertical axis ~b2 goes from top down. The pixel that is accessed as >>Im(i,j,k) is in the image
coordinate system represented by the vector ~u “ rj, isJ. A digital image with H rows and W
columns will be in indexed in Matlab as >>Im(1:H,1:W,1:3) and >>size(Im) will return [H

W 3]. The center of the most bottom right pixel will have coordinates rW,HsJ in the image
coordinate system.
The image coordinate system coincides with the Matlab coordinate system image, i.e. com-

mands

>> axis image

>> plot(j,i,’.b’)

plot a blue dot on the pixel accessed as Im(i,j,k);
The image coordinate system is non-standard in two dimensions since it is a left-handed

system. The reason for such a unnatural choice is that this system will be next augmented into
a three-dimensional right-handed coordinate system in such a way that the ~b3 vector will be
pointing towards the scene.

32



T. Pajdla. Elements of Geometry for Computer Vision 2020-2-17 (pajdla@cvut.cz)

Figure 5.1: Image is digitized by a rectangular array of pixels

i

j

2

3

2

3~b1

~b2

(a) Image Im is a matrix of pixels. In
Matlab, it is accessed using the row index
i, the column index j and color index k

as >>Im(i,j,k). The most top left pixel
has row as well as column index equal to
1. The red channel of the pixel with row
index 2 and column index 3 is accessed as
>>Im(2,3,1).

(b) The image coordinate system is defined
with horizontal axis ~b1 and vertical axis ~b2.
The origin of the coordinate system is cho-
sen to to assign coordinates 1, 1 to the most
top left pixel. Notice that pixel, which is
accessed as >>Im(2,3,1), is represented in
the image coordinate system by the vector
~u “ r3, 2sJ.

Figure 5.2: Image coordinate system.
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6 Perspective camera

Modern photographic camera, Figure 6.1, is an interesting and advanced device. We shall
abstract from all physical and technical details of image formation and will concentrate solely
on its geometry. From the point of view of geometry, a perspective camera projects point X
from space into an image point x by intersecting the line connecting X with the projection center
(red) and a planar image plane (green), Figure 6.1(b).

6.1 Perspective camera model

Let us now develop a mathematical model of the perspective camera. The model will allow us
to project space point X into image point x and to find the ray p in space along the which point
X has been projected.

§ 1 Camera coordinate system Figure 6.2 shows the geometry of the perspective camera.
Point X is projected along ray p from three-dimensional space to point x into two-dimensional
image. Point x is obtained as the intersection of ray p with planar image plane π. Ray p is
constructed by joining point X with the projection center C. The plane through the projection
center C, which is parallel to the image plane is called the principal plane.
The image plane is equipped with an image coordinate system (§ 1), po, αq, where o is the

origin and α “ r~b1,~b2s is the basis of the image coordinate system. Notice that the basis α is
shown as non-orthogonal. We want to develop a general camera model, which will be applicable
even in the situation when image coordinate system is not rectangular. Point x is represented
by vector ~u in po, αq

~u “ u~b1 ` v~b2 i.e. ~uα “
„

u

v



(6.1)

Three-dimensional space is equipped with a world coordinate system pO, δq, where O is the
origin and δ “ r~d1, ~d2, ~d3s is a three-dimensional orthonormal basis. Point X is represented by
vector ~X in pO, δq. The camera projection center is represented by vector ~C in pO, δq.
Let us next define the camera coordinate system. The system will be derived from the image

coordinate system to make the construction of coordinates of the direction vector ~x of p extremely
simple.
Camera coordinate system pC, βq has the origin in the projection center C and its basis

β “ r~b1,~b2,~b3s is constructed by re-using the two basis vectors of α and adding the third basic
vector ~b3, which corresponds to vector

ÝÑ
Co. We see that vectors in β form a basis when point

C is not in π, which is satisfied for every meaningful perspective camera. Notice also that the
camera coordinate system is three-dimensional.
Image points o and x are in plane π, which is in three-dimensional space, and therefore we can

consider them as points of that space too. Point x is in pC, βq represented by vector ~x, which is
the direction vector of the projection ray p along which point X has been projected into x. We
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(a) (b)

Figure 6.1: Perspective camera (a) is geometrically a point (red) and an image plane (green)
(b).

see that vectors ~u, ~x, ~b3 form a triangle such that

~x “ ~u`~b3 (6.2)

“ u~b1 ` v~b2 ` 1~b3 (6.3)

and therefore

~xβ “ ~xr~b1,~b2,~b3s “

»

–

u

v

1

fi

fl “
„

~uα
1



. (6.4)

Notice that basis β has been constructed in a very special way to facilitate construction of ~xβ .
We can use u, v directly since β re-uses vectors of α and the third coordinate is always 1 by
the construction of ~b3. Although we do not know exact position of C w.r.t. the image plane, we
know that it is not in the plane π and hence a meaningful camera coordinate system constructed
this way exists.
Notice next that the camera coordinate system is right-handed. This is because when looking

at a scene from a point C through the image plane, the image is constructed by intersecting
image rays with the image plane, which is in front and hence the vector ~b3 points towards the
scene. We see that vectors of β form a right-handed system.
Let us mention that we have used deeper properties of linear and affine spaces. In particular,

we were making use of the concept of free vector in the following way. We look at vectors ~b1, ~b2
and ~u as on a free vectors. Therefore, coordinates of the representative of ~u beginning in o with
respect to representatives of ~b1, ~b2 beginning in o equal the coordinates of the representative of
~u beginning in C with respect to representatives of ~b1, ~b2 beginning in C. Hence u, v reappear
as the first two coordinates of ~x.
For usual consumer cameras, vector ~b3 is often much longer than vectors ~b1,~b2 and often not

orthogonal to them. Therefore, basis β is in general neither orthonormal nor orthogonal! This
has severe consequences since we can’t measure angles and distances in the space using β, unless
we find out what are the lengths of its vectors and what are the angles between them.
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O

C

o

X

p

~X

~C

x

~x

~u

π

~d1

~d2

~d3

~b1

~b1

~b2

~b2

~b3

~c1

~c2

~c3

Figure 6.2: Coordinate systems of perspective camera.
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§ 2 Perspective projection Point X has been projected along p into x. Since ~x is a direction
vector of p, point X can be represented in pC, βq by

η ~x (6.5)

for some real non-negative1 η. The value of η corresponds to the scaled depth of X, i.e. the
distance of X from the plane passing through C and generated by ~b1, ~b2 in units equal to the
distance of C from π. Value η is not known since it “has been lost” in the process of projection2

but will serve us to parametrize the projection ray in order to get coordinates of all possible
points in space that could project into x.
Let us now relate the coordinates ~uα, which are measured in the image, to the coordinates

~Xδ, which are measured in the world coordinate system. First consider vectors ~X, ~C and ~x.
They are coplanar and we see that there holds

η ~x “ ~X ´ ~C (6.6)

To pass to coordinates, we will use the camera coordinate system, in which we can write

η ~xβ “ ~Xβ ´ ~Cβ (6.7)

η

„

~uα
1



“ ~Xβ ´ ~Cβ (6.8)

Next we shall pass to the coordinates w.r.t. basis δ on the right hand side of Equation 6.8 by
introducing a matrix A, which transforms coordinates of a general vector ~y from basis δ to basis
β, i.e.

~yβ “ A ~yδ (6.9)

We know from linear algebra (§ 3) that such a matrix exists. We write

η

„

~uα
1



“ A p ~Xδ ´ ~Cδq

η

„

~uα
1



“ A
”

I | ´ ~Cδ

ı

„

~Xδ

1



(6.10)

η

„

~uα
1



“ Pβ

„

~Xδ

1



(6.11)

η ~xβ “ Pβ

„

~Xδ

1



(6.12)

with 3 ˆ 4 image projection matrix

Pβ “
”

A | ´ A ~Cδ

ı

(6.13)

1Here we choose ~x such that η is non-negative. Considering negative η, as in [15], may be necessary if it is not
clear how has the image coordinate systems been defined or how has ~x been chosen. For instance, if ~x has
been chosen to point along ray p away from X, η would have to be negative.

2It can be recovered when a point X is observed by two cameras with different projection centers.
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§ 3 Projection equation Equation 6.11 describes the relationship between measurement ~uα in
the image and measurement ~Xδ in space. It says that ~Xδ is projected into ~uα since there exists η
such that Equation 6.11 holds. Notice that η multiple of the vector on the left of Equation 6.11
is obtained by a linear mapping represented by matrix Pβ from vector ~Xδ on the right.

When computing ~uα from ~Xδ, we actually eliminate η using the last row of the (matricidal)
equation (6.11)

~uα “

»

—

—

—

–

pJ
1
X

pJ
3
X

pJ
2
X

pJ
3
X

fi

ffi

ffi

ffi

fl

(6.14)

where we introduced rows of p1, p2, p3 of P and a 4 ˆ 1 vector X as follows

Pβ “

»

–

pJ
1

pJ
2

pJ
3

fi

fl and X “
„

~Xδ

1



(6.15)

Notice that the projection equation is not linear. It is a rational function of the first order
polynomials in elements of X.

§ 4 Projection ray Having an image point ~uα, we can construct its projection ray p in space.
The ray consists of all points ~Y that can project to ~uα. In pC, βq, the ray is emanating from the
origin C. We parametrize it by real η and express it in pO, δq by vector ~Xδ

~Yβ “ η

„

~uα
1



“ η ~xβ

~Xδ “ η A´1~xβ ` ~Cδ (6.16)

Notice that ~Xδ (6.16) can also be obtained for a given η by solving the system of linear equa-
tions (6.12) for ~Xδ.

6.2 Computing image projection matrix from images of six points

Let us now consider the task of finding the Pβ from measurements. We shall consider the situation
when we can measure points in space as well as their projection in the image. Consider a pair
of such measurements rx, y, zsJ corrØ ru, vsJ. There holds

λ

»

–

u

v

1

fi

fl “ Q

»

—

—

–

x

y

z

1

fi

ffi

ffi

fl

“ Q X (6.17)

for some real λ, 3 ˆ 4 matrix Q and 4 ˆ 1 coordinate vector X. Notice that we introduced new
symbols λ and Q to emphasize that they are determined by Equation 6.17 up to a non-zero scale

Q “ ξ Pβ (6.18)
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We will see that this will have further consequences.
Introduce symbols for rows of Q

Q “

»

–

qJ
1

qJ
2

qJ
3

fi

fl (6.19)

and rewrite the above matrix equation as

λu “ qJ
1 X (6.20)

λ v “ qJ
2 X (6.21)

λ “ qJ
3 X (6.22)

Eliminate λ from the first two equations using the third one

pqJ
3 Xqu “ qJ

1 X (6.23)

pqJ
3 Xq v “ qJ

2 X (6.24)

move all to the left hand side and reshape it using xJy “ yJx

XJq1 ´ pu XJq q3 “ 0 (6.25)

XJq2 ´ pv XJq q3 “ 0 (6.26)

Introduce vector of parameters (which are elements of Q)

q “
“

qJ
1

qJ
2

qJ
3

‰J
(6.27)

and express the above two equations in matrix form
„

x y z 1 0 0 0 0 ´ux ´u y ´u z ´u
0 0 0 0 x y z 1 ´v x ´v y ´v z ´v



q “ 0

M q “ 0 (6.28)

Every correspondence rx, y, zsJ corrØ ru, vsJ brings two rows into the matrix M (6.28). We need
therefore at least 6 correspondences in general position to obtain 11 linearly independent rows
in Equation 6.28 to obtain a one-dimensional space of solutions.
If Q is a solution to Equation 6.28, then τ Q is also a solution and both determine the same

projection for any positive τ since

pτ Qq X “ τ pQ Xq “ τ pλ~xβq “ pτλq ~xβ (6.29)

Assuming Pβ “ τ Q leads to λ “ η{τ . We see that we can’t recover Pβ but only its non-zero
multiple. Therefore, when solving Equation 6.28, we are looking for one-dimensional subspace
of 3ˆ 4 matrices of rank 3. Such a subspace determines one projection. Also note that the zero
matrix does not represent any interesting projection.
Notice that when considering more correspondences, M becomes

M q “

»

—

—

—

—

—

—

—

—

–

x1 y1 z1 1 0 0 0 0 ´u1x1 ´u1y1 ´u1z1 ´u1
x2 y2 z2 1 0 0 0 0 ´u2x2 ´u2y2 ´u2z2 ´u2

...
0 0 0 0 x1 y1 z1 1 ´v1x1 ´v1y1 ´v1z1 ´v1
0 0 0 0 x2 y2 z2 1 ´v2x2 ´v2y2 ´v2z2 ´v2

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

q “ 0 (6.30)
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Matrix M can be more concisely rewritten as

M “

»

—

—

—

—

—

—

—

—

—

–

XJ
1

0J ´u1 XJ
1

XJ
2

0J ´u2 XJ
2

...
0J XJ

1
´v1 XJ

1

0J XJ
2

´v2 XJ
2

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.31)

with 0J “ r0, 0, 0, 0s.

§ 1 A more general procedure for computing Q We shall next develop and alternative formu-
lation for finding matrix Q. Let us come back to Equation 6.17

λ~u “ Q X (6.32)

Above, we have eliminated λ assuming ~u3 “ 1. Let us now present an alternative procedure for
eliminating λ, which works for any non-zero ~u “ ru, v, wsJ, i.e. even when w “ 0. The trick is
to realize that

0 “ ~uˆ pλ~uq “ ~uˆ Q X “ r~usˆ Q X (6.33)

This gives three equations for each ~u Ø X correspondence. However, only two of them are linearly
independet since r~usˆ has rank two. Now, we are in the position to employ Equation 2.90, which
gives

r~usˆ Q X “ 0 (6.34)

XJQJ r~usJ
ˆ “ 0J (6.35)

vpXJQJ r~usJ
ˆq “ vp0Jq (6.36)

pr~usˆb XJq vpQJq “ vp0Jq (6.37)
¨

˝

»

–

0 ´w v

w 0 ´u
´v u 0

fi

flb XJ

˛

‚vpQJq “ vp0Jq (6.38)

»

–

0J ´w XJ v XJ

w XJ 0J ´u XJ

´v XJ u XJ 0J

fi

fl vpQJq “ vp0Jq (6.39)
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For more correspondences numbered by i, we then get

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0J ´w1 X
J
1

v1 X
J
1

0J ´w2 X
J
2

v2 X
J
2

...
w1 X

J
1

0J ´u1 XJ
1

w2 X
J
2

0J ´u2 XJ
2

...
´v1 XJ

1
u1 X

J
1

0J

´v2 XJ
2

u2 X
J
2

0J

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

vpQJq “ 0 (6.40)

which if, for w “ 1, is equivalent to Equation 6.30. Notice that vpQJq “ q from Equation 6.30.
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7 Camera calibration

Let us now look at a useful interpretation of image projection matrix in space and image equipped
with a cartesian coordinate systems.

7.1 Camera pose

The projection formula 6.10 reveals that the perspective projection depends on matrix A and
vector ~Cδ. The vector ~Cδ represents the position of the camera projection center w.r.t. the world
coordinate system. Columns of matrix A are coordinates of the basic vectors of δ in the basis β

A “
”

~d1β
~d2β

~d3β

ı

(7.1)

To recover the orientation of the camera, we will introduce the focal length f as the distance
of the camera projection center C from its projection plane π (in the world units) and replace
the product f A by the product of two 3 ˆ 3 matrices K and R

f A “ K R (7.2)

We will see that this seemingly artificial construction is indeed justified.
Rotation matrix R determines the orientation of the camera in space and altogether with ~Cδ

defines the camera pose. The camera calibration matrix K does not change when moving its
camera in the space.
To obtain K and R, we define, Figure 7.1, the camera cartesian coordinate system pC, γq with

center (again) in the camera projection center C and with basis γ “ r~c1,~c2,~c3s such that

~c1 “ k11~b1

~c2 “ k12~b1 ` k22~b2 (7.3)

~c3 “ k13~b1 ` k23~b2 ` 1~b3

Parameters kij are determined to make the basis γ orthogonal. Notice that vector ~c3 is orthog-
onal to π since it is orthogonal to ~c1,~c2, which span π, by construction. Also notice that γ is (in
general) not an orthonormal basis since the length of its vectors equals the distance of C from
π, i.e. the focal length f in the world units.
Equations 7.3 define matrix K as

K “
“

~c1β ~c2β ~c3β
‰

“

»

–

k11 k12 k13
0 k22 k23
0 0 1

fi

fl (7.4)

By this construction, we have

~xβ “ A ~xδ “ K ~xγ (7.5)

~xγ “ “ 1

f
R ~xδ (7.6)
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The world cartesian coordinate system has basic vectors of unit length. The camera cartesian
coordinate system pC, γq has basic vectors of length equal to f . Therefore,

”

~d1γ
~d2γ

~d3γ

ı

“ 1

f
R “

»

—

–

rJ
1

{f
rJ
2

{f
rJ
3

{f

fi

ffi

fl
(7.7)

for some 3 ˆ 3 orthonormal matrix R with rows rJ
1
, rJ

2
, rJ

3
.

Consider that

A “
”

~d1β
~d2β

~d3β

ı

“ K
”

~d1γ
~d2γ

~d3γ

ı

“ 1

f
K R (7.8)

We can view the matrices 1

f
R and K as coordinate transformation matrices, which transform

a general vector ~y from the coordinates w.r.t. δ to γ and then to β, i.e.

~yβ “ K ~yγ “ 1

f
K R ~yδ (7.9)

The basis γ is orthogonal and all basic vectors have the same length, which is equal to f . It
follows from the orthogonality of the basis γ that ~c1 ¨ ~c1 “ f2, ~c1 ¨ ~c2 “ 0 and ~c2 ¨ ~c2 “ f2 and
hence using Equation 7.3 leads, for a positive f , to

k11 }~b1} ´ f “ 0

k211 k22 p~b1 ¨~b2q ` k12 f
2 “ 0 (7.10)

k211 k
2
22 }~b2}2 ´ pk212 ` k211q f2 “ 0

Let us solve Equations 7.10 for k11, k12 and k22. The first equation in (7.10) provides k11.
Substituting the square of f from the first equation into the second one and dividing it by
k2
11

gives the second equation of (7.11), which allows to compute k12 from k22. To get k22, we
construct the third equation of (7.11) as follows. We express k11 from the first equation of (7.10)
and k12 from the second equation of (7.11) and substitute them into the third equation of (7.10),
which we then multiply by ||~b1||4{f2. Altogether, we get

k11 }~b1} ´ f “ 0

k12 }~b1}2 ` k22 p~b1 ¨~b2q “ 0 (7.11)

k222 p}~b1}2 }~b2}2 ´ p~b1 ¨~b2q2q ´ f2 }~b1}2 “ 0

Looking at the third equation of (7.11) we see that

k222 “ f2}~b1}2

}~b1}2}~b2}2 ´ p~b1 ¨~b2q2
“ f2

}~b2}2 ´ }~b2}2 cos2=p~b1,~b2q
(7.12)

and since γ was constructed to make k22 positive, we obtain

k22 “ f

}~b2} sin=p~b1,~b2q
(7.13)
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C

f

o

π

~u0

~b1

~b1

~b2

~b2

~b3

~c1

~c2

~c3

=p~b1,~b2q

Figure 7.1: Camera internal parameters are related to the geometry of basis β.

44



T. Pajdla. Elements of Geometry for Computer Vision 2020-2-17 (pajdla@cvut.cz)

The second equation of (7.10) now gives

k12 “ ´k22
~b1 ¨~b2
}~b1}2

“ ´k22
}~b2} cos=p~b1,~b2q

}~b1}
(7.14)

“ ´ f cos=p~b1,~b2q
}~b1} sin=p~b1,~b2q

(7.15)

Finally k11 follows from (7.11)

k11 “ f

}~b1}
(7.16)

Considering Figure 7.1 and Equation 7.3, we see that the coordinates of the vector ~u0, cor-
responding to the principal point, which is the perpendicular projection of C onto π, are in
β

~u0β “

»

–

k13
k23
0

fi

fl , i.e. ~u0α “
„

k13
k23



(7.17)

The horizontal pixel size corresponds to }~b1}. Quantity k11 can thus be understood as f
expressed in the horizontal image units. The angle between the image axes ~b1,~b2 is obtained
from k12{k11 “ ´ cotan=p~b1,~b2q. The ratio of the lengths of the image axes is determined by
}~b2}{}~b1} “

a

k11 pk2
11

` k2
12

q{k22.
Let us now return to Equation 6.11 and substitute there the above results to arrive at the

final projection equation

η ~xβ “ Pβ

„

~Xδ

1



(7.18)

η

„

~uα
1



“ A p ~Xδ ´ ~Cδq (7.19)

f η

„

~uα
1



“ f A p ~Xδ ´ ~Cδq (7.20)

f η

„

~uα
1



“ K R p ~Xδ ´ ~Cδq (7.21)

ζ

„

~uα
1



“ K R p ~Xδ ´ ~Cδq (7.22)

ζ

„

~uα
1



“ K R
”

I | ´ ~Cδ

ı

„

~Xδ

1



(7.23)

We have introduced a new parameter ζ “ f η, which is the depth of X in the world units. We
conclude that

Pβ “
”

1

f
K R | ´ 1

f
K R ~Cδ

ı

(7.24)

Notice that the last row aJ
3
of A provides f since

A “

»

–

aJ
1

aJ
2

aJ
3

fi

fl “ 1

f

»

–

k11 k12 k13
0 k22 k23
0 0 1

fi

fl

»

–

rJ
1

rJ
2

rJ
3

fi

fl “ 1

f

»

–

k11r
J
1

` k12r
J
2

` k13r
J
3

k22r
J
2

` k23r
J
3

rJ
3

fi

fl (7.25)
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and hence }aJ
3

} “ 1

f
. Therefore }Pβp3, 1 : 3q} “ 1

f
.

Equation 7.23 is very important in many practical situations when we do not have access to
physical dimensions of the camera but only to images. Then, it is possible to recover matrix

K R
”

I | ´ ~Cδ

ı

but not image projection matrix Pβ . This is so important the we introduce the

camera projection matrix

P “
”

K R | ´ K R ~Cδ

ı

(7.26)

which is related to the image projection matrix as

P “ f Pβ (7.27)

In this text, it would be more consistent to associate subscript ν with the camera projection
matrix but we will not do that since we want to use the nomenclature of [15] here whenever
possible.
Let us write K explicitly,

K “

»

—

—

–

f

}~b1} ´ f cos=p~b1,~b2q
}~b1} sin=p~b1,~b2q u0

0 f2

}~b2} sin=p~b1,~b2q v0

0 0 1

fi

ffi

ffi

fl

(7.28)

where ~u0α “
“

u0 v0
‰J

. We see that we can neither recover f nor }~b1} from P.
Let us introduce image calibration matrix

Kβ “ 1

f
K (7.29)

to have
Pβ “

”

Kβ R | ´ Kβ R ~Cδ

ı

(7.30)

Writing image calibration matrix Kβ explicitly,

Kβ “ 1

f
K “

»

—

—

–

1

}~b1} ´ cos=p~b1,~b2q
}~b1} sin=p~b1,~b2q

u0

f

0 f

}~b2} sin=p~b1,~b2q
v0
f

0 0 1

f

fi

ffi

ffi

fl

(7.31)

shows that it is possible to recover both

}~b1} “ 1

Kβ11
and f “ 1

Kβ33
(7.32)

from image calibration matrix.
There is an important difference between Kβ and K regarding the representation of internal

camera calibration information. Image calibration matrix Kβ , and also image projection matrix
Pβ , captures all calibration information about a perspective image whereas camera calibration
matrix K, and also camera projection matrix P, captures only the calibration information that
can be recovered by auto-calibration from images as we will see later. When the focal length
is known in world units or when pixel sizes are known in world units, it is more appropriate to
use image calibration Kβ , or image projection matrix Pβ , to represent full internal calibration
information.
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O

C

~d1

~d2

~d3

o

π

~b1

~b2

~b1

~b3
A

O

C

~d1

~d2

~d3

o

π

~b1

~b2

~b1

~b2

~b3

~c1

~c2

~c3
1

f
R

K

(a) β “ r~b1,~b2,~b3s, δ “ r~d1, ~d2, ~d3s: ~yβ “ A ~yδ (b) γ “ r~c1,~c2,~c3s: ~yγ “ 1

f
R ~yδ

~yβ “ K ~yγ

O

C

~d1

~d2

~d3

o

π

~b1

~b2

~b1

~b2

~b3

~e1
~e2

~e3

~n1

~n2

~n3

R

K

O

C

~d1

~d2

~d3

o

π

~b1

~b2

~b1

~b2

~b3

~c1

~c2

~c3

~k1

~k2

~k3

R´1

K´1

(c) ǫ “ r~e1, ~e2, ~e3s: ~yǫ “ R ~yδ, (d) κ “ r~k1,~k2,~k3s: ~yγ “ K´1 ~yβ ,
ν “ r~n1, ~n2, ~n3s: ~yν “ K ~yǫ ~yκ “ R´1 ~yγ

Figure 7.2: Coordinate systems generated by applying 1

f
R, K, R, R´1 and K´1.
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§ 1 Coordinate systems generated by applying K R to ~yδ and R´1K´1 to ~yβ We have seen that
the decomposition of A to K and R introduced the camera cartesian coordinate system pC, γq,
Figure 7.2(b)

~yγ “ 1

f
R ~yδ (7.33)

~yβ “ K ~yγ (7.34)

There are three more coordinate systems to consider when looking at how matrices R, K, and
their inverses R´1, K´1, apply to vectors ~yδ and ~yβ , Figure 7.2.
Let us first consider coordinates of a vector ~y w.r.t. basis δ and apply successively R and K.

Coordinate vector R ~yδ can be interpreted as coordinates of ~y w.r.t. a new basis ǫ “ r~e1, ~e2, ~e3s,
Figure 7.2(c). Applying further K to ~yǫ gives the coordinate vector K ~yǫ, which can be interpreted
as ~y w.r.t. yet another new basis ν “ r~n1, ~n2, ~n3s. We get from ν to β by using 1

f
I

~yǫ “ R ~yδ (7.35)

~yν “ K ~yǫ (7.36)

~yβ “ 1

f
I ~yν (7.37)

We have introduced two new coordinate systems pC, νq, ν “ r~n1, ~n2, ~n3s and pC, ǫq, ǫ “ r~e1, ~e2, ~e3s.
Next we consider coordinates of a vector ~y w.r.t. basis β and apply successively K´1 and R´1.

Coordinate vector K´1 ~yβ gives ~yγ . Coordinate vector R´1 ~yγ can be interpreted as coordinates

of ~y w.r.t. a new basis κ “ r~k1,~k2,~k3s, Figure 7.2(d). To get from ~yκ to ~yδ we need to employ
fI

~yγ “ K´1 ~yβ (7.38)

~yκ “ R´1 ~yγ (7.39)

~yδ “ fI ~yκ (7.40)

We have thus introduced a new coordinate system pO, κq, κ “ r~k1,~k2, ~k3s.
Figure 7.3 summarizes the relationship between coordinates of a vector and between bases

associated with a perspective camera.
We can now see why we have chosen to denote the image projection matrix as Pβ and the

camera projection matrix as P. The image projection matrix provides the ray direction vector
~x in basis β while the camera projection matrix provides the ray direction vector ~x in basis ν.

§ 2 Recovering camera pose from its projection matrix Let us next consider that we have
already computed the camera projection matrix

Q “ ξ P “ ξ K R rI | ´ ~Cδs (7.41)

consisting of a 3 ˆ 3 matrix M and 3 ˆ 1 vector m

Q “ rM | ms (7.42)
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~yγ

~yδ

~yǫ

~yν

~yκ

fA

R

R

K

K

„

1 0 0

0 1 0



1

f
R

1

f

1

f

1

f

α

β

γ

δ

ǫ

ν

κ

1

f
A´1

R´1

R´1

K´1

K´1

»

–

1 0

0 1

0 0

fi

fl

f R´1

f

f

f

(a) (b)

Figure 7.3: Relationships between (a) coordinates in different bases. e.g. ~yβ “ K ~yγ and (b) bases
themselves, e.g. β “ γ K´1, associated with a perspective camera.

To recover camera pose from Q, we need to get ~Cδ from m and to decompose Q into the product
of K in the form of (7.4) and R such that RJR “ I and |R| “ 1. Consider M in the form

M “

»

–

mJ
1

mJ
2

mJ
3

fi

fl (7.43)

Next we notice that the last row of K R has unit norm since it is equal to the last row of rotation
R. Therefore, we need to divide M by the norm of its last row to get a matrix decomposable into
the product of K R. Moreover, it follows from the construction of β that k11 ą 0 and k22 ą 0.
Thus, determinant |K R| “ |K| |R| “ k11 k22 ą 0. Therefore, we also need to multiply M by the
sign of its determinant to get a matrix decomposable into K R.

sign |M|
}m3} M “ sign |M|

}m3}

»

–

mJ
1

mJ
2

mJ
3

fi

fl “

»

–

k11 k12 k13
0 k22 k23
0 0 1

fi

fl

»

–

rJ
1

rJ
2

rJ
3

fi

fl (7.44)
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which provides the following set of equations

mJ
2
m3

}m3}2 “ k22 r
J
2 r3 ` k23 r

J
3 r3 “ k23 (7.45)

mJ
1
m3

}m3}2 “ k13 (7.46)

mJ
2
m2

}m3}2 “ k222 ` k223 (7.47)

mJ
1
m2

}m3}2 “ k12 k22 ` k13 k23 (7.48)

mJ
1
m1

}m3}2 “ k211 ` k212 ` k213 (7.49)

from which k11, k12, k13, k22, k23 can be easily computed considering that the most of consumer
digital cameras have k11 ą 0, k22 ą 0, k13 ą 0, k23 ą 0.
Having kij computed, we recover R from M as

R “ K´1 sign |M|
}m3} M (7.50)

Camera projection center can be computed in two ways. Either we get

~Cδ “ ´ M´1m (7.51)

or we obtain it by finding a basis c of the one-dimensional right null space of matrix Q, i.e.
solving

Q c “ 0 (7.52)

and then computing
„

~Cδ

1



“ 1

c4
c (7.53)

where c4 is the fourth coordinate of vector c.

7.2 Camera calibration and angle between projection rays

We have introduced matrices P, R and K, and vector ~Cδ which determine the projection from
space to images. However, since K is introduced with K33 “ 1, the triplet (K, R, ~Cδ) does not
contain all information about the camera, which can be obtained by direct measurement of its
physical components in a world coordinate system equipped with a known world unit length
1W . The missing element is the scale of P, which is equivalent to knowing the value of the focal
length or the size of pixels, i.e. f , }~b1} or }~b2}, in 1W .
Knowing K and f allows to recover }~b1} from Equations 7.3 as }~b1} “ f{k11. Knowing K and

}~b1}, on the other hand, gives f “ }~b1} k11.
Therefore, full calibration of the camera is encoded in matrix Pβ , Equation 7.24, or, e.g., in

one of the following tuples: (Kβ , R, ~Cδ), (K, R, ~Cδ, f), (K, R, ~Cδ, }~b1}) or (K, R, ~Cδ, }~b2}).
We defined the camera calibration matrix K with K33 “ 1 because we often do not have access

to the world unit when working with images without knowing anything about the camera which
was used to make them. Moreover, a number of important tasks can be done without knowing
the world unit.
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Figure 7.4: A calibrated camera pose can be computed from projections of three known points.

§ 1 Angle between projection rays Consider two image points ~u1α and ~u2α. The direction
vectors of the rays are in β given by

~x1β “
„

~u1α
1



, ~x2β “
„

~u2α
1



(7.54)

To obtain the angle between the direction vectors by evaluating the scalar product of the vectors,
we need to pass to an orthogonal basis. The “closest” orthogonal basis is γ. Hence

cos=p~x1, ~x2q “
~xJ
1γ~x2γ

}~x1γ}}~x2γ} “
~xJ
1β K

´JK´1~x2β

}K´1~x1β}}K´1~x2β} (7.55)

Notice that we could use the orthogonal basis γ to measure angles instead of, e.g., the closest
orthonormal basis ǫ since the unknown scale factor f cancels in the following formula

cos=p~x1, ~x2q “ ~xJ
1ǫ~x2ǫ

}~x1ǫ}}~x2ǫ}
“

pf ~xJ
1γqpf ~x2γq

}f ~x1ǫ}}f ~x2γ} “
~xJ
1γ~x2γ

}~x1γ}}~x2γ} (7.56)

We conclude that we do not need to know f to measure angles between projection rays.

7.3 Calibrated camera pose computation

We have seen how to find (uncalibrated) perspective camera pose from projections of known six
points. In fact, we have recovered the calibration of the camera. Next we shall show that when
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the calibration is known, we are able to find the pose of the camera from projections of three
points. This is a very classical problem which has been known since [16].
Figure 7.4 shows a camera with center C, which projects three points X1, X2 and X3, rep-

resented by vectors ~X1δ, ~X2δ and ~X3δ in pO, δq, into image points represented by ~x1β , ~x2β and
~x3β .

§ 1 Classical formulation of the calibrated camera pose computation We introduce distances
between pairs of points as

d12 “ || ~X2δ ´ ~X1δ||, d23 “ || ~X3δ ´ ~X2δ||, d31 “ || ~X1δ ´ ~X3δ|| (7.57)

Since we see three different points, we know that all distances are positive.
Points X1, X2 and X3 are in pC, γq represented by vectors

ηi
~xiγ

||~xiγ || “ ηi
K´1~xiβ

||K´1~xiβ || , i “ 1, 2, 3 (7.58)

with ηi representing the distance from C to Xi. Distances ηi are positive since otherwise we
could not see the points.

§ 2 Computing distances to the camera center Calibrated perspective camera measures an-
gles between projection rays

cij “ cos=p~xi, ~xjq “
~xJ
iβ K

´JK´1~xjβ

}K´1~xiβ}}K´1~xjβ} , i “ 1, 2, 3, j “ pi´ 1qmod 3 ` 1 (7.59)

Hence we have all quantities ηi, cos=p~xi, ~xjq and dij , which we need to construct a set of
equations using the rule of cosines d2ij “ η2i ` η2j ´ 2 ηi ηj cos=p~xi, ~xjq, i.e.

d212 “ η21 ` η22 ´ 2 η1 η2 c12 (7.60)

d223 “ η22 ` η23 ´ 2 η2 η3 c23 (7.61)

d231 “ η23 ` η21 ´ 2 η3 η1 c31 (7.62)

with cij “ cos=p~xi, ~xjq.
We have three quadratic equations in three variables. We shall solve this system by ma-

nipulating the three equations to generate one equation in one variable, solving it and then
substituting back to get the remaining two variables.

§ 3 A classical solution Let us first get two equations in two variables. Let us generate new
equations by multiplying the left hand side of (7.60) and (7.62) by the right hand side of (7.61)
and right hand side of (7.60) and (7.62) by the left hand side of (7.61)

d212 pη22 ` η23 ´ 2 η2 η3 c23q “ d223 pη21 ` η22 ´ 2 η1 η2 c12q (7.63)

d231 pη22 ` η23 ´ 2 η2 η3 c23q “ d223 pη23 ` η21 ´ 2 η3 η1 c31q (7.64)

We could have made three different choices which equation to use twice but since all dij ‰ 0,
and hence all sides of the equations are nonzero, all the choices are equally valid.
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We have now two equations with three variables but since the equations are homogeneous, we
will be able to reduce the number of variables to two by dividing equations by (e.g.) η2

1
(which

is non-zero) to get

d212
`

η212 ` η213 ´ 2 η12 η13 c23
˘

“ d223
`

1 ` η212 ´ 2 η12 c12
˘

(7.65)

d231
`

η212 ` η213 ´ 2 η12 η13 c23
˘

“ d223
`

1 ` η213 ´ 2 η13 c31
˘

(7.66)

with η12 “ η2
η1

and η13 “ η3
η1
. Notice that we have a simpler situation than before with only

two quadratic equations in two variables. Let us proceed further towards one equation in one
variable.
We rearrange the terms to get a polynomials in η13 on the left and the rest on the right

d212 η
2
13 ` p´2 d212 η12 c23q η13 “ d223

`

1 ` η212 ´ 2 η12 c12
˘

´ d212η
2
12

pd231 ´ d223q η213 ` p2 d223 c31 ´ 2 d231 η12 c23q η13 “ d223 ´ d231 η
2
12 (7.67)

to get two quadratic equations

m1 η
2
13 ` p1 η13 “ q1 (7.68)

m2 η
2
13 ` p2 η13 “ q2

in η13 with

m1 “ d212 (7.69)

p1 “ ´2 d212 η12 c23 (7.70)

q1 “ d223
`

1 ` η212 ´ 2 η12 c12
˘

´ d212η
2
12 (7.71)

m2 “ d231 ´ d223 (7.72)

p2 “ 2 d223 c31 ´ 2 d231 η12 c23 (7.73)

q2 “ d223 ´ d231 η
2
12 (7.74)

We have “hidden” the variable η12 in the new coefficients. We can now look upon Equations 7.68
as on a linear system

„

m1 p1
m2 p2

 „

η2
13

η13



“
„

q1
q2



(7.75)

The matrix of the system (7.75) either is or is not singular.

§ 4 Case A If it is not singular, we can solve the system by Cramer’s rule [6, 7, 5]

η213

ˇ

ˇ

ˇ

ˇ

„

m1 p1
m2 p2

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

„

q1 p1
q2 p2

ˇ

ˇ

ˇ

ˇ

(7.76)

η13

ˇ

ˇ

ˇ

ˇ

„

m1 p1
m2 p2

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

„

m1 q1
m2 q2

ˇ

ˇ

ˇ

ˇ

(7.77)

giving

η213 pm1 p2 ´m2 p1q “ q1 p2 ´ q2 p1 (7.78)

η13 pm1 p2 ´m2 p1q “ m1 q2 ´m2 q1 (7.79)
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Eliminating η13 (by squaring the second equation, multiplying the first one by m1 p2 ´ m2 p1,
which is non-zero, and comparing the left hand sides) yields

pm1 p2 ´m2 p1q pq1 p2 ´ q2 p1q “ pm1 q2 ´m2 q1q2 (7.80)

Substituting Formulas 7.69-7.74 into Equation 7.80 yields

0 “ a4 η
4
12 ` a3 η

3
12 ` a2 η

2
12 ` a1 η12 ` a0 (7.81)

with coefficients

a4 “ ´d823 ´ d412 d
4
23 ´ d423 d

4
31 ´ 2 d212 d

4
23 d

2
31 ` 2 d623 d

2
31 ` 2 d212 d

6
23 (7.82)

`4 d212 c
2
23 d

4
23 d

2
31

a3 “ 4 d412 d
4
23 c31 c23 ´ 4 d212 d

6
23 c12 ´ 4 d212 c23 d

6
23 c31 ` 4 d423 c12 d

4
31 (7.83)

`4 d823 c12 ´ 4 d212 d
4
23 c31 d

2
31 c23 ´ 8 d212 c

2
23 d

4
23 d

2
31 c12 ´ 8 d623 c12 d

2
31

`4 d212 d
4
23 c12 d

2
31

a2 “ 8 d623 c
2
12 d

2
31 ` 4 d623 d

2
31 ´ 2 d423 d

4
31 ` 2 d412 d

4
23 ´ 4 d412 d

4
23 c

2
31 (7.84)

´4 d823 c
2
12 ´ 4 d412 c

2
23 d

4
23 ´ 2 d823 ` 8 d212 c23 d

6
23 c31 c12

`4 d212 c
2
23 d

4
23 d

2
31 ´ 4 d423 c

2
12 d

4
31 ` 4 d212 d

6
23 c

2
31 ` 8 d212 d

4
23 c31 d

2
31 c23 c12

a1 “ 4 d423 c12 d
4
31 ` 4 d212 d

6
23 c12 ` 4 d823 c12 ´ 4 d212 c23 d

6
23 c31 (7.85)

´8 d212 d
6
23 c

2
31 c12 ´ 4 d212 d

4
23 c31 d

2
31 c23 ´ 4 d212 d

4
23 c12 d

2
31

`4 d412 d
4
23 c31 c23 ´ 8 d623 c12 d

2
31

a0 “ 2 d623 d
2
31 ` 2 d212 d

4
23 d

2
31 ´ d423 d

4
31 ´ d412 d

4
23 ` 4 d212 d

6
23 c

2
31 (7.86)

´d823 ´ 2 d212 d
6
23

We will use eigenvalue computation to find a numerical solution to Equation 7.81. Construct
the following companion matrix

C “

»

—

—

—

–

0 0 0 ´a0
a4

1 0 0 ´a1
a4

0 1 0 ´a2
a4

0 0 1 ´a3
a4

fi

ffi

ffi

ffi

fl

(7.87)

and observe that

| η12 I ´ C | “ η412 ` a3

a4
η312 ` a2

a4
η212 ` a1

a4
η12 ` a0

a4
(7.88)

Therefore, a numerical approximation of η12 can be obtained by computing, e.g., >>eig(C) in
Matlab. Complex solutions are artifacts of the method and should not be further considered.
For every real solution, we can then substitute back to Equation 7.79 to obtain the corresponding

η13 “ m1 q2 ´m2 q1

m1 p2 ´m2 p1
(7.89)

“ d2
12

pd2
23

´ d2
31
η2
12

q ` pd2
23

´ d2
31

q pd2
23

p1 ` η2
12

´ 2 η12 c12q ´ d2
12
η2
12

q
2 d2

12
pd2

23
c31 ´ d2

31
c23 η12q ` 2 pd2

31
´ d2

23
q d2

12
c23 η12

To get η1, η2 and η3, we consider Equation 7.60, which can be rearranged as

d212 “ η21 p1 ` η212 ´ 2 η12 c12q (7.90)
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and hence yields positive

η1 “ d12
a

1 ` η2
12

´ 2 η12 c12
(7.91)

η2 “ η1 η12 (7.92)

η3 “ η1 η13 (7.93)

§ 5 Case B Let us now look at what happens when the matrix of the system (7.75) is singular.
Then, after substituting m1, m2, p1 and p2 from Equations 7.69–7.74, we have

m1 p2 ´m2 p1 “ 0 (7.94)

´2 d212 d
2
23 pη12 c23 ´ c31q “ 0 (7.95)

η12 c23 “ c31 (7.96)

We used the fact that neither d12 ‰ 0 nor d23 ‰ 0.

§ 6 Case B1 When c23 ‰ 0, then we get

η12 “ c31

c23
(7.97)

Substituting it to Equations 7.65 we get

d212

ˆ

pc31
c23

q2 ` η213 ´ 2
c31

c23
η13 c23

˙

“ d223

ˆ

1 ` pc31
c23

q2 ´ 2
c31

c23
c12

˙

(7.98)

d212
`

c231 ` c223 η
2
13 ´ 2 c31 c

2
23 η13

˘

“ d223
`

c223 ` c231 ´ 2 c31 c23 c12
˘

(7.99)

and after some more manipulation obtain a quadratic equation

pd212 c223q η213 ` p´2 d212 c
2
23 c31q η13 ` d212 c

2
31 ´ d223 c

2
23 ´ d223 c

2
31 ` 2 d223 c12 c23 c31 “ 0 (7.100)

in η13. We get η1, η2 and η3 from Equations 7.91, 7.92, 7.93.

§ 7 Case B2 When c23 “ 0, then it follows from Equation 7.96 that c31 “ 0 as well. Returning
back to equations 7.65, 7.66 provides

d212
`

η212 ` η213
˘

“ d223
`

1 ` η212 ´ 2 η12 c12
˘

(7.101)

d231
`

η212 ` η213
˘

“ d223
`

1 ` η213
˘

(7.102)

Expressing η13 from Equation 7.102 gives

pd223 ´ d231q η213 “ d231 η
2
12 ´ d223 (7.103)
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§ 8 Case B2.1 When d2
23

‰ d2
31
, then we can write

η213 “ d2
31
η2
12

´ d2
23

d2
23

´ d2
31

(7.104)

to substitute it into Equation 7.101

d212

ˆ

η212 ` d2
31
η2
12

´ d2
23

d2
23

´ d2
31

˙

“ d223
`

1 ` η212 ´ 2 η12 c12
˘

(7.105)

which we further manipulate to get a quadratic equation in η12

`

d212 ´ d223 ` d231
˘

η212 ` 2 c12 pd223 ´ d231q η12 ` d231 ´ d212 ´ d223 “ 0 (7.106)

We get η1, η2 and η3 from Equations 7.91, 7.92, 7.93.

§ 9 Case B2.2 Finally, when d2
23

“ d2
31
, then we get from Equation 7.103

η12 “ 1 (7.107)

and from Equation 7.101

η213 “ d2
23

d2
12

p2 ´ 2 c12q ´ 1 (7.108)

and hence the positive

η13 “
d

d2
23

d2
12

p2 ´ 2 c12q ´ 1 (7.109)

We get η1, η2 and η3 from Equations 7.91, 7.92, 7.93.

§ 10 Selecting solutions The above process of ηi computation often delivers several solutions.
It is important to notice that some of them may not satisfy the original Equations 7.62–7.60.
For instance, we always obtain solutions for the case A as well as for some of the cases B but
only one of the cases is actually valid. Hence, we need to select only the solutions that satisfy
Equations 7.62–7.60 and are meaningful, i.e. are real and positive.

§ 11 A modern (more elegant) solution The classical solution is perfectly valid but it was
quite tedious to derive it. Let us now present another, somewhat more elegant, solution, which
exploits some of more recent results of algebraic geometry [2, 17].
Let us consider Equations 7.60, 7.61, 7.62 and proceed to Equations 7.65, 7.66, but, this time,

using all three pairs to get three equations in η12, η13

f1 “ d212
`

η212 ` η213 ´ 2 η12 η13 c23
˘

´ d223
`

1 ` η212 ´ 2 η12 c12
˘

“ 0 (7.110)

f2 “ d231
`

η212 ` η213 ´ 2 η12 η13 c23
˘

´ d223
`

1 ` η213 ´ 2 η13 c31
˘

“ 0 (7.111)

f3 “ d212
`

1 ` η213 ´ 2 η13 c31
˘

´ d231
`

1 ` η212 ´ 2 η12 c12
˘

“ 0 (7.112)
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It is known [2, 17] that solutions to a set of k algebraic equations

fipx1, . . . , xnq “ 0, i “ 1 . . . , k (7.113)

in n variables, which have a fininte number of solutions, can always be obtained by deriving
a polynomial gpxnq “ 0 in the last variable by the following procedure. If the system, does
not have any solution, the procedure will generate polynomial gn “ 1, i.e. a non-zero constant,
leading to the contradiction 1 “ 0.
The procedure is as follows. First generate new equations by multiplying all fi by all possible

monomials up to degree m

x1, . . . , xn, x
2
1, x1 x2, . . . , x

2
n, x

3
1, x

2
1 x2, . . . , x

m
n (7.114)

to get equations

f1 “ 0, . . . , fn “ 0, x1f1 “ 0, . . . , xnfn “ 0, x21f1 “ 0, x1 x2f1 “ 0, . . . , xmn fn “ 0 (7.115)

The degree m needs to be chosen such that the next step yields the desired result. It is always
possible to choose suchm but it may sometimes be found only by using more and more monomials
until the Gaussian elimination of the matrix of coefficients, which combine monomials, does not
produce a row corresponding to an equation in xn only. Let us demonstrate this process by
solving our problem.
We use the following four monomials of maximal degree two

η12, η13, η12 η13, η
2
12 (7.116)

Notice that we did not include the second degree monomial η2
13

since it turns out that equations
generated by that monomial are not necessary. We obtain 15 “ 3 ` 4 ˆ 3 equations

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

f1
f2
f3

η12 f1
η12 f2
η12 f3
η13 f1
η13 f2
η13 f3

η12 η13 f1
η12 η13 f2
η12 η13 f3
η2
12
f1

η2
12
f2

η2
12
f3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ M

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

η12 η
3

13

η3
13

η2
12
η2
13

η2
13
η12

η2
13

η3
12
η13

η13 η
2

12

η13 η12
η13
η4
12

η3
12

η2
12

η12
1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ M m “ 0 (7.117)
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with

M “

»

—

—

—

—

—

—

—

—

—

—

–

0 0 0 0 m1 0 0 ´m7 0 0 0 m4 m8 ´m2

0 0 0 0 m5 0 0 m9 ´m10 0 0 ´m3 0 m2

0 0 0 0 ´m1 0 0 0 m11 0 0 m3 ´m12 m6

0 0 0 m1 0 0 ´m7 0 0 0 m4 m8 ´m2 0

0 0 0 m5 0 0 m9 ´m10 0 0 ´m3 0 m2 0

0 0 0 ´m1 0 0 0 m11 0 0 m3 ´m12 m6 0

0 m1 0 ´m7 0 0 m4 m8 ´m2 0 0 0 0 0

0 m5 0 m9 ´m10 0 ´m3 0 m2 0 0 0 0 0

0 ´m1 0 0 m11 0 m3 ´m12 m6 0 0 0 0 0

m1 0 ´m7 0 0 m4 m8 ´m2 0 0 0 0 0 0

m5 0 m9 ´m10 0 ´m3 0 m2 0 0 0 0 0 0

´m1 0 0 m11 0 m3 ´m12 m6 0 0 0 0 0 0

0 0 m1 0 0 ´m7 0 0 0 m4 m8 ´m2 0 0

0 0 m5 0 0 m9 ´m10 0 0 ´m3 0 m2 0 0

0 0 ´m1 0 0 0 m11 0 0 m3 ´m12 m6 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(7.118)
and

m1 “ d2
12

m4 “ d2
12

´ d2
23

m7 “ 2 d2
12
c23 m10 “ 2 d2

23
c31

m2 “ d2
23

m5 “ d2
23

´ d2
31

m8 “ 2 d2
23
c12 m11 “ 2 d2

12
c31

m3 “ d2
31

m6 “ d2
31

´ d2
12

m9 “ 2 d2
31
c23 m12 “ 2 d2

31
c12

(7.119)

Matrix M contains coefficients and vector m contains the monomials.
Notice in Equation 7.117 that the last five monomials contain only on η12. We have deliberately

ordered monomials to achieve this. Next, we do Gaussian elimination (with pivoting) of matrix
M and get a new matrix M1.
One can verify that that the 10th row of M1 has the first nine elements equal to zero. Therefore

M1
10,: m “ 0 (7.120)

is a polynomial only in η12. In fact, it is exactly a non-zero multiple of polynomials obtained in
cases A, B1, B2.1 and B2.2 above.
Discussion of the cases happens in the Gaussian elimination with pivoting, which avoids

dividing by elements close to zero. The resulting polynomial may be of degree four (case A) but
will have lower degrees in other cases.

§ 12 Computing camera orientation and camera center Having quantities η1, η2, η3, we shall
compute camera projection center ~Cδ and camera rotation R from Equation 7.24.
The three points X1, X2 and X3 are represented in the world coordinate system pO, δq by

vectors ~X1δ, ~X2δ and ~X3δ. With known η1, η2, η3, we can represent them also in the camera
(orthonormal) coordinate system pC, ǫq by vectors

~Yiǫ “ ηi ~yiǫ “ ηi
~xiǫ

||~xiǫ||
“ ηi

f ~xiγ

||f ~xiγ || “ ηi
~xiγ

||~xiγ || , i “ 1, 2, 3 (7.121)

Coordinate vectors ~Xiδ are related to coordinate vectors ~Yiǫ as follows

~Y1ǫ “ R p ~X1δ ´ ~Cδq (7.122)

~Y2ǫ “ R p ~X2δ ´ ~Cδq (7.123)

~Y3ǫ “ R p ~X3δ ´ ~Cδq (7.124)

There are three vector equations in R3, which is nine scalar equations, and 12 unknowns in R

and ~Cδ. Additional seven equations are provided by the fact that R is an orthonormal matrix,
i.e. RJR “ I and |R| “ 1.
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To compute R, we shall next eliminate ~Cδ from Equations 7.122–7.124

~Y2ǫ ´ ~Y1ǫ “ R p ~X2δ ´ ~X1δq (7.125)

~Y3ǫ ´ ~Y1ǫ “ R p ~X3δ ´ ~X1δq (7.126)

and use the property (Equation 2.45 in Section 2.3)

~Xǫ ˆ ~Yǫ “ R´J

|R´J| p ~Xδ ˆ ~Yδq “ R p ~Xδ ˆ ~Yδq (7.127)

of the vector product of any two vectors ~X, ~Y in R3 and an orthonormal matrix R to write

p~Y2ǫ ´ ~Y1ǫq ˆ p~Y3ǫ ´ ~Y1ǫq “
´

R p ~X2δ ´ ~X1δq
¯

ˆ
´

R p ~X3δ ´ ~X1δq
¯

(7.128)

“ R
´

p ~X2δ ´ ~X1δq ˆ p ~X3δ ´ ~X1δq
¯

(7.129)

which provides a triplet of independent vectors expressed in the two bases

~Z2ǫ “ ~Y2ǫ ´ ~Y1ǫ, ~Z2δ “ ~X2δ ´ ~X1δ (7.130)

~Z3ǫ “ ~Y3ǫ ´ ~Y1ǫ, ~Z3δ “ ~X3δ ´ ~X1δ (7.131)

~Z1ǫ “ ~Z2ǫ ˆ ~Z3ǫ, ~Z1δ “ ~Z2δ ˆ ~Z3δ (7.132)

Rotation R can then be recovered from
”

~Z1ǫ
~Z2ǫ

~Z3ǫ

ı

“ R
”

~Z1δ
~Z2δ

~Z3δ

ı

(7.133)

as

R “
”

~Z1ǫ
~Z2ǫ

~Z3ǫ

ı ”

~Z1δ
~Z2δ

~Z3δ

ı´1

(7.134)

With known R we get ~Cδ as

~Cδ “ ~Xiδ ´ RJ~Yiǫ, i “ 1, 2, 3 (7.135)
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8 Homography

We shall next investigate the relationship between projections of 3D points by two perspective
cameras into two images. In general, the projections depend on the shape of the scene and
camera poses and this relationship may be very difficult to describe. However, there are several
very important situations when the relationship can be given in a form of a special image
transform, the homography.
Let us first consider the situation when two (different) cameras share a common projection

center. That means, the cameras may have different coordinate systems, different orientations
but must have the same projection center. This situation often arises when photographing with
a camera rotating around its projection center, e.g., when taking images for constructing a
panorama capturing wide view angle. We shall see that the corresponding projections will be
related by a homography.
Next, we shall look at a different situation when the cameras are unconstrained, i.e. they can

be anywhere in the space and with completely different poses and coordinate systems, but 3D
points are forced to lie in a single plane not containing the camera centers. This situation arises,
e.g., when photographing a flat screen, a poster or a facade from different viewpoints. Again,
the corresponding projections of the points in the plane (but not the projections of the points
out of the plane) will be related by a homography.

8.1 Homography between images with the same center

Let us consider two perspective cameras with identical projection centers C “ C 1, which project
point X from space to their respective image planes π and π1, Figure 8.1. We introduce image
coordinate systems po, αq with α “ r~b1,~b2s in π and po1, α1q with α1 “ r~b 1

1
,~b 1

2
s in π1 and use them

to construct the corresponding camera coordinate systems pC, βq with β “ r~b1,~b2,~b3 “ ÝÑ
Cos and

pC, β1q with β1 “ r~b 1
1
,~b 1

2
,~b 1

3
“ ÝÑ
Co1s.

Point X is projected to image points along the projection rays, which are intersected with π
and π1. The projection of X in π is represented by vector ~uα “ ru, vsJ. The projection of X in
π1 is represented by vector ~u1

α1 “ ru1, v1sJ.
Vectors ~x and ~x 1 are two direction vectors of the same ray and hence are linearly dependent.

Since they are both non-zero for X ‰ C, their linear dependence is equivalent with

Dλ P R : λ~x 1 “ ~x (8.1)

To arrive at the relationship between the available coordinates of vectors ~x and ~x1, we shall
now pass from vectors to their coordinates. There holds

λ~x 1 “ ~x (8.2)

λ~x 1
β 1 “ ~xβ 1 (8.3)

λ~x 1
β 1 “ H ~xβ (8.4)
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π

π1

o

o1

~u

~u 1

~x

~x 1

~b1

~b2

~b3 ~b 1
1

~b 1
2

~b 1
3

C “ C 1

X

Figure 8.1: Cameras share a projections center. Image projections are related by a homography.

true for some 3ˆ3 real matrix H with rank H “ 3, which transforms coordinates of a vector from
basis β to basis β1.
Considering the choices of camera coordinate systems, we see that

λ~x 1
β 1 “ H ~xβ (8.5)

λ

»

–

u1

v1

1

fi

fl “ H

»

–

u

v

1

fi

fl (8.6)

We have obtained an interesting relationship. The above equations tell us that the image
projections are related by a transformation, which depends only on image projections, and to
find it, we do not need to know actual posiitons of points X in space. This is the consequence
of having C “ C 1.

§ 1 Relating homography matrix to camera projection matrix Matrix H is related to camera
projection matrices. Consider two camera projections given by Equation 6.12

ζ ~xβ “ P

„

~Xδ

1



“
”

K R | ´ K R ~Cδ

ı

„

~Xδ

1



“ K R p ~Xδ ´ ~Cδq (8.7)

ζ 1~x 1
β 1 “ P 1

„

~Xδ

1



“
”

K1 R1 | ´ K1R1 ~Cδ

ı

„

~Xδ

1



“ K1 R1 p ~Xδ ´ ~Cδq (8.8)
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σ

π

~x

~u ~y

~b1

~b2~b3

~d1

~d2
~d3

C

O
X

~X

Figure 8.2: All 3D points are in a single plane. Coordinates in the plane and in the image are
related by a homography.

for all ~Xδ P R3, which gives

ζ RJ K´1 ~xβ “ ~Xδ ´ ~Cδ (8.9)

ζ 1 R1JK1´1
~x 1
β 1 “ ~Xδ ´ ~Cδ (8.10)

and therefore

ζ 1 R1JK1´1
~x 1
β 1 “ ζ RJ K´1 ~xβ (8.11)

ζ 1

ζ
~xβ 1 “ K1 R1 RJK´1 ~xβ (8.12)

for all corresponding pairs of vectors ~xβ , ~x
1
β 1 . Let us now compare Equation 8.12 with Equa-

tion 8.5, i.e. with
λ~x 1

β 1 “ H ~xβ (8.13)

We see that

H “ K1 R1 RJK´1 when λ “ ζ 1

ζ
(8.14)

This is particularly useful when K “ K1 since then

H “ K R1 RJK´1 (8.15)

which implies that H is similar [5] to a rotation, i.e.

K´1H K “ R1 RJ (8.16)

and hence has one eigenvalue equal to one, the other two eigenvalues are complex conjugate
with modulae [3] equal to one.
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§ 2 Homographies conjugated to rotations Let us study homographies H conjugated to rota-
tions S “ R1 R as in Equation 8.16. We shall first check that such homographies are characterized
by the following condition

eigpHq “ p1, x` i y, x´ i yq for some real x, y such that x2 ` y2 “ 1 (8.17)

Eigenvalues of a rotation S can be written as p1, x ` i y, x ´ i yq for some real x, y such that
x2 ` y2 “ 1. Consider

|H ´ λ I| “
ˇ

ˇK´1
ˇ

ˇ |H ´ λ I| |K| “
ˇ

ˇK´1 H K ´ K´1 λ I K
ˇ

ˇ “ |S ´ λ I| (8.18)

an therefore eigenvalues of H are equal to eigenvalues of S.
Next, assume that eigenvalues of H are equal to eigenvalues of a rotation S. Then we can write

S U “ U Λ and H V “ V Λ (8.19)

for a matrix Λ with the eignvalues on the diagonal and matrices U, resp. V, of eigenvectors of S,
resp. H. Now, if y ‰ 0, the eigenvalues are pairwise distinct. Then it is possible [4, 5] to construct
matrices U, V, from the respective eigenvectors of unit length such that they are regular, and we
can write

Λ “ Λ (8.20)

V´1H V “ U´1S U (8.21)

U V´1H V U´1 “ S (8.22)

Q´1 K´1H K Q “ S (8.23)

K´1H K “ Q S Q´1 (8.24)

We introduced an upper triangular matrix K and a rotation Q such that V U´1 “ K Q, which is
always possible by the Gramm-Schmid orthogonalization process [5]. Matrix Q S Q´1 is a rotation
and thus H is similar to a rotation by an upper triangular matrix.
If y “ 0 then the eigenvalues are either p1, 1, 1q or p1,´1,´1q. In the former case, S “ I and

hence K´1H K “ I implies H “ I, and hence H is a rotation. In the latter case, S is a rotation by
180˝ and H is thus similar to a rotation.
Let us now characterize the homographies conjugated to a rotation algebraicly. The charac-

teristic polynomial of H is as follows

ppλq “ |λ I ´ H| “ pλ´ 1q pλ´ x´ y iq pλ´ x` y iq (8.25)

“ λ3 ´ p2x` 1qλ2 ` p2x` 1qλ´ 1 (8.26)

“ λ3 ´ trace Hλ2 ` pH11 ` H22 ` H33qλ´ |H| (8.27)

since x2 ` y2 “ 1. Symbols Hij denote minors after removing row i and column j. We are thus
getting two algebraic constraints on H

trace H “ H11 ` H22 ` H33 and |H| “ 1 (8.28)

which are polynomials of degre two and three in elements of H, respectively, which is a repre-
sentative of the homography. Clearly, any-nonzero multiple of H satisfying Equation 8.28 also
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represents the same homography and therefore rank three matrices constrained by the first equa-
tion in Equation 8.28 are permissible representatives of homographies between images obtained
by a rotating camera with constant internal calibration.
Finally, when K “ K 1 “ I, then H “ S, i.e. a rotation, is a representative of such homograpy

and hence all non-zero multiples of rotations are permissible representatives of homographies
between images obtained by a rotating calibrated camera.

8.2 Homography between images of a plane

8.2.1 Image of a plane

Let study the relationship between the coordinates of 3D points X, which all lie in a plane σ,
and their projections into an image, Figure 8.2. Coordinates of points X are measured in a
coordinate system pO, δq with δ “ r~d1, ~d2, ~d3s. Vectors ~d1, ~d2 span plane σ and therefore

~Xδ “

»

–

x

y

0

fi

fl (8.29)

for some real x, y.
The points X are projected by a perspective camera with projection matrix P into image

coordinates ~uα “ ru, vsJ, w.r.t. an image coordinate system po, αq with α “ r~b1,~b2s. The
corresponding camera coordinate system is pC, βq with β “ p~b1,~b2,~b3q.
To find the relationship between the coordinates of ~Xδ and ~uα, we project points X by P into

projections ~xβ as

ζ

»

–

u

v

1

fi

fl “ ζ ~xβ “ P

„

~Xδ

1



“
“

p1 p2 p3 p4
‰

»

—

—

–

x

y

0
1

fi

ffi

ffi

fl

“
“

p1 p2 p4
‰

»

–

x

y

1

fi

fl “ H ~yτ (8.30)

where p1, p2, p3, p4 are the columns of P.
Notice that 3 ˆ 1 matrix ~yτ “ rx, y, 1sJ represents point X in the coordinate system pC, τq

with the basis τ “ p~d1, ~d2, ~d4q, where the ~d4 “ ÝÝÑ
CO is the vector assigned to the pair of points

pC,Oq. If point C is not in σ, then vectors ~d1, ~d2, ~d4 are independent and hence form a basis.
Therefore, matrix

H “
“

p1 p2 p4
‰

(8.31)

represents a change of coordinates and has rank 3.
When we think about pair pC, σq as about a camera that shares its projection center with

camera pC, πq and imagine that points X are all (accidentally) in the projection plane σ, we see
that we have recovered the relationship between cameras sharing their projection center.

8.2.2 Two images of a plane

We shall now consider the situation when all points in the scene are in a single plane. Then,
as we shall see, the projections of the 3D points, which are in the plane, are again related by a
homography even when the camera centers are located at different points in the space.
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y’

σ

π

π1~x

~x 1

~u

~u 1

~y

~b1

~b2~b3

~b 1
1

~b 1
2

~b 1
3

~d1

~d2
~d3

C

C 1

O
X

~X

Figure 8.3: All 3D points are in a single plane. Two images of the points are related by a
homography.
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Let us consider a plane σ and two perspective cameras with (in general different) projection
centers C and C 1, which do not lie in σ and the corresponding projection matrices P and P1

P “
“

p1 p2 p3 p4
‰

(8.32)

P1 “
“

p 1
1

p 1
2

p 1
3

p 1
4

‰

(8.33)

where pi P R3 and p 1
i P R3, i “ 1, . . . , 4 stand for the columns of P, P1.

We establish coordinate systems pO, δq, pC, βq, pC 1, β1q in the standard way, see Figure 8.3 to
get

~Xδ “

»

–

x

y

0

fi

fl (8.34)

for some real x, y.
Point X P σ is projected to the cameras as

ζ ~xβ “ P

„

~Xδ

1



“
“

p1 p2 p3 p4
‰

»

—

—

–

x

y

0
1

fi

ffi

ffi

fl

“
“

p1 p2 p4
‰

»

–

x

y

1

fi

fl “ G ~yτ

ζ 1 ~x 1
β 1 “ P1

„

~Xδ

1



“
“

p 1
1

p 1
2

p 1
3

p 1
4

‰

»

—

—

–

x

y

0
1

fi

ffi

ffi

fl

“
“

p 1
1

p 1
2

p 1
4

‰

»

–

x

y

1

fi

fl “ G1 ~y 1
τ 1

for some ζ, ζ 1 P Rzt0u and two new coordinate systems pC, τq with τ “ p~d1, ~d2, ~d4q, where the
~d4 “ ÝÝÑ

CO and pC 1, τ 1q with τ 1 “ p~d1, ~d2, ~d 1
4
q, where the ~d 1

4
“ ÝÝÑ
CO1.

We see that there are two different vectors, ~y and ~y 1, which appear on the right hand side of
the equations in different bases, i.e. as ~yτ and ~y 1

τ 1

ζ ~xβ “ G ~yτ (8.35)

ζ 1~x 1
β 1 “ G1~y 1

τ 1 (8.36)

with G “ rp1, p2, p4s and G1 “ rp 1
1
, p 1

2
, p 1

4
s.

Coordinate systems pC, τq and pC 1, τ 1q are so special that

~yτ “ ~y 1
τ 1 (8.37)

for all points in σ. Consider that

~yτ “ p ~X ` ÝÝÑ
COqτ “ ~Xτ ` ~d4τ “ ~Xp~d1,~d2,~d4q ` ~d

4p~d1,~d2,~d4q “

»

–

x

y

1

fi

fl (8.38)

~y 1
τ 1 “ p ~X ` ÝÝÑ

C 1Oqτ 1 “ ~Xτ 1 ` ~d 1
4τ 1 “ ~Xp~d1,~d2,~d 1

4
q ` ~d 1

4p~d1,~d2,~d 1
4

q “

»

–

x

y

1

fi

fl (8.39)

and therefore, when C R σ and C 1 R σ, we get

ζ 1~x 1
β 1 “ G1 G´1ζ ~xβ (8.40)
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which we can write as
λ~x 1

β 1 “ H ~xβ (8.41)

for λ “ ζ1

ζ
and H “ G1 G´1. Clearly, H P R3ˆ3, rank H “ 3.

We could also interpret this situation such that two images of a plane are related by the
homography, which is a combination of the homographies relating the plane to its two images.

8.2.3 Homography between images of a plane by cameras with the same center

In the derivation of Equation 8.41, we have never asked for centers C, C 1 be different. Indeed,
Equation 8.40 is perfetly valid even when C “ C 1. At the same time, however, there also holds
Equation 8.14 true, and thus we have

H “ G1 G´1 (8.42)

“
“

p 1
1

p 1
2

p 1
4

‰ “

p1 p2 p4
‰´1

(8.43)

H “ K1 R1 RJK´1 (8.44)

“
“

p 1
1

p 1
2

p 1
3

‰ “

p1 p2 p3
‰´1

(8.45)

Let us see now purely algebraic argument why the above holds true. Since the cameras have the

same projection center ~Cδ “
“

c1 c2 c3
‰J

, we can write

p4 “ ´K R ~Cδ and p 1
4 “ ´K 1 R 1 ~Cδ (8.46)

and hence

H “ G1 G´1 (8.47)

“
“

p 1
1

p 1
2

p 1
4

‰ “

p1 p2 p4
‰´1

(8.48)

“ K 1 R 1
”

i j ´~Cδ

ı ”

i j ´~Cδ

ı´1

RJK´1 (8.49)

“ K1 R1 RJK´1 (8.50)

with i “
“

1 0 0
‰J

and j “
“

0 1 0
‰J

. We see that there always holds

“

p 1
1

p 1
2

p 1
4

‰ “

p1 p2 p4
‰´1 “

“

p 1
1

p 1
2

p 1
3

‰ “

p1 p2 p3
‰´1

(8.51)

true for two cameras with the same projection center irrespectively of where actually the points
in space are since we would get the same images for points obtained by intersecting the rays
with the plane z “ 0 in the coordinate system pO, δq.
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8.2.4 Homographies induced by a plane in the scene

Let us look at Equation 8.40 in more detail. We can write

ζ 1

ζ
~x 1
β 1 “ G1 G´1 ~xβ “

“

p 1
1

p 1
2

p 1
4

‰ “

p1 p2 p4
‰´1

~xβ (8.52)

“ A 1

»

–

1 0
0 1
0 0

´ ~C 1
δ

fi

fl

»

–

1 0
0 1
0 0

´ ~Cδ

fi

fl

´1

A´1~xβ (8.53)

“ A 1

»

–

1 0 ´x1

0 1 ´y1

0 0 ´z1

fi

fl

»

–

1 0 ´x
0 1 ´y
0 0 ´z

fi

fl

´1

A´1~xβ (8.54)

We have introduced new symbols to represent vectors

~Cδ “
“

x y z
‰J

and ~C 1
δ “

“

x1 y1 z1 ‰J
(8.55)

and have written the homography as a product of four matrices. Let us next compute the
product of the two middle matrices

ζ 1

ζ
~x 1
β 1 “ A 1

»

–

1 0 px1 ´ xq{z
0 1 py1 ´ yq{z
0 0 z1{z

fi

fl A´1~xβ (8.56)

We see that the middle matrix on the right looks almost as the identity plus something. Let’s
express it in that way

ζ 1

ζ
~x 1
β 1 “ A 1

»

–

1 0 px1 ´ xq{z
0 1 py1 ´ yq{z
0 0 1 ` pz1 ´ zq{z

fi

fl A´1~xβ (8.57)

We can now further rearrange expressions as follows

ζ 1

ζ
~x 1
β 1 “ A 1

¨

˝I `

»

–

px1 ´ xq{z
py1 ´ yq{z
pz1 ´ zq{z

fi

fl

“

0 0 1
‰

˛

‚A´1~xβ (8.58)

“ A 1
˜

I ` p~C 1
δ ´ ~Cδq 1

~Cδp3q
“

0 0 1
‰

¸

A´1~xβ (8.59)

“ A 1 A´1

˜

I ´ p~Cβ ´ ~C 1
βq 1

~Cδp3q
“

0 0 1
‰

A´1

¸

~xβ (8.60)

We denoted the third coordinate of ~Cδ by ~Cδp3q.
Vector 1

~Cδp3q
“

0 0 1
‰

A´1 has a geometrical interpretation. Consider the equation of plane

σ in coordinate system pO, δq

“

0 0 1 0
‰

„

~Xδ

1



“ 0 (8.61)
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where r0 0 1sJ is the normal vector of plane σ containing point ~Xδ written w.r.t. pO, δq, i.e.
~nJ
δ̄

“ r0 0 1s, where δ̄ is the dual basis to basis δ, Chapter 2.

Next, consider the camera coordinate system pC, βq with ~Yβ “ A p ~Xδ ´ ~Cδq. We see that

“

0 0 1 0
‰

„

A´1 ~Yβ ` ~Cδ

1



“ 0 (8.62)

”

“

0 0 1
‰

A´1 ~Cδp3q
ı

„

~Yβ
1



“ 0 (8.63)

provides the unit normal ~n of plane σ in the dual basis β̄ to basis β

~nJ
β̄

“
“

0 0 1
‰

A´1 (8.64)

We have obtained the following formula for the homography between points ~xβ, ~x
1
β 1 in the

two images, which is generated by the plane σ

ζ 1

ζ
~x 1
β 1 “ A 1 A´1

˜

I ` p~C 1
β ´ ~Cβq 1

~Cδp3q
~nJ
β̄

¸

~xβ (8.65)

where ~nβ̄ is the normal vector of σ in β̄, ~Cδp3q is the distance of σ from the camera center C,
and ζ, ζ 1 are the distances of points from the respective principal planes in multiples of the
respective focal lengths.

§ 1 One fully calibrated camera We will now consider Equation 8.65 for the situation when
the first camera is fully calibrated, i.e.

P1 “
”

I | ´ ~Cδ

ı

and P2 “
“

A 1 | a 1 ‰ “
”

A 1 | ´ A 1 ~C 1
δ

ı

(8.66)

Then, bases β1 and δ become identical and Equation 8.65 can be written as

τ 1~x 1
β 1 “ A 1

˜

I ` p~C 1
δ ´ ~Cδq

~nJ
δ̄

d

¸

~xδ “
˜

A 1 ´
~tβ 1

d
~nJ
δ̄

¸

~xδ “
˜

A 1 ´
~tβ 1

d
~nJ
δ

¸

~xδ (8.67)

where ~tβ 1 are the coordinates of the vector from C to C 1 in β 1. Notice that we have used the

fact that δ is the standard basis and therefore ~nδ̄ transforms by the same matrix as ~Xδ when
chaning a basis. To stress that, we use ~nδ instead of ~nδ̄. Symbol d stands for the (non-zero)
distance of the plane σ from the center of the first camera, and a non-zero τ 1 “ ζ 1{ζ.

§ 2 Two internally calibrated cameras Let us next have a look at the situation when K “ K 1 “
I. Matrices A, A 1 become rotations, which we stress by writing

P1 “
”

R | ´ R ~Cδ

ı

and P2 “
”

R 1 | ´ R 1 ~C 1
δ

ı

(8.68)

with orthonormal matrices R, R 1. Equation 8.65 now becomes

τ 1~x 1
γ 1 “ R 1 R´1

˜

I ` p~C 1
γ ´ ~Cγq 1

~Cδp3q
~nJ
γ̄

¸

~xγ “
˜

R 1 R´1 `
~tγ 1

d
~nJ
γ̄

¸

~xγ (8.69)
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A question arises here. Does every rank three real 3ˆ3 matrix represent a homography between
two calibrated images induced by a plane in the scene? We see from the following that the
answer is yes.
Let us consider a real 3 ˆ 3 marix H and its SVD decomposition [5, p. 411]

H “ U

»

–

a

b

c

fi

fl VJ (8.70)

Now, if |H| ą 0, then we may ask for a ě b ě c ě 0 and |U| “ |V| “ 1. Otherwise, we replace
c by ´c to have a ě b ą 0 ą c and |U| “ |V| “ 1. Next, when any two of a, b, c are equal, e.g.
a “ b, then we can write the decomposition as follows

H “ U

»

–

a

b

c

fi

fl VJ “ U

»

–

b

b

c

fi

fl VJ (8.71)

“ U

¨

˝b

»

–

1
1

1

fi

fl `

»

–

0
0

c´ b

fi

fl

“

0 0 1
‰

˛

‚VJ (8.72)

“ b U VJ ` U

»

–

0
0

c´ b

fi

fl

“

0 0 1
‰

VJ (8.73)

Hence, we need to consider only the situation when a, b, c are pairwise distinct. We can write

H “ b U S VJ ` U u vJ VJ “ b R ` t nJ

S “

»

—

–

a c`b2

b pa`cq 0 ´
?
b2´c2

?
a2´b2

b pa`cq
0 1 0?

b2´c2
?
a2´b2

b pa`cq 0 a c`b2

b pa`cq

fi

ffi

fl

u “

»

—

–

?
a2´b2

a`c

0
´

?
b2´c2

a`c

fi

ffi

fl

vJ “
“?

a2 ´ b2 0
?
b2 ´ c2

‰

Notice that b is non-zero since it must be greater than c else we would have b “ c, which we
excluded. Moreover, a ` c ą 0 since they are either both positive or |a| ą |c| and a is positive.
Hence all the formulas above are meaningful. It is easy to verify that SJS “ I and |S| “ 1 and
therefore R “ U S VJ is a rotation.
Consider a rank three real 3ˆ 3 matrix H. We see that it must be possible to write a non-zero

multiple of H as S ` ~vγ 1 ~nJ
γ̄ for some rotation S and vectors ~vγ̄ P R3 and unit ~nγ̄ P R3. Hence,

the following equations

`

ξ H ´ ~vγ 1 ~nJ
γ̄

˘J `

ξ H ´ ~vγ 1 ~nJ
γ̄

˘

“ I,
ˇ

ˇ

`

ξ H ´ ~vγ 1 ~nJ
γ̄

˘ˇ

ˇ “ 1, ~nJ
γ̄ ~nγ̄ “ 1 (8.74)

have to be satisfied for some real ξ and some vectors ~vγ 1 P R3 and unit ~nγ̄ P R3. This is a
set of eight algebraic equations in seven variables. Clearly, the constraint ~nJ

γ̄ ~nγ̄ “ 1 can be
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replaced by
“

0 0 1
‰

~nγ̄ “ ´1 to enforce that the plane normal faces the first camera. To get
polynomial equations, we multiply the left equation by ψ2 “ 1{ξ2 and the middle equation in
Equation 8.74 by ψ3 “ 1{ξ3 to get

`

H ´ ~uγ 1 ~nJ
γ̄

˘J `

H ´ ~uγ 1 ~nJ
γ̄

˘

“ ψ2I,
ˇ

ˇ

`

H ´ ~uγ 1 ~nJ
γ̄

˘ˇ

ˇ “ ψ3,
“

0 0 1
‰

~nγ̄ “ ´1 (8.75)

with ~uγ1 “ ψ~vγ1 . Interestingly, this system has1 12 solutions in general. Even more interestingly,
there are only four real solutions but with only two oposite values for ψ. Taking into account

1The following Maple [18] run demontrates the structure of solutions to the system of equa-
tions 8.75.

Linear algebra shortcuts

>with(ListTools):with(LinearAlgebra):with(Groebner):

>E:=LinearAlgebra[IdentityMatrix](3):

>det:=LinearAlgebra[Determinant]:

>trn:=LinearAlgebra[Transpose]:

>M2L:=proc(M) convert(convert(M,Vector),list); end proc:

>X :=proc(u) <<0|-u[3]|u[2]>,<u[3]|0|-u[1]>,<-u[2]|u[1]|0>> end proc:

>c2R:=c->simplify((E-X (c)).MatrixInverse(E+X (c))):

All solutions to a triangular Groebner Basis

>TriangularGBSolve:=proc(Eq,So)

local s, so, Si;

if nops(Eq)>0 then

Si:=[];

if nops(So)=0 then

Si:=[solve([Eq[1]])];

else

for so in So do

s:=[solve(subs(so,[Eq[1]]))];

Si:=[op(Si),op(map(f->f union so,s))];

end do;

end if;

TriangularGBSolve(Eq[2..],Si);

else

So;

end if

end proc:

Simulate a calibrated homography

>R0:=c2R(RandomVector(3,generator=-10..10)):

>t0:=RandomVector(3,generator=-10..10):

>n0:=<-1,-2,-2>/3:

>s0:=3:

>H0:=s0*(R0+t0.trn(n0));

H0 :“

»

–

´ 25

31
` 30

31
` 129

31

´ 300

31
´ 539

31
´ 560

31
84

31
´ 14

31
` 70

31

fi

fl

Formulas for H and R

>n:=<n1,n2,n3>:

>t:=<t1,t2,t3>:

>R:=H0-t.trn(n):

>H:=R+t.trn(n):

Equations

>eq:=convert(convert(expand([op(M2L(trn(R).R-s2*E)),det(R)-s3,n3+1]),set),list);

eq :“ rn3`1, 3151{31`p50{31q˚ t1˚n1`n12 ˚ t12 `p600{31q˚n1˚ t2`n12 ˚ t22 ´p168{31q˚n1˚ t3`n12 ˚ t32 ´
s2, 9407{31´p60{31q˚t1˚n2`n22˚t12`p1078{31q˚n2˚t2`n22˚t22`p28{31q˚n2˚t3`n22˚t32´s2, 10811{31´
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that point scales ζ, ζ 1 have to be positive, we get only two solutions with only one positive ψ
and two corresponding solutions. Hence, the relative orientation of two calibrated cameras can
be in a generic situation obtained from four coplanar points up to two solutions.

8.3 Spherical image

Consider a camera rotating around a center C and collecting n images all around such that
every ray from C is captured in some image. We can choose one camera, e.g. the first one, and
relate all other cameras to it as

λi ~xβ1
“ Hi ~xβi

, i “ 1, . . . , n (8.76)

Since all vectors ~x were captured, there inevitably will appear a vector with coordinates

~xβ1
“

»

–

x

y

0

fi

fl (8.77)

p258{31q ˚ t1 ˚ n3 ` n32 ˚ t12 ` p1120{31q ˚ n3 ˚ t2 ` n32 ˚ t22 ´ p140{31q ˚ t3 ˚ n3 ` n32 ˚ t32 ´ s2, 5154{31 `
p25{31q ˚ t1˚n2´ p30{31q ˚ t1˚n1`n1˚n2˚ t12 ` p300{31q ˚n2˚ t2` p539{31q ˚n1˚ t2`n2˚n1˚ t22 ´ p84{31q ˚
n2˚ t3` p14{31q ˚n1˚ t3`n2˚n1˚ t32, 5505{31` p25{31q ˚ t1˚n3´ p129{31q ˚ t1˚n1`n1˚n3˚ t12 ` p300{31q ˚
n3˚ t2` p560{31q ˚n1˚ t2`n3˚n1˚ t22 ´ p84{31q ˚ t3˚n3´ p70{31q ˚n1˚ t3`n3˚n1˚ t32, 9830{31´ p30{31q ˚
t1˚n3´p129{31q˚ t1˚n2`n2˚n3˚ t12 `p539{31q˚n3˚ t2`p560{31q˚n2˚ t2`n2˚n3˚ t22 `p14{31q˚ t3˚n3´
p70{31q ˚n2˚ t3`n2˚n3˚ t32,´p725{31q ˚ t3˚n3` p840{31q ˚ t1˚n2` p126{31q ˚n1˚ t2` p1470{31q ˚ t1˚n1´
p1701{31q ˚n1˚ t3` p406{31q ˚n2˚ t2` p1700{31q ˚n2˚ t3´ p70{31q ˚n3˚ t2´ p1596{31q ˚ t1˚n3`7014{31´s3s

The number of solutions

>G:=Groebner[Basis](eq,plex(op([t1,t2,t3,n1,n2,n3,s]))):

>Id:=PolynomialIdeals[PolynomialIdeal]([op(G)]):

>print("Hilbert dimension =",PolynomialIdeals[HilbertDimension](Id));

>print("The number of solutions =",PolynomialIdeals[NumberOfSolutions](Id));

”Hilbert dimension =”, 0
”The number of solutions =”, 12

Solve it

>S:=TriangularGBSolve(G,[]):

and substite the solutions to get s, R, n, t and select the real solutions only

>sRnt:=map(f->evalf(subs(f,[s,R/s,n,t/s])),S):

>select(f->foldl(‘and‘,true,op(MTM[isreal]~(f))),sRnt);

»

– `3.0

»

–

´0.610 ´0.220 0.761
´0.152 ´0.910 ´0.385
0.778 ´0.350 0.522

fi

fl

»

–

´0.545
´0.867
´1.000

fi

fl

»

–

´0.626
5.640

´0.230

fi

fl

fi

fl

»

– `3.0

»

–

´0.602 ´0.344 0.720
´0.559 ´0.462 ´0.688
0.570 ´0.817 0.860

fi

fl

»

–

´0.500
´1.000
´1.000

fi

fl

»

–

´0.667
5.330

´0.667

fi

fl

fi

fl

»

– ´3.0

»

–

0.737 0.421 ´0.529
´0.517 ´0.153 ´0.842
´0.435 0.894 0.105

fi

fl

»

–

´0.545
´0.867
´1.000

fi

fl

»

–

0.858
´6.860
0.858

fi

fl

fi

fl

»

– ´3.0

»

–

0.636 0.411 ´0.654
´0.765 ´0.809 ´0.583
´0.768 0.421 ´0.483

fi

fl

»

–

´0.500
´1.000
´1.000

fi

fl

»

–

0.734
´6.600
0.270

fi

fl

fi

fl
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Such vector does not represent any point in the affine image plane π1 of the first camera because
it does not have the third coordinate equal to one. To be able to represent rays in all directions,
we have to introduce spherical image, which is the set of all unit vectors in R3 (also called
omnidirectional image). We sometimes use only a subset of the sphere, typically a cylinder,
to capture panoramic image. In such a case, we can remap pixels onto such cylinder and then
unwarp the cylinder into a plane. Notice however, that in such a representation, straight lines
in space do not project to straight lines in images.
All equations we have developed so far work with minor modifications also for vectors with

last zero coordinate. We will come back to it later when studying projective plane which is
somewhere between the affine image plane and full spherical image.

8.4 Homography – summary

Let us summarize the findings related to homography to see where it appears.
Let us encounter one of the following situations

1. Two images with one projection center Let ru, vsJ and ru1, v1sJ be coordinates of
the projections of 3D points into two images by two perspective cameras with identical
projection centers;

2. Image of a plane. Let ru, vsJ be coordinates of 3D points all in one plane σ, w.r.t.
a coordinate system in σ and ru1, v1sJ coordinates of their projections by a perspective
cameras with projection center not in the plane σ;

3. Two images of a plane Let ru, vsJ and ru1, v1sJ be coordinates of the projections of
3D points all in one plane σ, into two images by two perspective cameras with projection
centers not in σ;

then there holds

D H P R3ˆ3, rank H “ 3, so that @ ru, vsJ corrØ ru1, v1sJ Dλ P R : λ

»

–

u1

v1

w1

fi

fl “ H

»

–

u

v

w

fi

fl (8.78)

true where w “ w1 “ 1 for perspective images and may be general for spherical images.
In all three cases, coordinates of points are related by a homography.
We have used linear algebra to derive the relationship between the coordinates of image points

in the above form. The homography can be also represented in a different way.
To see that, we shall eliminate λ as follows

λ

»

–

u1

v1

1

fi

fl “ H

»

–

u

v

1

fi

fl “

»

–

h11 h12 h13
h21 h22 h23
h31 h32 h33

fi

fl

»

–

u

v

1

fi

fl (8.79)
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λu1 “ h11 u` h12 v ` h13 (8.80)

λv1 “ h21 u` h22 v ` h23 (8.81)

λ1 “ h31 u` h32 v ` h33 (8.82)

u1 “ h11 u` h12 v ` h13

h31 u` h32 v ` h33
(8.83)

v1 “ h21 u` h22 v ` h23

h31 u` h32 v ` h33
(8.84)

We see that mapping h obtained as

„

u1

v1



“ h

ˆ„

u

v

˙

“
«

h11 u`h12 v`h13

h31 u`h32 v`h33

h21 u`h22 v`h23

h31 u`h32 v`h33

ff

(8.85)

is a mapping from a subset of R2 to R2 but it is not linear! It contains fractions of affine
functions.
Although we can understand the homography as a linear mapping in certain sense, it is not

a linear mapping in the standard sense.
Matrix H represents a linear mapping from R3 to R3. However, we are not interested in the

individual vectors in R3 but in complete one-dimensional subspaces, which correspond to the
direction vectors representing projection rays.

Notice that λ can accommodate for any change of the length of
“

u v 1
‰J

(except for making
it zero) since it can be split into ξ, ξ1 and used as

ξ1

»

–

u1

v1

1

fi

fl “ H ξ

»

–

u

v

1

fi

fl (8.86)

x1 “ H x (8.87)

We can now think about x and x1 as about one-dimensional subspaces of R3 generated by ~x
and ~x 1. The “equation”2

x1 “ H x (8.88)

then actually means
D~x P x and D~x 1 P x 1 such that ~x 1 “ H ~x (8.89)

Thus the homography can be seen as a mapping between one-dimensional subspaces of R3.
While R3 itself is a linear space, the set of its one-dimensional subspaces, in the way we use
them, is not a linear space and therefore the homography is not a linear mapping although it is
represented by a matrix H, which is used to multiply vectors.
It is also important to notice the true relationship between homographies and 3 ˆ 3 real

matrices. Any 3ˆ 3 real matrix of rank 3 represents a homography but many different matrices
represent the same homography. Let’s see why.

2Monograph [15] very often uses “=” exactly in this sense of equality of one-dimensional subspaces.
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σ1

σ2

π
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Figure 8.4: There are two planes in the scene σ1 and σ2 inducing two homographies H1, H2
between the two images.

Let us consider H P R3ˆ3 and G P R3ˆ3 such that ξ H “ G for some ξ ‰ 0. We can write

ξ1 ~x1 “ H ~x (8.90)

ξ ξ1 ~x1 “ ξ H ~x (8.91)

ξ ξ1 ~x1 “ G ~x (8.92)

λ1 ~x1 “ G ~x (8.93)

We see that H and G represent the same homography. Indeed, two matrices related by a non-zero
multiple represent the same homography. Hence, it suggests itself to associate homographies
with one-dimensional subspaces of 3 ˆ 3 matrices.

8.5 Constraint on the homographies of induced by two planes

Let us now consider the situation when there are two planes σ1 and σ2 in the scene, Figure 8.4.
Then, the planes induce two homographies H1, H2 between the two images. We can write,
Equation 8.65,

τ 1
1 ~x

1
β 1 “ A 1 A´1

˜

I ` p~C 1
β ´ ~Cβq 1

~Cδ1p3q
~nJ
1β̄

¸

~xβ “ H1 ~xβ

τ 1
2 ~x

1
β 1 “ A 1 A´1

˜

I ` p~C 1
β ´ ~Cβq 1

~Cδ2p3q
~nJ
2β̄

¸

~xβ “ H2 ~xβ (8.94)
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which means that thare are matrices H1, H2 such that for every point ~xβ in image one and the
corresponding point ~x 1

β 1 in image two there are real τ 1
1
, τ 1

2
such that Equaitons 8.94 hold true.

We are interested in finding the constraints on arbitrary representatives of the two homogra-
phies, i.e. matrices G1 “ λ1 H1 and G2 “ λ2 H2 for some real λ1, λ2. We see that there follows
from Equations 8.94 that

λ1G1 “ A 1 A´1

˜

I ` p~C 1
β ´ ~Cβq 1

~Cδ1p3q
~nJ
1β̄

¸

“ A pI ` ~tβ ~v
J
1β̄

q

λ2G2 “ A 1 A´1

˜

I ` p~C 1
β ´ ~Cβq 1

~Cδ2p3q
~nJ
2β̄

¸

“ A pI ` ~tβ ~v
J
2β̄

q (8.95)

and thus

G´1

2
G1 “ λ2

λ1
pI ` ~tβ ~v

J
2β̄

q´1pI ` ~tβ ~v
J
1β̄

q (8.96)

which can be rewritten using

´

I ` ~tβ ~v
J
2β̄

¯´1

“ I ´
~tβ ~v

J
2β̄

1 ` ~vJ
2β̄
~tβ

(8.97)

as

λ1

λ2
G´1

2
G1 “ I ´

~tβp~vJ
1β̄

´ ~vJ
2β̄

q
1 ` ~vJ

2β̄
~tβ

(8.98)

Now, we see that for ~v
1β̄ ‰ ~v

2β̄ there is a two-dimensional space of eigenvectors ~wβ of G´1

2
G1

since for every non-zero ~wβ̄ such that p~v
1β̄ ´ ~v

2β̄qJ ~wβ “ 0 are getting

λ1

λ2
G´1

2
G1 ~wβ “

˜

I ´
~tβp~vJ

1β̄
´ ~vJ

2β̄
q

1 ` ~vJ
2β̄
~tβ

¸

~wβ “ ~wβ (8.99)

We also see that ~tβ is an eigenvector.
Vectors ~wβ represent projections of the points on the intersection line l of planes σ1, σ2 into

the first image. Line l is in both planes and therefore maps identically by H1 and H2.

8.6 Computing homography from image matches

Let us turn to the computational aspect of the homography relationship between images. Our
goal is to find the homography mapping from a few pairs of corresponding image points. We
shall see that this problem leads to solving a system of linear equations.

8.6.1 General perspective cameras

Our goal is to find matrix H in Equation 8.78 without assuming any knowledge about cameras.
Let us introduce symbols for rows of homography H

H “

»

—

–

hJ
1

hJ
2

hJ
3

fi

ffi

fl
and for the vector x “

»

–

u

v

1

fi

fl (8.100)
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and rewrite the above matrix Equation 8.78 as

λu1 “ hJ
1 x (8.101)

λ v1 “ hJ
2 x (8.102)

λ “ hJ
3 x (8.103)

Eliminate λ from the first two equations using the third one

phJ
3 xqu1 “ hJ

1 x (8.104)

phJ
3 xq v1 “ hJ

2 x (8.105)

(8.106)

move all to the left hand side and reshape it using xJy “ yJx

xJh1 ´ pu1xJq h3 “ 0 (8.107)

xJh2 ´ pv1xJq h3 “ 0 (8.108)

(8.109)

Introduce notation
h “

“

hJ
1

hJ
2

hJ
3

‰J
(8.110)

and express the above two equations in a matrix form
„

u v 1 0 0 0 ´u1u ´u1v ´u1

0 0 0 u v 1 ´v1u ´v1v ´v1



h “ 0 (8.111)

Every correspondence ru, vsJ corrØ ru1, v1sJ brings two rows to a matrix
»

—

–

u v 1 0 0 0 ´u1u ´u1v ´u1

0 0 0 u v 1 ´v1u ´v1v ´v1

...

fi

ffi

fl
h “ 0 (8.112)

M h “ 0 (8.113)

If ξ G “ H, ξ ‰ 0 then both G, H represent the same homography. We are therefore looking
for one-dimensional subspaces of 3 ˆ 3 matrices of rank 3. Each such subspace determines one
homography. Also note that the zero matrix, 0, does not represent an interesting mapping.
We need therefore at least 4 correspondences in a general position to obtain rank 8 matrix

M. By a general position we mean that the matrix M must have rank 8 to provide a single
one-dimensional subspace of its solutions. This happens when no 3 out of the 4 points are on
the same line.
Notice that M can be written in the form

M “

»

—

—

—

—

—

—

—

—

–

u1 v1 1 0 0 0 ´u1
1
u1 ´u1

1
v1 ´u1

1

u2 v2 1 0 0 0 ´u1
2
u2 ´u1

2
v2 ´u1

2

...
0 0 0 u1 v1 1 ´v1

1
u1 ´v1

1
v1 ´v1

1

0 0 0 u2 v2 1 ´v1
2
u2 ´v1

2
v2 ´v1

2

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(8.114)
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with indices naming different points, which can be rewritten more concisely as

M “

»

—

—

—

—

—

—

—

—

—

–

xJ
1

0J ´u1
1
xJ
1

xJ
2

0J ´u1
2
xJ
2

...
0J xJ

1
´v1

1
xJ
1

0J xJ
2

´v1
2
xJ
2

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(8.115)

with 0J “ r0, 0, 0s.

§ 1 A more general procedure for computing H Let us next give a more general procedure
for computing H, which will be analogical to the general procedure for computing Q in § 1.
We start from Equation 8.78

λ x 1 “ H x (8.116)

with x “ ru, v, wsJ and x 1 “ ru 1, v 1, w 1sJ and follow the derivation in § 1 to get

λ x 1 “ H x (8.117)
“

x 1‰
ˆ H x “ 0 (8.118)

xJHJ “

x 1‰J
ˆ “ 0J (8.119)

vpxJHJ “

x 1‰J
ˆq “ vp0Jq (8.120)

p
“

x 1‰
ˆb xJq vpHJq “ vp0Jq (8.121)

¨

˝

»

–

0 ´w 1 v 1

w 1 0 ´u 1

´v 1 u 1 0

fi

flb xJ

˛

‚vpHJq “ vp0Jq (8.122)

»

–

0J ´w 1xJ v 1xJ

w 1xJ 0J ´u 1xJ

´v 1xJ u 1xJ 0J

fi

fl vpHJq “ vp0Jq (8.123)

For more correspondences numbered by i, we then get
»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0J ´w 1
1
xJ
1

v 1
1
xJ
1

0J ´w 1
2
xJ
2

v 1
2
xJ
2

...
w 1
1
xJ
1

0J ´u 1
1
xJ
1

w 1
2
xJ
2

0J ´u 1
2
xJ
2

...
´v 1

1
xJ
1

u 1
1
xJ
1

0J

´v 1
2
xJ
2

u 1
2
xJ
2

0J

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

vpHJq “ 0 (8.124)

which is, for w “ 1, equivalent to Equation 6.30. Notice that vpHJq “ h from Equation 8.113.
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8.6.2 Calibrated cameras

Let us now look at some situations when cameras have constant intternal calibration or are fully
calibrated.

§ 1 Homography induced by rotating a calibrated camera This is a simple situation. Let
us construct a rotation matrix representing a homography from one and half matching image
points. Consider two distinct image points x, y in the first image that are mapped on points
x 1, y 1 in the second image as

“

x 1{||x 1|| y 1{||y 1||
‰

“ R
“

x{||x|| y{||y||
‰

by a rotation R. We can
decompose R into a composition of two simple rotations R “ R2 R1 such that

“

x 1{||x 1|| y 1{||y 1||
‰

“ R2

»

–

0 0
0 ξ 1

1 ψ 1

fi

fl ,

»

–

0 0
0 ξ

1 ψ

fi

fl “ R1
“

x{||x|| y{||y||
‰

(8.125)

with ξ, ψ such that ξ2 ` ψ2 “ ξ 12 ` ψ 12 “ 1. Write

R1 “
“

r11 r12 r13
‰J

and R2 “
“

r21 r22 r23
‰

(8.126)

to see that

r11 “ s1 px{||x|| ˆ y{||y||q{||px{||x|| ˆ y{||y||q|| (8.127)

r12 “ px{||x|| ˆ r11q{||px{||x|| ˆ r11q|| (8.128)

r13 “ r11 ˆ r12 (8.129)

r21 “ s2 px 1{||x 1|| ˆ y 1{||y 1||q{||px 1{||x 1|| ˆ y 1{||y 1||q|| (8.130)

r22 “ px 1{||x 1|| ˆ r21q{||px 1{||x 1|| ˆ r21q|| (8.131)

r23 “ r21 ˆ r22 (8.132)

where the signs s1, s2 P t`1,´1u are chosen to make, e.g., ξ ą 0, ξ 1 ą 0. Notice that this
procedure sets R even when vectors

“

x{||x|| y{||y||
‰

can’t be exactly transformed to vectors
“

x 1{||x 1|| y 1{||y 1||
‰

by a rotation, which is often the case when they are estimated form noisy
measurements. Nevertheless, if the error affecting the vectors is small, R so obtained is still close
to the true rotation between the cameras.

§ 2 Homography induced by rotating a camera with constant internal calibration Consider

a point x “
“

x y 1
‰J

in the first image that is mapped on a point x 1 “
“

x1 y1 1
‰J

in the
second image by λ x 1 “ K´1R K x with rotation R and a camera calibration matrix K.
We have seen, Equation 8.28, that the following two equations have to be satisfied

0 “ trace H ´ pH11 ` H22 ` H33q
“ h11 ` h22 ` h33 ´ h11 h22 ´ h11 h33 ` h12 h21 ` h13 h31 ´ h22 h33 ` h23 h32

1 “ |H| (8.133)

“ h11 h22 h33 ´ h11 h23 h32 ´ h12 h21 h33 ` h12 h23 h31 ` h13 h21 h32 ´ h13 h22 h31
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with hij , i, j “ 1, 2, 3 denoting the elements of H. It is easy to check in the Maple [18] computer
algebra system3 that the Hilbert dimension [2] of the system 8.133 is equal to seven. Therefore,
we will need seven independent linear equations to reduce the Hilbert dimension to zero and

3Maple [18] script analyzing the computation of a homography induced by a rotating camera with constant
internal parameters. We note that some of the functions used here have been defined in previous Maple
examples.

Setup the equations

>H:=<<h11|h12|h13>,<h21|h22|h23>,<h31|h32|h33>>:

>Heq:=[det(H)-1,simplify(det(H-E),[det(H)=1])];

>HilbertDimension(Heq);

7

Simulate projections

>K:=<<10|1|5>,<0|12|6>,<0|0|1>>:

>R1:=c2R(<1,2,3>): R2:=c2R(<3,4,5>): t:=<<2,1,3>>:

>P1:=K.<R1|-R1.t>: P2:=K.<R2|-R2.t>:

>X:=<<0|1|1|0>,<0|0|1|1>,<0|0|0|0>,<1|1|1|1>>:

>x1:=a2h(h2a(P1.X)):

>x2:=a2h(h2a(P2.X)):

>H0:=P2[..,[1,2,4]].inv(P1[..,[1,2,4]]):

Check eigenvalues of H0

e:=Eigenvalues(H0),abs~(trn(e));
»

–

1
77

85
´ 36

85
i

77

85
` 36

85
i

fi

fl ,
“

1 1 1
‰

Add two independent linear equations per a corresponding pair of image points

eq:=[op(Heq), op(Flatten(map(i->M2L((X (x2[..,i]).H.x1[..,i])[1..2]),[1,2,3,4])))];

eq :“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

h11 ` h22 ` h33 ´ h11 h22 ´ h11 h33 ` h12 h21 ` h13 h31 ´ h22 h33 ` h23 h32

h11 h22 h33 ´ h11 h23 h32 ´ h12 h21 h33 ` h12 h23 h31 ` h13 h21 h32 ´ h13 h22 h31 ´ 1

´ 22

5
h21 ` 54252

565
h31 ´ 74

5
h22 ` 182484

565
h32 ´ h23 ` 2466

113
h33

` 22

5
h11 ´ 24068

565
h31 ` 74

5
h12 ´ 80956

565
h32 ` h13 ´ 1094

113
h33

´ 52

7
h21 ` 7176

35
h31 ´ 18h22 ` 2484

5
h32 ´ h23 ` 138

5
h33

` 52

7
h11 ´ 832

7
h31 ` 18h12 ´ 288h32 ` h13 ´ 16h33

´ 23

5
h21 ` 9522

41
h31 ´ 126

5
h22 ` 52164

41
h32 ´ h23 ` 2070

41
h33

` 23

5
h11 ´ 16261

205
h31 ` 126

5
h12 ´ 89082

205
h32 ` h13 ´ 707

41
h33

´ 53

35
h21 ` 130698

2765
h31 ´ 666

35
h22 ` 1642356

2765
h32 ´ h23 ` 2466

79
h33

` 53

35
h11 ´ 31853

2765
h31 ` 666

35
h12 ´ 400266

2765
h32 ` h13 ´ 601

79
h33

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Solve it

>Basis(eq,plex(op(indets(H))));

r3825h11 ´ 3319, 450h12 ´ 43, 3825h13 ´ 7337, 85h21 ` 36, 5h22 ´ 4, 85h23 ´ 522, 3825h31 ` 38, 450h32 `
11, 3825h33 ´ 4376s
We are getting one solution but we have used eight linear equations although seven linear

equations should be sufficient to get a finite number of solutions. Let us use seven linear

equations only.

>Basis(eq[1..nops(eq)-1],plex(op(indets(H)))):

We see that we are getting a degree six polynomial in h33

>B[1];

1384905521719726207524518830400390625h6

33 ` 4889332606744002799184541025140000000h5

33 ´
3004780464450070944458597429463562500h4

33 ´ 62963310535984882573971620665889376000h3

33 ´
1098716737305688573847805032564563200h2

33 ` 231760248490986847248483050694397009920h33 ´
176966810281848547933751731455841501184

and six solutions for H
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thus obtain a finite number of solutions ??. We see that we can use four points to add eight
independent linear equations and so obtain a single solution. However, if point measurements
in images were affected by measurement noise, using all eight equations would almost surely
produce an inconsistent system. Therefore, it make sense to use only seven linear equations,
which give six solutions and produce six homographies conjugated to a rotation for any four (or
more precisely, 3 ` 1

2
) points in two images. If the error in the measuerement is small, one of

the so obtained H is close to the actual homography between the images.

§ 3 Homography induced by a plane observed by a moving calibrated camera Let us first

consider a point x “
“

x y 1
‰J

in the first image that is mapped on a point x 1 “
“

x1 y1 1
‰J

in the second image by λ x 1 “ pR ` u nJq x with rotation R, unit real vector n and a vector u.
Paragraph § 2 shows how to decompose a homoghraphy, represented by H, between two cali-

brated images induced by a plane in the scene into R, ~tγ1{~Cδ and ~nγ̄ . Let us now show how to
estimate a decomposable H directly from image data. We will parameterize rotations using the
Cayley parameterization []

Rpc1, c2, c3q “

»

—

—

—

–

c2
1

´c2
2

´c2
3

`1

c2
1

`c2
2

`c2
3

`1

2 pc1 c2`c3q
c2
1

`c2
2

`c2
3

`1

2 pc1 c3´c2q
c2
1

`c2
2

`c2
3

`1

2 pc1 c2´c3q
c2
1

`c2
2

`c2
3

`1

´c2
1

`c2
2

´c2
3

`1

c2
1

`c2
2

`c2
3

`1

2 pc2 c3`c1q
c2
1

`c2
2

`c2
3

`1

2 pc1 c3`c2q
c2
1

`c2
2

`c2
3

`1

2 pc2 c3´c1q
c2
1

`c2
2

`c2
3

`1

´c2
1

´c2
2

`c2
3

`1

c2
1

`c2
2

`c2
3

`1

fi

ffi

ffi

ffi

fl

(8.134)

for c1, c2, c3 P R, which excludes rotations by 180˝, since two perspective cameras can’t look the
opposite directions when seeing a non-degenerate piece of a plane in space. Similarly, we will
assume that ~nγ̄3 “ 1 since the first (as well as the second) camera has to look at the plane. We
are free to orient the plane normal towards the first camera to remove unnecessary ambiguity
and to reduce the number of solutions to one half.
When the data is exact, we see that we are getting 11 solutions in general, out of which three

>S:=TriangularGBSolve(B,[]):

>dg:=Digits: eDigits:=10:

>Sr:=convert (map(s->evalf(subs(s,H)),S),rational);

>Digits:=dg:
»

—

—

–

3319

3825

43

450

7337

3825

´ 36

85
4{5 522

85

´ 38

3825
´ 11

450

4376

3825

fi

ffi

ffi

fl

,

»

—

—

–

27989

113075

11116

68877

46056

11543

´ 55317

33688

29162

29109

62207

6739

´ 4819

93927
´ 3479

158824

9932

7517

fi

ffi

ffi

fl

,

»

—

—

–

´ 51941

3866

174177

144175

213038

5423

´ 40431

1690

36210

11627

710577

12973

´ 57914

70849

6959

87760

43100

19401

fi

ffi

ffi

fl

»

—

—

–

40441

1236
´ 20953

8193
´ 69409

809

132430

2457
´ 26276

4897
´ 1327299

11857

72875

39356
´ 5270

22337
´ 94659

37021

fi

ffi

ffi

fl

,

»

—

—

–

91103

21006
´ 63957

17956
i ´ 19612

29061
` 16799

28267
i ´ 137213

6863
` 23642

1355
i

178138

16263
´ 43433

4596
i ´ 114375

43187
` 27263

11331
i ´ 78611

2342
` 135829

4558
i

15541

42367
´ 5675

17974
i 3263

533530
´ 4388

462787
i ´ 24252

8569
` 122693

46803
i

fi

ffi

ffi

fl

»

—

—

–

91103

21006
` 63957

17956
i ´ 19612

29061
´ 16799

28267
i ´ 137213

6863
´ 23642

1355
i

178138

16263
` 43433

4596
i ´ 114375

43187
´ 27263

11331
i ´ 78611

2342
´ 135829

4558
i

15541

42367
` 5675

17974
i 3263

533530
` 4388

462787
i ´ 24252

8569
´ 122693

46803
i

fi

ffi

ffi

fl

Notice that the first solution is equal to the simulated homography, while the othter

solutions (shown only up to 10 digits precision to avoid too long expressions) are

‘‘artifacts’’ of the formulation.
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are real4. The ideal generated by the equations from four co-planar points is radical but it is
not prime [2]. We see that the corresponding variety is a union of three irreducible variaties,
each consisting of a single real point, and a component consisting of eight non-real points.

4Maple [18] script analyzing the computation of a homography between two calibrated images induced by a
plane in a scene observed by the cameras. We note that some of the functions used here have been defined in
previous Maple examples.

Constraints on a homography induced by a plane between calibrated images

>n:=<n1,n2,n3>:

>t:=<t1,t2,t3>:

>R:=c2R(<c1,c2,c3>):

>H:=R+t.trn(n);

H :“

»

—

–

c12´c22´c3
2`1

c12`c22`c32`1
` t1n1 2 c1 c2`c3

c12`c22`c32`1
` t1n2 2 c1 c3´c2

c12`c22`c32`1
` t1n3

2 c1 c2´c3
c12`c22`c32`1

` t2n1 ´ c12´c22`c32´1

c12`c22`c32`1
` t2n2 2 c2 c3`c1

c12`c22`c32`1
` t2n3

2 c1 c3`c2
c12`c22`c32`1

` t3n1 ´2 ´c2 c3`c1
c12`c22`c32`1

` t3n2 ´ c12`c22´c32´1

c12`c22`c32`1
` t3n3

fi

ffi

fl

Simulate projections
>R1:=c2R(<1,2,3>): C1:=<<2,1,3>>: P1:=<R1|-R1.C1>:

>R2:=c2R(<3,4,5>): C2:=<<2,3,1>>: P2:=<R2|-R2.C2>:

>H0:=P2[..,[1,2,4]].inv(P1[..,[1,2,4]]);

>X:=<<0|10|10|0>,<0|0|10|10>,<0|0|0|0 >,<1|1|1|1>>:

>x1:=a2h(h2a(P1.X)):

>x2:=a2h(h2a(P2.X)):

Setup equations
>eq:=[n3+1,op(numer(normal(Flatten(

map(i->M2L((X (x2[..,i]).H.x1[..,i])[1..2]),[1,2,3,4])

))))]:

Solve them

>B:=Basis(eq,plex(c1,c2,c3,n1,n2,n3,t1,t2,t3)):

and analyze the ideal

>Bi:=PolynomialIdeals[PolynomialIdeal]([op(B)]):

print("Hilbert dimension =",PolynomialIdeals[HilbertDimension](Bi));

print("The number of solutions =",PolynomialIdeals[NumberOfSolutions](Bi));

print("Is radical =",PolynomialIdeals[IsRadical](Bi));

print("Is prime =",PolynomialIdeals[IsPrime](Bi));

print("Is primary =",PolynomialIdeals[IsPrimary](Bi));

print("Is maximal =",PolynomialIdeals[IsMaximal](Bi));

”Hilbert dimension =”, 0
”The number of solutions =”, 11
”Is radical =”, true
”Is prime =”, false
”Is primary =”, false
”Is maximal =”, false
We see that the ideal can be obtained as an intersection of four prime ideals

>Bd:=PolynomialIdeals[PrimeDecomposition](Bi):

BB:=map(i->Basis(i,plex(c1,c2,c3,n1,n2,n3,t1,t2,t3)),[Bd]):

map(b->[HilbertDimension(b),

PolynomialIdeals[NumberOfSolutions](PolynomialIdeals[PolynomialIdeal](b))],
BB);

[[0, 1], [0, 1], [0, 1], [0, 8]]

which consists of single and eight points, respectively. There are 11 solutions for t3

>PolyVarMonomials([B[1]],plex(op(indets(B[1]))));

rt311, t310, t39, t38, t37, t36, t35, t34, t33, t32, t3, 1s

Let us get solutions to all variables

>S:=TriangularGBSolve(B,[]): nops(S);

11
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When the data are affected by measurement noise, however, the same formulation produces
12 solutions, out of which, now, four are real. The ideal generated by corrupted measurements
is now prime, primary and maximal [2].

We see that we are also getting 11 solutions. Let’s select the real ones and substitute back

to H, R, n, t

>sH:=map(f->evalf([subs(f,H),subs(f,R),subs(f,n),subs(f,t)]),S):

>sH:=select(f->MTM[isreal](f[1]),sH): nops(sH);

3

to see that we are left with only three solutions. Let’s compare it to the simulation.

>[H0,R0,-n0/n0[3],-t0*n0[3]];
»

–

»

–

247

255

104

255

4

17

´ 316

765

113

765
´ 2

153

´ 32

765

76

765

167

153

fi

fl

»

–

145

153

40

153

28

153

´ 232

765

701

765

40

153

´ 76

765
´ 232

765

145

153

fi

fl

»

–

´ 2

5

´ 14

5

´1

fi

fl

»

–

´ 8

153
14

51

´ 22

153

fi

fl

fi

fl

>convert(sH,rational);
»

–

»

–

247

255

104

255

4

17

´ 316

765

113

765
´ 2

153

´ 32

765

76

765

167

153

fi

fl

»

–

145

153

40

153

28

153

´ 232

765

701

765

40

153

´ 76

765
´ 232

765

145

153

fi

fl

»

–

´ 2

5

´ 14

5

´1

fi

fl

»

–

´ 8

153
14

51

´ 22

153

fi

fl

fi

fl

»

–

»

–

´ 247

255
´ 104

255
´ 4

17
316

765
´ 113

765

2

153
32

765
´ 76

765
´ 167

153

fi

fl

»

–

´ 37

45
´ 428

765
´ 16

153

´ 16

45

496

765
´ 103

153
4

9
´ 79

153
´ 112

153

fi

fl

»

–

´ 28

25
29

25

´1

fi

fl

»

–

20

153

´ 35

51
55

153

fi

fl

fi

fl

»

—

—

–

»

—

—

–

247

255

104

255

4

17

´ 316

765

113

765
´ 2

153

´ 32

765

76

765

167

153

fi

ffi

ffi

fl

»

—

—

–

2249

3825

3068

3825
´ 16

153

´ 596

765

403

765
´ 52

153

´ 832

3825

1076

3825

143

153

fi

ffi

ffi

fl

»

—

—

–

´ 28

25

29

25

´1

fi

ffi

ffi

fl

»

—

—

–

´ 52

153

´ 50

153

´ 8

51

fi

ffi

ffi

fl

fi

ffi

ffi

fl

We see that the first solution equals the sumulation. Let’s next add noise of about 0.1% of

the measurement range.

>x1:=x1+<RandomMatrix(2,4,generator=rand(-1..1)/1000),<0|0|0|0>>:

>x2:=x2+<RandomMatrix(2,4,generator=rand(-1..1)/1000),<0|0|0|0>>:

>eq:=[n3+1,op(numer(normal(Flatten(map(i->M2L((X (x2[..,i]).H.x1[..,i])[1..2]),[1,2,3,4])))))]:

and analyze the ideal

>B:=Basis(eq,plex(c1,c2,c3,n1,n2,n3,t1,t2,t3)):

Bi:=PolynomialIdeals[PolynomialIdeal]([op(B)]):

print("Hilbert dimension =",PolynomialIdeals[HilbertDimension](Bi));

print("The number of solutions =",PolynomialIdeals[NumberOfSolutions](Bi));

print("Is radical =",PolynomialIdeals[IsRadical](Bi));

print("Is prime =",PolynomialIdeals[IsPrime](Bi));

print("Is primary =",PolynomialIdeals[IsPrimary](Bi));

print("Is maximal =",PolynomialIdeals[IsMaximal](Bi));

”Hilbert dimension =”, 0
”The number of solutions =”, 12
”Is radical =”, true
”Is prime =”, true
”Is primary =”, true
”Is maximal =”, true
We see that the ideal is prime and consists of a single component of 12 points

>Bd:=PolynomialIdeals[PrimeDecomposition](Bi):

BB:=map(i->Basis(i,plex(c1,c2,c3,n1,n2,n3,t1,t2,t3)),[Bd]):

map(b->[HilbertDimension(b),

PolynomialIdeals[NumberOfSolutions](PolynomialIdeals[PolynomialIdeal](b))],

BB);

[[0, 12]]

There are 12 solutions for t3

>PolyVarMonomials([B[1]],plex(op(indets(B[1]))));

rt312, t311, t310, t39, t38, t37, t36, t35, t34, t33, t32, t3, 1s
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We also see that for small noise, one of the four solutions is reasonably close to the true
simulated solution.

>S:=TriangularGBSolve(B,[]): nops(S); map(f->simplify(eval(B,f)),S);

12
out of which four are real

>sH:=map(f->evalf([subs(f,H),subs(f,R),subs(f,n),subs(f,t)]),S):

>sH:=select(f->MTM[isreal](f[1]),sH): nops(sH);

4
Let’s compare them to the simulation.

>[evalf[3](H0),evalf[3](R0),evalf[3](-n0/n0[3]),evalf[3](-t0*n0[3])];
»

–

»

–

0.969 0.408 0.235
´0.413 0.148 ´0.013
´0.042 0.099 1.090

fi

fl

»

–

0.948 0.261 0.183
´0.303 0.916 0.261
´0.099 ´0.303 0.948

fi

fl

»

–

´0.400
´2.800
´1.000

fi

fl

»

–

´0.052
0.274

´0.144

fi

fl

fi

fl

>map(f->print(evalf[3](f)),sH):
»

–

»

–

´0.969 ´0.410 ´0.237
0.413 ´0.147 0.014
0.042 ´0.099 ´1.090

fi

fl

»

–

´0.833 0.543 0.105
0.543 0.767 0.342
0.105 0.342 ´0.934

fi

fl

»

–

´0.398
´2.790
´1.000

fi

fl

»

–

0.342
0.328
0.158

fi

fl

fi

fl

»

–

»

–

´0.969 ´0.410 ´0.237
0.413 ´0.147 0.014
0.042 ´0.099 ´1.090

fi

fl

»

–

´0.820 ´0.563 ´0.104
´0.358 0.646 ´0.674
0.446 ´0.516 ´0.731

fi

fl

»

–

´1.120
1.150

´1.000

fi

fl

»

–

0.133
´0.688
0.361

fi

fl

fi

fl

»

–

»

–

0.969 0.410 0.237
´0.413 0.147 ´0.014
´0.042 0.099 1.090

fi

fl

»

–

0.948 0.261 0.183
´0.303 0.916 0.262
´0.099 ´0.304 0.948

fi

fl

»

–

´0.398
´2.790
´1.000

fi

fl

»

–

´0.053
0.276

´0.145

fi

fl

fi

fl

»

–

»

–

0.969 0.410 0.237
´0.413 0.147 ´0.014
´0.042 0.099 1.090

fi

fl

»

–

0.568 0.803 ´0.105
´0.780 0.525 ´0.342
´0.219 ´0.282 0.934

fi

fl

»

–

´1.120
1.150

´1.000

fi

fl

»

–

´0.341
´0.328
´0.158

fi

fl

fi

fl

We see that the third solution corresponds to the simulation.
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9 Projective plane

9.1 Motivation – perspective projection in affine space

§ 1 Geometric model of perspective projection in affine space The perspective projection
of a point X by a camera with projection center C can be obtained geometrically in 3D affine
space by taking all lines passing through the points C and X and finding the intersections with
the (affine) image plane π.
Three different situations may arise, Figure 9.1.

1. If X “ C, then there is an infinite number of lines passing through C “ X, which intersect
π in all its points, and therefore the projection of X contains the whole plane π.

2. If point Y ‰ C lies in the plane σ, which is parallel to π and passing through C, then the
line passing trough C and Y (which there is exactly one) does not intersect the projection
plane π, and therefore, the projection of X is empty.

3. If X does not lie in the plane σ, then there is exactly one line passing through points C
and X and this line intersects the projection plane π in exactly one point x. Hence the
projection of X contains exactly one point x.

Let us compare this affine geometrical model of the perspective projection with the algebraic
model of the perspective projection, which we have developed before.

§ 2 Algebraic model of perspective projection in affine space The projection ~xβ of ~Xδ by a
perspective camera with image projection matrix

Pβ “
”

A | ´ A ~Cδ

ı

(9.1)

is

η ~xβ “
”

A | ´ A ~Cδ

ı

„

~Xδ

1



(9.2)

for some η P R.
We shall analyze the three situations, which arise with the geometrical model of affine pro-

jection.

1. If X “ C, then

η ~xβ “
”

A | ´ A ~Cδ

ı

„

~Cδ

1



“ ~0 (9.3)

i.e. we obtain the zero vector. What does it say about ~xβ? Clearly, ~xβ can be completely
arbitrary (even the zero vector) when we set η “ 0. Alternatively, we can choose η ‰ 0
and thus enforce ~xβ “ ~0. Both choices are possible. We shall use the latter one since we
will see that it better fits the other cases. We will use ~xβ “ ~0 to (somewhat strangely)
represent all non-zero vectors in R3.
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C

X

Y
x

π

σ

~x

~y

Figure 9.1: Geometric model of perspective projection in affine space. Point C has infinite
(i.e. not unique) projection, point X has exactly one projection x. Point Y has no
projection.

2. If point Y ‰ C lies in the plane σ, then

η ~xβ “
”

A | ´ A ~Cδ

ı

„

~Yδ
1



“ A p~Yδ ´ ~Cδq (9.4)

which, taking into account rank A “ 3, implies

η A´1~xβ “ ~Yδ ´ ~Cδ (9.5)

Matrix A´1 transforms ~xβ into ~xδ and therefore its columns

A´1 “
”

~b1δ ~b2δ ~b3δ

ı

(9.6)

are the basic vectors of the camera coordinate system in the world basis δ. Hence

η
”

~b1δ ~b2δ ~b3δ

ı

~xβ “ ~Yδ ´ ~Cδ (9.7)

which means that vector ~Yδ ´ ~Cδ can be written as a linear combination of the camera
coordinate system basic vectors

η p~b1δ ` η q~b2δ ` η r~b3δ “ ~Yδ ´ ~Cδ (9.8)

with p, q, r P R. Now, since Y lies in a plane parallel to π, vector ~Yδ ´ ~Cδ can be written
as a linear combination of the first two basic vectors of the camera coordinate system, and
therefore r “ 0, i.e.

~xβ “

»

–

p

q

0

fi

fl (9.9)

We also see that η ‰ 0 since otherwise we would get the zero vector on the left but that
would correspond to Y “ C, which we have excluded.
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Table 9.1: Comparison of the geometrical and algebraic projection models in affine space.

Point position Projection

Geometrical model in aff. space Algebraic model in aff. space

X R σ one point of π η ‰ 0, ~xβ “

»

–

u

v

1

fi

fl, (~xβ ‰ ~0)

C ‰ X P σ no point η ‰ 0, ~xβ “

»

–

u

v

0

fi

fl, ~xβ ‰ ~0

X “ C all points of π η ‰ 0, ~xβ “ ~0

3. If X does not lie in the plane σ, then the coefficient r P R in the linear combination

η A´1 ~xβ “ ~Xδ ´ ~Cδ (9.10)

η p~b1δ ` η q~b2δ ` η r~b3δ “ ~Xδ ´ ~Cδ (9.11)

is non-zero. In that case we can write

η

»

–

p

q

r

fi

fl “ A p ~Xδ ´ ~Cδq (9.12)

pη rq

»

—

–

p
r
q
r
1

fi

ffi

fl
“ A p ~Xδ ´ ~Cδq (9.13)

η1

»

–

u

v

1

fi

fl “ A p ~Xδ ´ ~Cδq (9.14)

As in the case two, η ‰ 0 since otherwise we would get the zero vector on the left and that
would correspond to X “ C, which we have excluded.

The comparison of the two models of perspective projection, Table 9.1 shows that

1. We can always assume η ‰ 0.

2. The “projection” of C is represented by the zero vector while the projections of all other
points are represented by non-zero vectors.

3. The algebraic projection model can represent projections of all points in the affine space.

4. The geometrical projection model is less capable than the algebraic projection model since
it can’t model the projection of points in σ different from C.

The previous analysis clearly shows that the affine geometrical model of the perspective pro-
jection is somewhat deficient. It can’t model projections of some points in the space. This
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(e)(c)(b)(a) (d)

A2A2A2
A2A2

A3 A3 A3 A3A3

O OOO

Figure 9.2: (a) Two dimensional affine plane A2 can be (b) embedded in the three dimensional
affine space A3. There is a point O P A3, O R A2. (c) For each point X in A2, there
is exactly one line through X and O in A3. (d) There is exactly one pencil of lines
through O, which do not correspond to any point in A2, in A3. (e) Each line in the
pencil corresponds to a set of parallel lines with the same direction in A2.

deficiency leads to inventing a generalized model of the geometry around us in order to model
the perspective projection completely by intersections of geometrical entities. This generaliza-
tion of the affine space is called the projective space.
Let us look at the most important projective space, which is the projective plane. We shall first

develop a concrete projective plane by improving the affine plane exactly as much as necessary
to achieve what we want, i.e. to be able to distinguish projections of all points in the space.
In fact, this will be extremely easy since we have already done all the work, and we only need
to “upgrade” the notion of point, line, intersection and join (i.e. making the line from two
distinct points). Later, we shall observe that such an “upgrade” will also lead to an interesting
simplification and generalization of the principles of geometry.

9.2 Real projective plane

9.2.1 Geometrical model of the real projective plane

A real affine plane A2 can be imagined as a subset of a real affine space A3, Figure 9.2. There
is a point O in A3, which is not in A2. For each point X in A2, there is exactly one line in A3,
which passes through X and O. Now, there is a set of lines in A3, which pass through O but
do not pass through any point of A2. This is the set of lines parallel to A2 that pass through
O. These lines fill the plane of A3, which is parallel to A2 and which contains the point O.
The set of all lines in A3 passing through O will be called the real projective plane and denoted

as P2. The lines of A3 passing through O will be called the points of the real projective plane.1

The lines in A3 passing through O, which intersect A2, are in one-to-one correspondence with
points in the affine plane A2 and hence will be called the affine points of the projective plane2 of

1The previous definition can be given without referring to any affine plane. We can take a point O in A3 and the
set of all lines in A3 passing through O and call it a projective plane. In the above example, however, we have
obtained the projective plane as an extension of a given affine plane A2. In such a case, we can distinguish
two sets of points – affine points and ideal points – in the projective plane.

2Vlastńı body in Czech. Finite points in [15].
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Figure 9.3: Algebraic model of the real projective plane.

the projective plane. The set of lines in A3 passing through O, which do not intersect A2, are
the “additional” points of the projective plane and will be called the ideal points of the projective
plane3.4

To each ideal point P (i.e. a line l of A3 through O parallel to A2), there corresponds exactly
one set of parallel lines in A2 which are parallel to l in A3. Different sets of parallel lines in
A2 are distinguished by their direction. In this sense, ideal points correspond to directions in
A2 and can also be understood as points where parallel lines of A2 intersect. Notice that the
parallel lines of A2 do not intersect in A2, because P is not in A2, but they intersect in the real
projective plane obtained as the extension of A2.

9.2.2 Algebraic model of the real projective plane

We shall now move from the geometrical model in A3 to an algebraic model in R3 which allows
us to do computations.
Let us choose a coordinate system pO,~b1,~b2,~b3q in A3 with the origin in O, with basic vectors

~b1,~b2 from the coordinate system po,~b1,~b2q in A2 and with ~b3 “ ϕpO, oq, Figure 9.3.
Lines in A3, which pass through O, correspond to one-dimensional subspaces of R3 and

therefore, in R3, points of the real projective plane will be represented by one-dimensional
subspaces.
The real projective plane is the set of all one-dimensional subspaces of R3.
The affine plane is a subset of the set of all one-dimensional subspaces of R3, which we obtain

after removing all one-dimensional subspaces that lie in a two-dimensional subspace of R3.
There are (infinitely) many possible choices of sets of one-dimensional subspaces which can

3Nevlastńı body in Czech. Points at infinity in [15].
4Notice that words “point” and “line” actually need to be accompanied by adjectives for the above to make
sense beacause lines of A3 become points of A2. Also notice that this division of the points of the projective
plane makes sense only when we start with a given affine plane or when we start with a projective plane and
select one plane of lines in A3 as the set of ideal points.
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Y

Figure 9.4: Points of the real projective plane are represented by one-dimensional subspaces of
R3. One selected two-dimensional affine subspace determines the ideal points.

model the affine plane within the real projective plane. The choice of a particular subset, which
will model a concrete1 affine plane, can be realized by a choice of a basis in R3.
Let us select a basis β “ p~b1,~b2,~b3q of R3. Then, all the one-dimensional subspaces generated

by vectors

~xβ “

»

–

x

y

1

fi

fl x, y P R (9.15)

will represent affine points, point X in Figure 9.4, and all the one-dimensional subspaces gener-
ated by vectors

~xβ “

»

–

x

y

0

fi

fl x, y P R, x ‰ 0 or y ‰ 0 (9.16)

will represent the ideal points, e.g. point Y in Figure 9.4.
It is clear that the affine points are in one-to-one correspondence with all points in a two-

dimensional affine space (plane) and the ideal points are exactly what we need to add to the
affine points to get all one-dimensional subspaces of R3.

9.2.3 Lines of the real projective plane

Let us look at lines now. Lines, e.g. l in Figure 9.5, in the affine plane contain points represented
by one-dimensional subspaces generated, e.g., by ~x and ~y. This set of one-dimensional subspaces
of points on l fills almost a complete two-dimensional subspace of R3 with the exception of one
one-dimensional subspace, generated by ~z, which represents an ideal point. After adding the
subspace generated by ~z to the set of all one-dimensional subspaces representing points on l,
we completely fill a two-dimensional subspace of R3, which hence corresponds to the projective
completion of the affine line l, which we will further call line, too.
Hence, in the real projective plane, lines correspond to two-dimensional subspaces of R3.
We would like to do calculations with lines as we do calculations with points. Let us de-

velop a convenient representation of lines now. A straightforward way how to represent a
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Figure 9.5: Lines of the real projective plane correspond to two-dimensional subspaces of R3 but
can be also represented by one-dimensional subspaces of R3.

two-dimensional subspace in R3 is to select a basis (i.e. two linearly independent vectors) of the
subspace, e.g. ~x and ~y for the line l. There are many ways how to choose a basis and therefore
the representation is far from unique. Moreover, having two bases, it is not apparent whether
they represent the same subspace.
For instance, two pairs of linearly independent vectors p~x1, ~y1q and p~x2, ~y2q represent the

same line if and only if they generate the same two-dimensional subspace. To verify that, we,
for instance, may check whether

rank
“

~x1β ~y1β ~x2β ~y2β
‰

“ 2 (9.17)

where we write all the four vectors ~x1, ~y1, ~x2, ~y2 w.r.t. a basis β of R3.
Yet, there is another quite convenient way how to represent a two dimensional subspace in

R3. Since 3 “ 2 ` 1, we can find for each two-dimensional subspace, specified by a basis p~x, ~yq,
exactly one one-dimensional subspace of the three-dimensional dual linear space. Call the basis
of this new one-dimensional subspace ~l. Then there holds

~l
J

β̄

“

~xβ ~yβ
‰

“ 0 (9.18)

where β̄ is the dual basis to β. Therefore, we can represent lines in the real projective plane by
one-dimensional subspaces in this way.
We have developed an interesting representation of points and lines where both points and lines

are represented by one-dimensional subspaces of R3. Points are represented by one-dimensional
subspaces of V “ R3, which is connected by ϕ to the three-dimensional space A3 of the geomet-
rical model of the real projective plane. The lines are represented by one-dimensional subspaces
of the space V̄ , which is the space dual to V . Using the basis β̄ in V̄ , which is dual to basis
β in V , the coordinates ~lβ̄ as well as coordinates of ~xβ become vectors in R3 which satisfy
Equation 9.18.
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Figure 9.6: The ideal line is the set of all projective points (i.e. all lines of A3 through C,
which have no intersection with A2. It is a plane σ. There is exactly one, which is
perpendicular to sigma, which is generated by vector l8.

The line of A3 generated by ~l in Figure 9.5 is shown as perpendicular5 to the plane generated
by ~x, ~y. Indeed, in the geometrical model of the real projective plane, we can use the notion of
perpendicularity to uniquely construct the (perpendicular) line to the plane corresponding to l
in A2.

9.2.4 Ideal line

The set of all one-dimensional subspaces of R3, which do not correspond to points in the affine
plane, i.e. the set of all ideal points, forms itself a two-dimensional subspace of R3 an hence a
line in the projective plane, which is not in the affine plane. It is the ideal line6 of the projective
plane associated with the selected affine plane in that projective plane. It is represented by
vector ~l8 in Figure 9.6.
For each affine plane, there is exactly one ideal line (a two-dimensional subspace of R3).

Conversely, by selecting one line in a projective plane (i.e. one two-dimensional subspace of R3)
the associated affine plane is determined as the set of all points (one-dimensional subspaces of
R3) which are not contained in the selected ideal line (two-dimensional subspace).

9.2.5 Homogeneous coordinates

Once a coordinate system is fixed in an affine plane, every point of the affine plane has unique
coordinates, which are the coordinates of its vector in the basis of the coordinate system.

5In A3, line and plane are perpendicular when they contain the right angle. The right angle is one quarter of a
circle.

6Nevlastńı př́ımka in Czech, line at infinity in [15].
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A point in a real projective plane is represented by a one-dimensional subspace of R3. One-
dimensional subspaces are represented by their bases consisting of a single non-zero vector.
There are infinitely many bases representing the same one-dimensional subspace. Two basic
vectors of the same one-dimensional subspace are related by a non-zero multiple.
Hence, when talking about coordinates of a point in the projective space, we actually talk

about coordinates of a particular basic vector of the one-dimensional subspace that represents
the point.
For instance, vectors

»

–

1
0
1

fi

fl and

»

–

2
0
2

fi

fl (9.19)

are basic vectors of the same one-dimensional subspace since they are related by a non-zero
multiple. These are two different “coordinates” of the same point in the real projective plane.
Hence, the “coordinates” of a point in the real projective plane are not unique. This is

so radically departing from the fundamental property of coordinates, their uniqueness, that it
deserves a new name. To distinguish the coordinates of a point in the affine plane, which are
unique, from the “coordinates” of a point in the projective plane, which are not unique, we shall
introduce new name homogeneous coordinates.
Homogeneous coordinates of a point in the real projective plane are the coordinates of a basic

vector of the one-dimensional subspace, which represents the point.
Homogeneous coordinates of a line in the real projective plane are the coordinates of a basic

vector of the one-dimensional subspace, which represents the line.
A point in an affine plane can be represented by affine as well as by homogeneous coordinates.

Let us see the relationship between the two.
Let us have a point X in a two-dimensional real affine plane, which is represented by coordi-

nates
„

x

y



(9.20)

By extending the real affine plane to the real projective plane with the ideal line identified with
the two-dimensional subspace z “ 0, we can represent point X by a one-dimensional subspace
of R3 generated by its basic vector

»

–

x

y

1

fi

fl (9.21)

Thus, X has affine coordinates
“

x y
‰J

and homogeneous coordinates
“

u v w
‰J

, where u “
λx, v “ λ y, and w “ λ 1 for some λ P R, λ ‰ 0.
Ideal points do not have affine coordinates. Their homogeneous coordinates are

“

x y 0
‰J

(9.22)

where x, y P R and either x ‰ 0 or y ‰ 0.
The zero vector ~0 is not a basis of any one-dimensional space and thus represents neither a

point nor a line.
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Figure 9.7: A point x is incident with a line l if and only if it can generate the line with another
point y. Lines in A3 representing the point and the line are perpendicular to each
other.

9.2.6 Incidence of points and lines

We say that a point x is incident with line l if and only if it can generate the line with another
point y, Figure 9.7. In the representation of subspaces of R3, it means that

~l
J

β̄
~xβ “ 0 (9.23)

This means that the one-dimensional subspace of R3 representing the line is orthogonal to the
one-dimensional subspace of R3 representing the point w.r.t. the standard (Euclidean) scalar
product. In the geometrical model of the real projective plane it means that the line of A3

representing x is perpendicular to line of A3 representing l.
Let us write explicitly the coordinates of the bases generating the one-dimensional subspaces

as

~xβ “

»

–

x

y

z

fi

fl
~lβ̄ “

»

–

a

b

c

fi

fl

then we get
a x` b y ` c z “ 0

and for affine points represented with z “ 1 this formula reduces to

a x` b y ` c “ 0

which is the familiar equation of a line in the two dimensional real affine plane.
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Figure 9.8: The join of two distinct points is the unique line passing through them.

9.2.7 Join of points

Every two distinct points x and y in the real projective plane are incident with exactly one line
l. The join of two distinct points is the unique line passing through them.
In the real projective plane, two distinct points are represented by two different one-dimensional

subspaces with bases ~x and ~y.
The homogeneous coordinates of this line, i.e. the coordinates of the basic vectors of the one-

dimensional subspace representing the line, can be obtained by solving the following system of
homogeneous equations for coordinates of the vector ~l

~l
J

β̄
~xβ “ 0 (9.24)

~l
J

β̄
~yβ “ 0 (9.25)

w.r.t. β and β̄ in R3. The set of solutions forms the one-dimensional subspace that represents
the line l.
We have seen in Section 2.3 that vector ~lβ̄ can be conveniently constructed by the vector

product as

~lβ̄ “ ~xβ ˆ ~yβ (9.26)

Notice, that in the real projective plane as well as in the real affine plane, there is exactly one
line incident with two distinct points.

9.2.8 Meet of lines

Every two distinct lines k and l in a projective plane are incident exactly to one point x. The
meet of two distinct lines is the unique point incident with them.
In the real projective plane, two distinct lines are represented by two different one-dimensional

subspaces with bases ~k and ~l.
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Figure 9.9: The meet of two distinct lines is the unique point incident with them.

The homogeneous coordinates of this point, i.e. the coordinates of the vectors in the one-
dimensional subspace representing the point, can be obtained by solving the following system
of homogeneous equations for coordinates of the vector ~x w.r.t. β in R3

~k
J

β̄
~xβ “ 0

~l
J

β̄
~xβ “ 0

The set of solutions forms the one-dimensional subspace that represents point x. To get one
basic vector in the subspace, we may again employ the vector product in R3 and compute

~xβ “ ~kβ̄ ˆ~lβ̄

Notice, that in the real projective plane there is exactly one point incident to two distinct lines.
This is not true in an affine plane because there are (parallel) lines that have no point in

common!

9.3 Line coordinates under homography

Let us now investigate the behavior of homogeneous coordinates of lines in projective plane
mapped by a homography.
Let us have two points represented by vectors ~xβ, ~yβ . We now map the points, represented

by vectors ~xβ, ~yβ , by a homography, represented by matrix H, to points represented by vectors
~x 1
β 1 , ~y 1

β 1 such that there are λ1, λ2 P R, λ1λ2 ‰ 0

λ1 ~x
1
β 1 “ H ~xβ (9.27)

λ2 ~y
1
β 1 “ H ~yβ (9.28)
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Homogeneous coordinates ~pβ̄ of the line passing through points represented by ~xβ , ~yβ̄ and
homogeneous coordinates ~p 1

β̄ 1 of the line passing through points represented by ~x 1
β 1 , ~y 1

β 1 are

obtained by solving the linear systems

~pJ
β̄
~xβ “ 0 and ~p 1

β̄ 1

J
~x 1
β 1 “ 0 (9.29)

~pJ
β̄
~yβ “ 0 ~p 1

β̄ 1

J
~y 1
β 1 “ 0 (9.30)

for a non-trivial solutions. Writing down the incidence of points and lines, we get

λ1 ~p
J
β̄
H´1 ~x 1

β 1 “ 0 ô ~pJ
β̄
H´1 ~x 1

β 1 “ 0

λ2 ~p
J
β̄
H´1 ~y 1

β 1 “ 0 ô ~pJ
β̄
H´1 ~y 1

β 1 “ 0

We see that ~p 1
β̄ 1 and H´J~pβ̄ are solutions of the same set of homogeneous equations. When ~xβ ,

~yβ are independent, then there is λ P R such that

λ ~p 1
β̄ 1 “ H´J~pβ̄ (9.31)

since the solution space is one-dimensional. Equation 9.31 gives the relationship between homo-
geneous coordinates of a line and its image under homography H.

9.3.1 Join under homography

Let us go one step further and establish formulas connecting line coordinates constructed by
vector products. Construct joins as

~pβ̄ “ ~xβ ˆ ~yβ and ~p 1
β̄ 1 “ ~x 1

β 1 ˆ ~y 1
β 1 (9.32)

and use Equation 2.45 to get

~xβ 1 ˆ ~yβ 1 “ H´J

|H´J| p~xβ ˆ ~yβq (9.33)

pλ1 ~x 1
β 1q ˆ pλ2 ~y 1

β 1q “ H´J

|H´J| p~xβ ˆ ~yβq (9.34)

~x 1
β 1 ˆ ~y 1

β 1 “ H´J

λ1 λ2 |H´J| p~xβ ˆ ~yβq (9.35)

~p 1
β̄ 1 “ H´J

λ1 λ2 |H´J| ~pβ̄ (9.36)

9.3.2 Meet under homography

Let us next look at the meet. Let point ~x be the meet of lines ~p and ~q with line cordinates ~pβ̄ ,
~qβ̄ , which are related by a homography H to line coordinates ~p 1

β̄ 1 and ~q
1
β̄ 1 by

λ1 ~p
1
β̄ 1 “ H´J ~pβ̄ (9.37)

λ2 ~q
1
β̄ 1 “ H´J ~qβ̄ (9.38)
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for some non-zero λ1, λ2. Construct meets as

~xβ “ ~pβ̄ ˆ ~qβ̄ and ~x 1
β 1 “ ~p 1

β̄ 1 ˆ ~q 1
β̄ 1 (9.39)

and, similarly as above, use Equation 2.45 to get

~x 1
β 1 “ pH´Jq´J

λ1 λ2 |pH´Jq´J| ~xβ “ H

λ1 λ2 |H| ~xβ (9.40)

9.3.3 Meet of join under homography

We can put the above together to get meet of join under homography. We consider two pairs of
points represented by their homogeneous coordinates ~xβ, ~yβ , and ~zβ , ~wβ and the corresponding
pairs of points with their homogeneous coordinates ~x 1

β 1 , ~y 1
β 1 , and ~z 1

β 1 , ~w 1
β 1 related by homography

H as
λ1 ~x

1
β 1 “ H ~xβ , λ2 ~y

1
β 1 “ H ~yβ , λ3 ~z

1
β 1 “ H~zβ , λ4 ~w

1
β 1 “ H ~wβ (9.41)

Let us now consider point

~v 1
β 1 “ p~x 1

β 1 ˆ ~y 1
β 1q ˆ p~z 1

β 1 ˆ ~w 1
β 1q (9.42)

“
ˆ

H´J

λ1 λ2 |H´J| p~xβ ˆ ~yβq
˙

ˆ
ˆ

H´J

λ3 λ4 |H´J| p~zβ ˆ ~wβq
˙

(9.43)

“ H |H|
λ1 λ2 λ3 λ4

p~xβ ˆ ~yβq ˆ p~zβ ˆ ~wβq (9.44)

“ H |H|
λ1 λ2 λ3 λ4

~vβ (9.45)

9.3.4 Note on homographies that are rotations

First notice that homogeneous coordinats of points and lines constructed as combinations of
joins and meets indeed behave under a homography as homogeneous coordinates constructed
from affine coordinates of points.
Secondly, when the homography is a rotation and homogeneous coordinates are unit vecors, all

λ’s become equal to one, the determinant of H is one and H´J “ H. Therefore, all homogeneous
coordinates in the previous formulas become related just by H.

9.4 Vanishing points

When modeling perspective projection in the affine space with affine projection planes, we meet
somewhat unpleasant situations. For instance, imagine a projection of two parallel lines K,L,
which are in a plane τ in the space into the projection plane π through the center C, Figure 9.10.
The lines K,L project to image lines k, l. As we go with two points X,Y along the lines k, l

away from the projection plane, their images x, y get closer and closer to the point v in the
image but they do not reach point v. We shall call this point of convergence of lines K, L the
vanishing point7.

7Úběžńık in Czech.
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Figure 9.10: Vanishing point v is the point towards projections x an y tend as X and Y move
away from π but which they never reach.

9.5 Vanishing line and horizon

If we take all sets of parallel lines in τ , each set with a different direction, then all the points of
convergence in the image will fill a complete line h.
The line h is called the vanishing line or the horizon8 when τ is the ground plane.
Now, imagine that we project all points from τ to π using the affine geometrical projection

model. Then, no point from τ will project to h. Similarly, when projecting in the opposite
direction, i.e. π to τ , line h has no image, i.e. it does not project anywhere to τ .
When using the affine geometrical projection model with the real projective plane to model

the perspective projection (which is equivalent to the algebraic model in R3), all points of the
projective plane τ (obtained as the projective completion of the affine plane τ) will have exactly
one image in the projective plane π (obtained as the projective completion of the affine plane
π) and vice versa. This total symmetry is useful and beautiful.

8Horizont in Czech
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C
h

τ

π

Figure 9.11: Vanishing line (horizon) h is the line of vanishing points.
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10 Projective space

10.1 Motivation – the union of ideal points of all affine planes

Figure 10.1(a) shows a perspective image of three sets of parallel lines generated by sides of a
cube in the three-dimensional real affine space. The images of the three sets of parallel lines
converge to vanishing points V1, V2 and V3. The cube has six faces. Each face generates two pairs
of parallel lines and hence two vanishing points. Each face generates an affine plane which can be
extended into a projective plane by adding the line of ideal points of that plane. The projection
of the three ideal lines are vanishing lines l12 “ V1 _V2, l23 “ V2 _V3 and l31 “ V3 _V1. Imagine
now all possible affine planes of the three-dimensional affine space and their corresponding ideal
points. Let us take the union V of the sets of ideal points of all such planes. There is exactly one
ideal point for every set of parallel lines in V , i.e. there is a one-to-one correspondence between
elements of V (ideal points) and directions in the three-dimensional affine space. Notice also
that every plane π generates one ideal line l8 of its ideal points and that all other planes parallel
with π generate the same l8, Figure 10.1.
It suggests itself to extend the three-dimensional affine space by adding the set V to it,

analogically to how we have extended the affine plane. In this new space, all parallel lines will
intersect. We will call this space the three-dimensional real projective space and denote it P3.
Let us develop an algebraic model of P3. It is practical to require this model to encompass
the model of the real projective plane. The real projective plane is modeled algebraically by
subspaces of R3. Let us observe that subspaces of R4 will be a convenient algebraic model of P3.
We start with the three-dimensional real affine space A3 and fix a coordinate system pO, δq

with δ “ p~d1, ~d2, ~d3q. An affine plane π is a set of points of A3 represented in pO, δq by the set
of vectors

π “ trx, y, zsJ | a x` b y ` c z ` d “ 0, a, b, c, d P R, a2 ` b2 ` c2 ‰ 0u (10.1)

We see that the point of π represented by vector rx, y, zsJ can also be represented by one-
dimensional subspace tλ rx, y, z, 1sJ|λ P Ru of R4 and hence π can be seen as the set

π “ ttλ rx, y, z, 1sJ|λ P Ru | ra, b, c, ds rx, y, z, 1sJ “ 0, a, b, c, d P R, a2 ` b2 ` c2 ‰ 0u (10.2)

of one-dimensional subspaces of R4.
Notice that we did not require λ ‰ 0 in the above definition. This is because we establish

the correspondence between a vector rx, y, zs and the corresponding complete one-dimensional
subspace tλ rx, y, z, 1sJ, λ P Ru of R4 and since every linear space contains zero vector, we admit
zero λ.
Every rx, y, zsJ P R3 represents in pO, δq a point of A3 and hence the subset

A3 “ ttλ rx, y, z, 1sJ|λ P Ru |x, y, z P Ru (10.3)

of one-dimensional subspaces of R4 represents A3.
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V1 V2

V3

π8

π8

A3

A2 l8

(a) (b)

Figure 10.1: (a) A perspective image of a cube generates three vanishing points V1, V2 and V3
and hence also three vanishing lines l12, l23 and l31. (b) Every plane adds one line
of ideal points to the three-dimensional affine space. Every ideal point corresponds
to one direction, i.e. to a set of parallel lines. Each ideal line corresponds to a set
of parallel planes.

We observe that we have not used all one-dimensional subspaces of R4 to represent A3. The
subset

π8 “ ttλ rx, y, z, 0sJ|λ P Ru |x, y, z P R, x2 ` y2 ` z2 ‰ 0u (10.4)

of one-dimensional subspaces of R4 is in one-to-one correspondence with all non-zero vectors of
R3, i.e. in one-to-one correspondence with the set of directions in A3. This is the set of ideal
points which we add to A3 to get the three-dimensional real projective space

P3 “ ttλ rx, y, z, wsJ|λ P Ru |x, y, z, w P R, x2 ` y2 ` z2 ` w2 ‰ 0u (10.5)

which is the set of all one-dimensional subspaces of R4. Notice that P3 “ A3 Y π8.

§ 1 Points Every non-zero vector of R4 generates a one-dimensional subspace and thus repre-
sents a point of P3. The zero vector r0, 0, 0, 0sJ does not represent any point.

§ 2 Planes Affine planes πA3 , Equation 10.2, are in one-to-one correspondence to the subset

πA3 “ ttλ ra, b, c, dsJ|λ P Ru | a, b, c, d P R, a2 ` b2 ` c2 ‰ 0u (10.6)

of the set of one-dimensional subspaces of R4. There is only one one-dimensional subspace of R4,
tλ r0, 0, 0, 1sJ|λ P Ru missing in πA3 . It is exactly the one-dimensional subspace corresponding
to the set π8 of ideal points of P3

π8 “ ttλ rx, y, z, wsJ|λ P Ru |x, y, z, w P R, x2`y2`z2 ‰ 0, r0, 0, 0, 1s rx, y, z, wsJ “ 0u (10.7)

We can take another view upon planes and observe that affine planes are in one-to-one cor-
respondence with the three-dimensional subspaces of R4. The set π8 also corresponds to a
three-dimensional subspace of R4. Hence π8 can be considered another plane, the ideal plane
of P3.
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The set of planes of P3 can be hence represented by the set of one-dimensional subspaces of
R4

πP3 “ ttλ ra, b, c, dsJ|λ P Ru | a, b, c, d P R, a2 ` b2 ` c2 ` d2 ‰ 0u (10.8)

but can also be viewed as the set of three-dimensional subspaces of R4.
We see that there is a duality between points and planes of P3. They both are represented by

one-dimensional subspaces of R4 and we see that point X represented by vector ~X “ rx, y, x, wsJ

is incident to plane π represented by vector ~π “ ra, b, c, dsJ, i.e. X ˝ π, when

~πJ ~X “
“

a b c d
‰

»

—

—

–

x

y

z

w

fi

ffi

ffi

fl

“ a x` b y ` c z ` dw “ 0 (10.9)

§ 3 Lines Lines in P3 are represented by two-dimensional subspaces of R4. Unlike in P2, lines
are not dual to points.
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11 Camera auto-calibration

Camera auto-calibration is a process when the parameters of image formation are determined
from properties of the observed scene or knowledge of camera motions. We will study camera
auto-calibration methods and tasks related to metrology in images. We have seen in Chapter 7
that to measure the angle between projection rays we needed only matrix K. Actually, it is
enough to know matrix1

ω “ K´JK´1

to measure the angle between the rays corresponding to image points ~x1β , ~x2β as

cos=p~x1, ~x2q “
~xJ
1β K

´JK´1~x2β

}K´1~x1β}}K´1~x2β} “
~xJ
1β ω ~x2β

b

~xJ
1β ω ~x1β

b

~xJ
2β ω ~x2β

(11.1)

Knowing ω is however (almost) equivalent to knowing K since K can be recovered from ω up to
two signs as follows.

§ 1 Recovering K from ω Let us give a procedure for recovering K from ω. Assuming

K “

»

–

k11 k12 k13
0 k22 k23
0 0 1

fi

fl (11.2)

we get

K´1 “

»

–

k11 k12 k13
0 k22 k23
0 0 1

fi

fl

´1

“

»

—

—

–

1

k11

´k12
k11k22

k12 k23´k13 k22
k11 k22

0 1

k22

´k23
k22

0 0 1

fi

ffi

ffi

fl

“

»

–

m11 m12 m13

0 m22 m23

0 0 1

fi

fl (11.3)

for some real m11,m12,m13,m22 and m23. Equivalently, we get

K “

»

—

–

1

m11

´m12

m11m22

m12 m23´m13 m22

m11 m22 m23

0 1

m22

´m23

m22

0 0 1

fi

ffi

fl
(11.4)

Introducing the following notation

ω “ K´JK´1 “

»

–

ω11 ω12 ω13

ω12 ω22 ω23

ω13 ω23 ω33

fi

fl (11.5)

1In [15], ω is called the image of the absolute conic.
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yields

»

–

ω11 ω12 ω13

ω12 ω22 ω23

ω13 ω23 ω33

fi

fl “

»

–

m2
11

m11m12 m11m13

m11m12 m2
12

`m2
22

m12m13 `m22m23

m11m13 m12m13 `m22m23 m2
13

`m2
23

` 1

fi

fl (11.6)

which can be solved for K´1 up to the sign of the rows of K´1 as follows. Equation 11.6 provides
equations

ω11 “ m2
11 ñ m11 “ s1

?
ω11

ω12 “ m11m12 ñ m12 “ ω12{ps1
?
ω11q “ s1 ω12{?

ω11

ω13 “ m11m13 ñ m13 “ ω13{ps1
?
ω11q “ s1 ω13{?

ω11

ω22 “ m2
12 `m2

22 ñ m22 “ s2

b

ω22 ´m2
12

“ s2

b

ω22 ´ ω2
12

{ω11

ω23 “ m12m13 `m22m23 ñ m23 “ s2 pω23 ´ ω12 ω13{ω11q{
b

ω22 ´ ω2
12

{ω11

“ s2 pω11 ω23 ´ ω12 ω13q{
b

ω2
11
ω22 ´ ω11 ω

2
12

which can be solved for mij with s1 “ ˘1 and s2 “ ˘1. Hence

K “

»

—

–

s1
?
ω11 s1 ω12{?

ω11 s1 ω13{?
ω11

0 s2
a

ω22 ´ ω2
12

{ω11 s2 pω23 ´ ω12 ω13{ω11q{
a

ω22 ´ ω2
12

{ω11

0 0 1

fi

ffi

fl

´1

(11.7)

Signs s1, s2 are determined by the choice of the image coordinate system. The standard choice
is s1 “ s2 “ 1, which corresponds to k11 ą 0 and k22 ą 0.
Notice that

?
ω11 is never zero for a real camera since m11 “ 1

k11
‰ 0. There also holds true

b

ω22 ´ ω2
12

{ω11 “
b

m2
11

´m2
12

“
d

1

k2
11

´ k2
12

k2
11
k2
22

“ 1

k11 k22

b

k2
22

´ k2
12

‰ 0 (11.8)

since |k12| is much smaller than |k22| for all real cameras.

11.1 Constraints on ω

Matrix ω is a 3ˆ3 symmetric matrix and by this it has only six independent elements ω11, ω12, ω13, ω22, ω23

and ω33. Let us next investigate additional constratints on ω, which follow from different choices
of K.

§ 1 Constraints on ω for a general K Even a general K yields a constraint on ω. Equation 11.6
relates the six parameters of ω to only five parameters m11,m12,m13,m22 and m23 and hence
the six parameters of ω can’t be independent. Indeed, let us see that the following identity holds
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true

pω2

23
´ ω2

13
ω2

12

ω2

11

´ pω22 ´ ω2

12

ω11

q pω33 ´ ω2

13

ω11

´ 1qq2 ´ 4
ω2

13
ω2

12

ω2

11

pω22 ´ ω2

12

ω11

q pω33 ´ ω2

13

ω11

´ 1q

“
ˆ

pm12m13 `m22m23q2 ´ pm11m13q2pm11m12q2
m4

11

´pm2

12
`m2

22
´ pm11m12q2

m2

11

qpm2

13
`m2

23
` 1 ´ pm11m13q2

m4

11

´ 1q
˙2

´ 4
pm11m13q2pm11m12q2

m4

11

pm2

12
`m2

22
´ pm11m12q2

m2

11

qpm2

13
`m2

23
` 1 ´ pm11m13q2

m4

11

´ 1q

“
`

pm12m13 `m22m23q2 ´ pm12m13q2 ´ pm22m23q2
˘2 ´ 4 pm12m13q2pm22m23q2

“ p2 pm12m13qpm22m23qq2 ´ 4 pm12m13q2pm22m23q2

“ 0 (11.9)

Since ω11 ‰ 0, we get the following equivalent identity

pω2
11ω

2
23 ´ ω2

13 ω
2
12 ´ pω11ω22 ´ ω2

12q pω11ω33 ´ ω2
13 ´ ω11qq2

´ 4ω2
13 ω

2
12 pω11ω22 ´ ω2

12q pω11ω33 ´ ω2
13 ´ ω11q “ 0 (11.10)

which is a polynomial equation of degree eight in elements of ω.
We shall see next that it makes sense to introduce a new matrix

Ω “

»

–

1 o12 o13
o12 o22 o23
o13 o23 o33

fi

fl “

»

—

—

–

1 ω12

ω11

ω13

ω11

ω12

ω11

ω22

ω11

ω23

ω11

ω13

ω11

ω23

ω11

ω33

ω11

fi

ffi

ffi

fl

(11.11)

which contains only five unknowns, and use Equation 11.10 to get the positive ω11 from Ω by
solving the following quadratic equation

a2 ω
2
11 ` a1 ω11 ` a0 “ 0 (11.12)

with

a2 “ ´4 o23
2o13

2o12
2 ` o23

4 ´ 2 o23
2o22 o33 ` 2 o13

2o12
2o22 o33 (11.13)

´2 o22
2o33o13

2 ` o12
4o33

2 ` 2 o23
2o22 o13

2 ` 2 o23
2o12

2o33

`o222 o134 ` o22
2o33

2 ´ 2 o22 o33
2o12

2

a1 “ 2 o13
2o12

2 o22 ` 2 o23
2o22 ´ 2 o22

2 o33 ´ 2 o12
4 o33 (11.14)

`4 o22 o33o12
2 ´ 2 o23

2o12
2 ` 2 o22

2o13
2

a0 “ ´2 o22 o12
2 ` o22

2 ` o12
4 (11.15)

§ 2 Constraints on ω for K from square pixels Cameras have often square pixels, i.e. }~b1} “
|~b2} “ 1 and =p~b1,~b2q “ π{2, which implies, Equations 7.13, 7.15, 7.16, a simplified

K “

»

–

k11 0 k13
0 k11 k23
0 0 1

fi

fl (11.16)
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σ

π

K

Lk
l

C

~v σ

π

K1

L1

K2

L2k1 l1

k2

l2C

~v1

~v2

(a) (b)

Figure 11.1: (a) Parallel lines K, L are projected to lines k, l with vanishing point represented
by ~v. Vector ~v is parallel to k, l. (b) Vectors ~v1, ~v2 contain the same angle as pairs
of lines K1, K2 or L1, L2.

This gives also simpler

ω “ 1

k2
11

»

–

1 0 ´k13
0 1 ´k23

´k13 ´k23 k2
11

` k2
13

` k2
23

fi

fl (11.17)

We see that we get the following three identities

ω12 “ 0 (11.18)

ω22 ´ ω11 “ 0 (11.19)

ω2
13 ` ω2

23 ´ ω11ω33 ` ω11 “ 0 (11.20)

We also get simpler

Ω “

»

–

1 0 o13
0 1 o23
o13 o23 o33

fi

fl “ k211 ω “

»

–

1 0 ´k13
0 1 ´k23

´k13 ´k23 k2
11

` k2
13

` k2
23

fi

fl (11.21)

and use Equation 11.21 to get

k211 “ o33 ´ o213 ´ o223 (11.22)

k13 “ ´o13 (11.23)

k23 “ ´o23 (11.24)

11.2 Camera calibration from angles between projection rays

We will now show how to calibrate a camera by finding the matrix ω “ K´JK´1.
In general, matrix ω is constrained by knowing angles contained between pairs of projection

rays. Consider two projection rays with direction vectors ~x1, ~x2. Then the angle between them
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π

~x1

~x2

~x3

~b1

~b2

~b 1
3

~d1

~d2

~d3

d12
d23

d31

O “ o

C

~C X1

X2

X3

~X2

Figure 11.2: Images of three points with known angles between their rays can be used to calibrate

cameras with square pixels. The position of image center ~Cδ 1 can be computed
in the ortogonal coordinate system po, δ 1q using the absolute pose problem from
Chapter 7.3. Matrix K is composed from coordinates of ~Cδ 1 .

is related to ω and Ω by

cos=p~x1, ~x2q “
~xJ
1β ω ~x2β

b

~xJ
1β ω ~x1β

b

~xJ
2β ω ~x2β

“
~xJ
1β Ω ~x2β

b

~xJ
1β Ω ~x1β

b

~xJ
2β Ω ~x2β

(11.25)

Squaring the above and clearing the denominators gives

pcos=p~x1, ~x2qq2p~xJ
1β Ω ~x1βq p~xJ

2β Ω ~x2βq “ p~xJ
1β Ω ~x2βq2 (11.26)

which is a second order equation in elements of Ω. To find Ω, which has five independent
parameters for a general K, we need to be able to establish five pairs of rays with known angles
and solve a system of five quadratic equations 11.26 above.

§ 1 Camera with square pixels A simpler situation arises when the camera has square pixels.
Then, we can use constraints from § 2 to recover ω and K from three pairs of rays containing
known angles. That amounts to solving three second order equations 11.26 in o13, o23, o33.
However, this is actually exactly the same problem as we have already solved in Section 7.3.

Figure 11.2 shows an image plane π with a coordinate system po, δ 1q with δ 1 “ p~b1,~b2,~b 1
3
q

derived from the image coordinate system po, αq. Having square pixels, vectors ~b1, ~b2 can be
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complemented with ~b 1
3
to form an orthogonal coordinates system pO “ o, δ 1q. Next, we choose

the global orthonormal coordinate system, pO “ o, δq, δ “ p~d1, ~d2, ~d3q, such that

~d1 “
~b1

||~b1||
, ~d2 “

~b2

||~b1||
, and ~d3 “

~b 1
3

||~b1||
(11.27)

and hence

~xδ “

»

—

–

||~b1|| 0 0

0 ||~b1|| 0

0 0 ||~b1||

fi

ffi

fl
~xδ 1 (11.28)

We know angles =p~x1, ~x2q, =p~x2, ~x3q and =p~x3, ~x1q. We also know image points ~u1α “ ~X1δ 1 ,
~u2α “ ~X2δ 1 , ~u3α “ ~X3δ 1 and thus we can compute distances d12 “ || ~X2δ 1 ´ ~X1δ 1 ||, d23 “
|| ~X3δ 1 ´ ~X2δ 1 || and d31 “ || ~X3δ 1 ´ ~X1δ 1 ||. Having that, we can find the pose ~Cδ 1 “ rc1, c2, c3sJ

of the camera center C in pO, δ 1q by solving the absolute pose problem from Chapter 7.3. We
will select a solution with c3 ă 0 and, if necessary, use a fourth point in π to choose the right
solution among them. To find K, we can form the following equation

»

–

0
0
1

fi

fl “ 1

f

”

K R | ´ K R ~Cδ

ı

»

—

—

–

0
0
0
1

fi

ffi

ffi

fl

(11.29)

since point o is represented by r0, 0, 1sJ in β and by r0, 0, 0sJ in δ. Coordinate system pO, δq is
chosen such that R “ I and ~Cδ “ ||~b1|| ~Cδ 1 and thus we get

K´1

»

–

0
0
1

fi

fl “ ´||~b1||
f

~Cδ 1 (11.30)

Now, let us consider matrix K as in Equation 11.16 and use the intepretation of elements of K
from Chapter 7, Equations 7.16, 7.17. We can write

K “

»

—

–

f

}~b1} 0 k13

0 f

}~b1} k23

0 0 1

fi

ffi

fl
an thus K´1 “

»

—

–

}~b1}
f

0 ´ }~b1}
f
k13

0 }~b1}
f

´ }~b1}
f
k23

0 0 1

fi

ffi

fl
(11.31)

and use it in Equation 11.30 to get

»

—

–

k13
k23

´ f

}~b1}

fi

ffi

fl
“

»

–

c1
c2
c3

fi

fl (11.32)

and thus

K “

»

–

´c3 0 c1
0 ´c3 c2
0 0 1

fi

fl (11.33)
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11.3 Camera calibration from vanishing points

Let us first make an interesting observation about parallel lines in space an its corresponding
vanishing point in an image. Let us consider a pair of parallel lines K, L in space as shown in
Figure 11.1(a). There is an affine plane σ containing the lines. The lines K, L are projected to
image plane π into lines k, l, respectively.
Now, first extend affine plane σ to a projective plane Σ using the camera center C. Then,

define a coordinate system pC, δq with orthonormal basis δ “ p~d1, ~d2, ~d3q such that vectors ~d1, ~d2
span affine plane σ.
Let ~Kδ̄,

~Lδ̄ be homogeneous coordinates of lines K, L w.r.t. δ̄. Then

~wδ “ ~Kδ̄ ˆ ~Lδ̄ (11.34)

are homogeneous coordinates of the intersection of lines K, L in Σ.
Next, extend the affine plane π to a projective plane Π using the camera center C with the

(camera) coordinate system pC, βq.
Let ~kβ̄ ,

~lβ̄ be homogeneous coordinates of lines k, l w.r.t. β̄. Then

~vβ “ ~kβ̄ ˆ~lβ̄ (11.35)

are homogeneous coordinates of the intersection of lines k, l in Π.
Now, consider Equation 8.14 for planes Σ and Π. Since δ is orthonormal, we have K 1 “ I and

thus that there is a homoghraphy
H “ K R (11.36)

which maps plane Σ to plane Π. Matrices K and R of the camera are here w.r.t. the world
coordinate system pC, δq.
We see that there is a real λ such that there holds

λ~vβ “ K R ~wδ (11.37)

true.

§ 1 Pairs of “orthogonal” vanishing points and camera with square pixels Let us have two
pairs of parallel lines in space, Figure 11.1(b), such that they are also orthogonal, i.e. let K1

be parallel with L1 and K2 be parallel with L2 and at the same time let K1 be orthogonal to
K2 and L1 be orthogonal to L2. This, for instance, happens when lines K1, L1,K2, L2 form a
rectangle but they also may be arranged in the three-dimensional space as non-intersecting.
Let lines k1, l1, k2, l2 be the projections of K1, L1,K2, L2, respectively, represented by the

corresponding vectors ~k
1β̄ ,
~l
1β̄ ,
~k
2β̄ ,
~l
2β̄ in the camera coordinates system with (in general non-

orthogonal) basis β. Lines k1 and l1, resp. k2 and l2, generate vanishing points

~v1β “ ~k
1β̄ ˆ~l

1β̄

~v2β “ ~k
2β̄ ˆ~l

2β̄

The perpendicularity of ~w1 to ~w2 is, in the camera orthogonal basis δ, modeled by

~wJ
1δ ~w2δ “ 0 (11.38)
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We therefore get from Equation 11.37

~vJ
1β K

´JR´JR´1K´1~v2β “ 0 (11.39)

~vJ
1β K

´JK´1~v2β “ 0 (11.40)

~vJ
1β ω~v2β “ 0 (11.41)

which is a linear homogeneous equation in ω. Assuming further square pixels, we get, § 2,

~vJ
1β ω~v2β “ 0

~vJ
1β Ω~v2β “ 0

“

v11 v12 v13
‰

»

–

1 0 o13
0 1 o23
o13 o23 o33

fi

fl

»

–

v21
v22
v23

fi

fl “ 0

“

v23 v11 ` v21 v13 v23 v12 ` v22 v13 v23 v13
‰

»

–

o13
o23
o33

fi

fl “ ´pv21 v11 ` v22 v12q

Now, we need only 3 pairs of perpendicular vanishing points, e.g. to observe 3 rectangles not all
in one plane to compute o13, o23, o33 and then

k13 “ ´o13
k23 “ ´o23
k11 “

b

o33 ´ k2
13

´ k2
23

11.4 Camera calibration from images of squares

Let us exploit the relationship between the coordinates of points X, which all lie in a plane
σ and are measured in a coordinate system pO, ~d1, ~d2q in σ, Figure 8.2. The points X are
projected by a perspective camera with the camera coordinate system is pC, βq, β “ p~b1,~b2,~b3q
and projection matrix P into image coordinates

“

u v
‰J

, w.r.t. an image coordinate system

po,~b1,~b2q, Equation 8.30. See paragraph § 1 to recall that the columns of P can be writen as

P “
”

K R | ´ K R ~Cδ

ı

“
”

~d1ν ~d2ν ~d3ν ´~Cν

ı

(11.42)

and therefore we get the columns

h1 “ p1 “ ~d1ν (11.43)

h2 “ p2 “ ~d2ν (11.44)

h3 “ p4 “ ´~Cν (11.45)

of the homography H mapping σ to π as defined in Equation 8.31.
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Now imagine that we are observing a square with 4 corner points X1, X2, X3 and X4 in the
plane σ and we construct the coordinate system in σ by assigning coordinates to the corners as

~X1δ “
“

0 0 0
‰

(11.46)

~d1δ “ ~X2δ “
“

1 0 0
‰

(11.47)

~d2δ “ ~X3δ “
“

0 1 0
‰

(11.48)

~X4δ “
“

1 1 0
‰

(11.49)

We see that we get two constraints on ~d1δ, ~d2δ

~dJ
1δ
~d2δ “ 0 (11.50)

~dJ
1δ
~d1δ ´ ~dJ

2δ
~d2δ “ 0 (11.51)

which lead to

~dJ
1ν K

´J K´1 ~d2ν “ 0 (11.52)

~dJ
1β K

´J K´1 ~d1β ´ ~dJ
2ν K

´J K´1 ~d2ν “ 0 (11.53)

by using ~diν “ K R ~diδ for i “ 1, 2, and RJ R “ I.
These are two linear equations on ω and hence also, see § 1, on Ω

~dJ
1ν Ω

~d2ν “ 0 (11.54)

~dJ
1ν Ω

~d1ν ´ ~dJ
2ν Ω

~d2ν “ 0 (11.55)

on ω in terms of estimated λ H

hJ
1 Ω h2 “ 0 (11.56)

hJ
1 Ω h1 ´ hJ

2 Ω h2 “ 0 (11.57)

One square provides two equations and therefore three squares in two planes in a general
position suffice to calibrate full K. Actually, such three squares provide one more equations than
necessary since Ω has only five parameters. Hence, it is enough observe two squares and one
rectangle to get five constraints. Similarly, one square and one rectangle in a plane then suffice
to calibrate K when pixels are square.
Notice also that we have never used the special choice of coordinates of ~Xδ. Indeed, point X4

could be anywhere provided that we know how to assign it coordinates in pO, ~d1, ~d2q.
To calibrate the camera, we first assign coordinates to the corners of the square as above,

then find the homography H from the plane to the image

λi ~xiβ “ H ~Xiδ (11.58)

for αi “ 1, . . . , 4 and finally use columns of H the find Ω.
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12 Two-view scene reconstruction

Imagine two cameras giving two images of the space from two different view points. We will
next investigate how to (re-)construct camera projection matrices and meaningful coordinates of
points in the space such that the reconstructed cameras and the reconstructed points generate
the images.

12.1 Epipolar geometry

Figure 12.1 shows two cameras with different centers C1, C2 and image planes π1, π2, observing
a general point X as u1, u2. Baseline b connecting image centers C1, C2 intersects π1, π2 in
epipoles e1, e2. Points C1, C2 and X form epipolar plane σ, which intersects π1 in epipolar line
l1 and π2 in epipolar line l2. Epipolar line l1 passes through epipole e1 and through image point
u1. Epipolar line l2 passes through epipole e2 and through image point u2.

Let us next find the relationship between image points, epipoles, epipolar lines as a function
of camera parameters, Figure 12.2.
Assume a world coordinate system pO, δq and cameras C1, C2 with camera projection matrices

P1 “
”

K1R1 | ´ K1R1 ~C1δ

ı

and P2 “
”

K2R2 | ´ K2R2 ~C2δ

ı

(12.1)

Point X is projected to image planes π1, π2, with respective coordinate systems po1, β1q, po2, β2q,
as

ζ1 ~x1β1
“ P1

„

~Xδ

1



and ζ2 ~x2β2
“ P2

„

~Xδ

1



(12.2)

for some ζ1 ą 0 and ζ2 ą 0, which then leads to

ζ1 ~x1β1
“ K1R1p ~Xδ ´ ~C1δq and ζ2 ~x2β2

“ K2R2p ~Xδ ´ ~C2δq (12.3)

ζ1 R
J
1 K

´1

1
~x1β1

“ ~Xδ ´ ~C1δ ζ2 R
J
2 K

´1

2
~x2β2

“ ~Xδ ´ ~C2δ (12.4)

Consider now that vectors ~Xδ ´ ~C1δ, ~Xδ ´ ~C2δ and ~C2δ ´ ~C1δ form a triangle and hence

~C2δ ´ ~C1δ “ p ~Xδ ´ ~C1δq ´ p ~Xδ ´ ~C2δq (12.5)

~C2δ ´ ~C1δ “ ζ1 R
J
1 K

´1

1
~x1β1

´ ζ2 R
J
2 K

´1

2
~x2β2

(12.6)

with ζ1 ą 0 and ζ2 ą 0 for the standard choice of camera coordinate systems.
We shall next eliminate depths ζ1, ζ2 by exploiting the vector product identities, see Para-

graph 2.3,

~0 “ ~xˆ ~x “ r~xsˆ ~x (12.7)

~0 “ ~yJp~xˆ ~yq “ ~yJ r~xsˆ ~y (12.8)
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PSfrag

π1 π2

σ

C1 C2
b

u1 u2

l1 l2

e1 e2

X

Figure 12.1: Epipolar geometry of two cameras.

for all ~x, ~y P R3.
We first vector-multiply Equation 12.6 by ~C2δ ´ ~C1δ from the left to get

0 “
”

~C2δ ´ ~C1δ

ı

ˆ
ζ1 R

J
1 K

´1

1
~x1β1

´
”

~C2δ ´ ~C1δ

ı

ˆ
ζ2 R

J
2 K

´1

2
~x2β2

(12.9)

and then multiply Equation 12.9 by ζ2 ~x
J
2β2

K´J
2

R2 from the left to get

0 “ ζ2 ~x
J
2β2

K´J
2

R2

”

~C2δ ´ ~C1δ

ı

ˆ
ζ1 R

J
1 K

´1

1
~x1β1

(12.10)

which, since ζ1 ‰ 0 and ζ2 ‰ 0, is equivalent with

0 “ ~xJ
2β2

K´J
2

R2

”

~C2δ ´ ~C1δ

ı

ˆ
RJ
1 K

´1

1
~x1β1

(12.11)

0 “ ~xJ
2β2

K´J
2

E K´1

1
~x1β1

(12.12)

0 “ ~xJ
2β2

F ~x1β1
(12.13)

where we introduced the essential matrix E P R3ˆ3 as

E “ R2

”

~C2δ ´ ~C1δ

ı

ˆ
RJ
1 (12.14)

and the fundamental matrix F P R3ˆ3 as

F “ K´J
2

R2

”

~C2δ ´ ~C1δ

ı

ˆ
RJ
1 K

´1

1
(12.15)

Let us next introduce epipoles to pass from vectors in δ to vectors in β1, β2, which are mea-
surable in images.
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π1 π2

C1 C2

~x1 ~x2

~l1 ~l2

~e1 ~e2

X

~C2 ´ ~C1

~X ´ ~C1

~X ´ ~C2

Figure 12.2: Vectors of the epipolar geometry.

The projection e1 of the the camera center ~C2 to the first image as well as the projection e2
of the the camera center ~C1 to the second image are obtained as

ζ1 ~e1β1
“ P1

„

~C2δ

1



“ K1R1p~C2δ ´ ~C1δq (12.16)

ζ2 ~e2β2
“ P2

„

~C1δ

1



“ K2R2p~C1δ ´ ~C2δq (12.17)

for some ζ1 ą 0 and ζ2 ą 0.
We can now substitute Equation 12.16 into Equation 12.15 to get

F “ K´J
2

R2

”

~C2δ ´ ~C1δ

ı

ˆ
RJ
1 K

´1

1
(12.18)

“ K´J
2

R2
“

ζ1 R
J
1 K

´1

1
~e1β1

‰

ˆ RJ
1 K

´1

1
(12.19)

“ ζ1K
´J
2

R2
pRJ

1
K´1

1
q´J

ˇ

ˇpRJ
1
K´1

1
q´J

ˇ

ˇ

r~e1β1
sˆ (12.20)

“ ζ1

|K1|K
´J
2

R2R
J
1 K

J
1 r~e1β1

sˆ (12.21)

We used the result from § 2, which shows how the vector product behaves under the change of
a basis.
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Analogically, we substitute Equation 12.17 into Equation 12.15 to get

F “ K´J
2

R2

”

~C2δ ´ ~C1δ

ı

ˆ
RJ
1 K

´1

1
(12.22)

“ K´J
2

R2
“

´ζ2 RJ
2 K

´1

2
~e2β2

‰

ˆ RJ
1 K

´1

1
(12.23)

“
´

“

ζ2 R
J
2 K

´1

2
~e2β2

‰

ˆ RJ
2 K

´1

2

¯J
RJ
1 K

´1

1
(12.24)

“
ˆ

ζ2

|K2|R
J
2 K

J
2 r~e2β2

sˆ

˙J
RJ
1 K

´1

1
(12.25)

“ ´ ζ2

|K2| r~e2β2
sˆ K2R2R

J
1 K

´1

1
(12.26)

We used additional properties of the linear representation of the vector product from § 3.
We see from Equations 12.21 and 12.26 that it is possible to recover homogeneous coordinates

of the epipoles from F by solving equations

F~e1β1
“ 0 and FJ~e2β2

“ 0 (12.27)

for a non-zero multiples of ~e1β1
, ~e2β2

. We also see that matrix F has rank smaller than three

since it has a non-zero null space ~e1β1
. Since, rank of

”

~C2δ ´ ~C1δ

ı

ˆ
is two for non-zero ~C2δ ´ ~C1δ,

F has rank two when camera centers do not coincide.
Let us look at the epipolar lines. Epipolar lines pass through the corresponding points in

images and the epipoles, i.e. l1 “ x1 _ e1 and l2x “ x2 _ e2. Consider that there holds

~xJ
2β2

F~e1β1
“ 0 and ~xJ

1β1
FJ~e2β2

“ 0 (12.28)

~xJ
2β2

F ~x1β1
“ 0 ~xJ

1β1
FJ~x2β2

“ 0 (12.29)

(12.30)

and therefore homogeneous coordinates ~l
1β̄1

~l
2β̄2

of epipolar lines generated by ~x2β2
and ~x1β1

,
respectively, are obtained as

~l
1β̄1

“ FJ~x2β2
and ~l

2β̄2
“ F ~x1β1

(12.31)

for ~x2β2
‰ ~e2β2

and ~x1β1
‰ ~e1β1

.

12.2 Computing epipolar geometry from image matches

Let us look at how to compute the epipolar geometry between images from image matches. Our
goal is to find matrix G “ τF for some real non-zero τ using Equation 12.13. Let us introduce

G “

»

–

g11 g12 g13
g21 g22 g23
g31 g32 g33

fi

fl (12.32)
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and write Equation 12.13 as

0 “ ~xJ

2iβ2
G ~x1iβ1

“
“

u2i v2i w2i

‰

»

–

g11 g12 g13
g21 g22 g23
g31 g32 g33

fi

fl

»

–

u1i
v1i
w1i

fi

fl (12.33)

0 “
“

u2i u1i u2i v1i u2i w1i v2i u1i v2i v1i v2i w1i w2i u1i w2i v1i w2i w1i

‰

»

—

—

—

–

g11
g12
...
g33

fi

ffi

ffi

ffi

fl

for the i-th pair of the corresponding points ~x1iβ1
, ~x2iβ2

in the two images. Notice that we can
work even with ideal points when w1i “ 0 or w2i “ 0.
We can solve this way for a non-zero multiple of F from eight correspondences in a general

position, i.e. not all on a plane or on some special quadrics passing through camera centers [15].
If there is noise in image coordinates, we in general get a rank three matrix.
To avoid this problem, we can use only seven point correspondences to compute a two dimen-

sional space of solutions
G “ G1 ` α G2 (12.34)

generated form its basis G1, G2 by α. Then we use the constraint

0 “ |G| “ |G1 ` α G2| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

g111 g112 g113
g121 g122 g123
g131 g132 g133

fi

fl ` α

»

–

g211 g212 g213
g221 g222 g223
g231 g232 g233

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(12.35)

to find α by solving a third order polynomial

0 “ a3 α
3 ` a2 α

2 ` a1 α ` a0 (12.36)

a3 “ |G2|
a2 “ g221 g232 g113 ´ g221 g212 g133 ` g211 g222 g133 ` g231 g112 g223

`g231 g212 g123 ´ g211 g223 g132 ´ g231 g122 g213 ´ g231 g222 g113

´g211 g123 g232 ` g121 g232 g213 ` g221 g132 g213 ` g131 g212 g223

´g121 g212 g233 ´ g111 g223 g232 ´ g221 g112 g233 ` g211 g122 g233

`g111 g222 g233 ´ g131 g222 g213

a1 “ g111 g122 g233 ` g111 g222 g133 ` g231 g112 g123 ´ g121 g112 g233

´g211 g123 g132 ´ g221 g112 g133 ´ g231 g122 g113 ` g211 g122 g133

`g121 g132 g213 ` g121 g232 g113 ` g131 g212 g123 ´ g121 g212 g133

´g131 g222 g113 ` g221 g132 g113 ´ g111 g123 g232 ´ g131 g122 g213

`g131 g112 g223 ´ g111 g223 g132

a0 “ |G1|

That will give us up to three rank two matrices G.
Notice that we assumed that G was constructed with a non-zero coefficient at G1. We therefore

also need to check G “ G2 for a solution.
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12.3 Ambiguity in two-view reconstruction

The goal of scene reconstruction from its two views is to find camera projection matrices P1, P2,
and coordinates of points in the scene ~Xδ such that the points ~Xδ are projected by cameras P1,
P2 to observed image points ~x1β1

, ~x2β2

ζ1 ~x1β1
“ P1

„

~Xδ

1



and ζ2 ~x2β2
“ P2

„

~Xδ

1



(12.37)

for some positive real ζ1, ζ2.
Assume that there are some cameras P1, P2, and coordinates of points in the scene ~Xδ such

that Equation 12.43 holds true. Then, for every 4 ˆ 4 real regular matrix H we can get new
camera matrices P 1

1
, P 1

2
and new point coordinates ~X 1

δ as

P 1
1 “ P1 H

´1 P 1
2 “ P2 H

´1

„

~X 1
δ

1



“ H

„

~Xδ

1



(12.38)

which also project to the same image points

ζ1 ~x1β1
“ P1

„

~Xδ

1



“ P1 H
´1H

„

~Xδ

1



“ P 1
1

„

~X 1
δ

1



(12.39)

ζ2 ~x2β2
“ P2

„

~Xδ

1



“ P2 H
´1H

„

~Xδ

1



“ P 1
2

„

~X 1
δ

1



(12.40)

We see that in general we can reconstruct the cameras and the scene points only up to some
unknown transformation of the space. We also see that the transformation is more general
than just changing a basis in R3 where we represent affine points ~Xδ. Matrix H acts in the
three-dimensional affine space exactly as homography on two-dimensional affine space.
Let us next look at a somewhat simpler situation when camera calibration matrices K1, K2

are known. In such a case we can make sure that H has a special form which corresponds to a
special change of a coordinate system in the three-dimensional affine space.

12.4 Reconstruction from two calibrated views

Let us further assume that camera calibration matrices K1, K2 are known. Hence we can pass
from F to E using Equations 12.14, 12.15 as

E “ KJ
2 F K1 (12.41)

then recover the relative pose of the cameras, set their coordinate systems and finally reconstruct
points of the scene.

12.4.1 Camera computation

To simplify the setting, we will first pass from “uncalibrated” image points ~x1β1
, ~x2β2

using K1,
K2 to “calibrated”

~x1γ1 “ K´1

1
~x1β1

and ~x2γ2 “ K´1

2
~x2β2

(12.42)
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and then use camera projection matrices as follows

ζ1 ~x1γ1 “ P1γ1

„

~Xδ

1



and ζ2 ~x2γ2 “ P2γ2

„

~Xδ

1



(12.43)

Matrix H allows us to choose the global coordinate system of the scene as pC1, ǫ1q. Setting

H´1 “
„

RJ
1

~C1δ

~0J 1



(12.44)

we get from Equation 12.38

P1γ1 “
“

I |~0
‰

(12.45)

P2γ2 “
”

R2 R
J
1

| ´ R2 p~C2δ ´ ~C1δq
ı

“
”

R2 R
J
1

| ´ R2R
J
1

p~C2ǫ1 ´ ~C1ǫ1q
ı

(12.46)

“
”

R | ´ R ~Cǫ1

ı

(12.47)

and the corresponding essential matrix

E “ R
”

~Cǫ1

ı

ˆ
(12.48)

From image measurements, ~x1γ1 , ~x2γ2 , we can compute, Section 12.2, matrix

G “ τ E “ τ R
”

~Cǫ1

ı

ˆ
(12.49)

and hence we can get E only up to a non-zero multiple τ . Therefore, we can recover ~Cǫ1 only up
to τ .
We will next fix τ up to its sign s1. Consider that the Frobenius norm of a matrix G

}G}F “

g

f

f

e

3
ÿ

i,j“1

G2ij “
b

trace pGJGq “
d

trace

ˆ

τ2
”

~Cǫ1

ıJ

ˆ
RJR

”

~Cǫ1

ı

ˆ

˙

“
d

τ2 trace

ˆ

”

~Cǫ1

ıJ

ˆ

”

~Cǫ1

ı

ˆ

˙

(12.50)

“ |τ |
b

2 }~Cǫ1}2 “ |τ |
?
2 }~Cǫ1} (12.51)

We have used the following identities

GJG “ τ2
”

~Cǫ1

ıJ

ˆ
RJR

”

~Cǫ1

ı

ˆ
“ τ2

”

~Cǫ1

ı

ˆ

”

~Cǫ1

ı

ˆ
(12.52)

“ τ2

»

–

0 z ´y
´z 0 x

y ´x 0

fi

fl

»

–

0 ´z y

z 0 ´x
´y x 0

fi

fl “ τ2

»

–

y2 ` z2 ´x y ´x z
´x y x2 ` z2 “ y z

´x z ´y z x2 ` y2

fi

fl

We can now construct normalized matrix Ḡ as

Ḡ “
?
2 G

b

ř

3

i,j“1
G2ij

“ τ

|τ | R
«

~Cǫ1

}~Cǫ1}

ff

ˆ
“ s1 R

“

~tǫ1
‰

ˆ (12.53)
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with new unknown s1 P t`1,´1u and ~tǫ1 denoting the unit vector in the direction of the second
camera center in ǫ1 basis.
We can find vector ~vǫ1 “ s2~tǫ1 with new unknown s2 P t`1,´1u by solving

Ḡ~vǫ1 “ 0 subject to }~vǫ1} “ 1 (12.54)

to get

Ḡ “ s1 R

„

1

s2
~vǫ1



ˆ
“ s1

s2
R r~vǫ1sˆ (12.55)

s Ḡ “ R r~vǫ1sˆ (12.56)
“

s g1 s g2 s g3
‰

“ R
“

v1 v2 v3
‰

(12.57)

with unknown s P t`1,´1u, unknown rotation R and known matrices
“

g1 g2 g3
‰

“ Ḡ and
“

v1 v2 v3
‰

“ r~vǫ1sˆ.
This is a matricial equation. Matrices Ḡ, r~vǫ1sˆ are of rank two and hence do not determine R

uniquely unless we use RJR “ I and |R| “ 1. That leads to a set of polynomial equations. They
can be solved but we will use the property of vector product, § 2, to directly construct regular
matrices that will determine R uniquely for a fixed s.
Consider that for every regular A P R3ˆ3, we have, § 2,

pA ~xβq ˆ pA ~yβq “ ~xβ 1 ˆ ~yβ 1 “ A´J

|A´J| p~xβ ˆ ~yβq (12.58)

which for R gives

pR ~xβq ˆ pR ~yβq “ R p~xβ ˆ ~yβq (12.59)

Using it for i, j “ 1, 2, 3 to get

ps giq ˆ ps gjq “ pR viq ˆ pR vjq (12.60)

s2 pgi ˆ gjq “ R pvi ˆ vjq (12.61)

pgi ˆ gjq “ R pvi ˆ vjq (12.62)

i.e. three more vector equations. Notice how s disappeared in the vector product.
We see that we can write
“

s g1 s g2 s g3 g1 ˆ g2 g2 ˆ g3 g1 ˆ g3
‰

“
“ Rs

“

v1 v2 v3 v1 ˆ v2 v2 ˆ v3 v1 ˆ v3
‰

(12.63)

There are two solutions R` for s “ `1 and R´ for s “ ´1. We can next compute two solutions
~t`ǫ1 “ `~vǫ1 and ~t´ǫ1 “ ´~vǫ1 and combine them together to four possible solutions

P2γ2`` “ R`
“

I | ´ ~t`ǫ1

‰

(12.64)

P2γ2`´ “ R`
“

I | ´ ~t´ǫ1

‰

(12.65)

P2γ2´` “ R´
“

I | ´ ~t`ǫ1

‰

(12.66)

P2γ2´´ “ R´
“

I | ´ ~t´ǫ1

‰

(12.67)

The above four camera projection matrices are compatible with Ḡ. The one which corresponds
to the actual matrix can be selected by requiring that all reconstructed points lie in front of the
cameras, i.e. that the reconstructed points are all positive multiples of vectors ~x1ǫ1 and ~x2ǫ2 for
all image points.
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12.4.2 Point computation

Let us assume having camera projection matrices P1, P2 and image points ~x1β1
, ~x2β2

such that

ζ1 ~x1β1
“ P1

„

~Xδ

1



and ζ2 ~x2β2
“ P2

„

~Xδ

1



(12.68)

We can get ~Xδ, and ζ1, ζ2 by solving the following system of (inhomogeneous) linear equations

„

~x1β1

~0 ´P1
~0 ~x2β2

´P2



»

—

—

–

ζ1
ζ2
~Xδ

1

fi

ffi

ffi

fl

“ 0 (12.69)

12.5 Calibrated relative camera pose computation

In the previous chapter, we had first computed a multiple of the fundamental matrix from seven
point correspondences and only then used camera calibration matrices to recover a multiple of
the essential matrix. Here we will use the camera calibration right from the beginning to obtain
a multiple of the essential matrix directly from only five image correspondences. Not only that
five is smaller than seven but using the calibration right from the beginning permits all points
of the scene generating the correspondences to lie in a plane.
We start from Equation 12.42 to get ~x1γ1 and ~x2γ2 from Equation 12.43 which are related by

~xJ
2β2

K´J
2

E K´1

1
~x1β1

“ 0 (12.70)

~xJ
2γ2

E ~x1γ1 “ 0 (12.71)

The above equation holds true for all pairs of image points p~x1γ1 , ~x2γ2q that are in correspondence,
i.e. are projections of the same point of the scene.

12.5.1 Constraints on E

Matrix E has rank two, and therefore there holds

|E| “ 0 (12.72)

true.
We will now derive additional constraints on E. Let us consider that we can write, Equa-

tion 12.48,

E “ R
”

~Cǫ1

ı

ˆ
(12.73)
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Let us introduce ~Cǫ1 “
“

x y z
‰J

and evaluate

EJE “
ˆ

R
”

~Cǫ1

ı

ˆ

˙J
R
”

~Cǫ1

ı

ˆ
“
”

~Cǫ1

ıJ

ˆ
RJR

”

~Cǫ1

ı

ˆ
“
”

~Cǫ1

ıJ

ˆ

”

~Cǫ1

ı

ˆ
(12.74)

“

»

–

0 z ´y
´z 0 x

y ´x 0

fi

fl

»

–

0 ´z y

z 0 ´x
´y x 0

fi

fl “

»

–

z2 ` y2 ´x y ´x z
´x y z2 ` x2 ´y z
´x z ´y z y2 ` x2

fi

fl

“

»

–

x2 ` y2 ` z2

x2 ` y2 ` z2

x2 ` y2 ` z2

fi

fl ´

»

–

xx x y x z

x y y y y z

x z y z z z

fi

fl

“ }~Cǫ1}2I ´ ~Cǫ1
~CJ
ǫ1

(12.75)

We can multiply the above expression by E from the left again to get an interesting equation

E EJE “ E
´

}~Cǫ1}2I ´ ~Cǫ1
~CJ
ǫ1

¯

“ }~Cǫ1}2E “ 1

2
trace pEJEq E (12.76)

or equivalently
2 E EJE “ trace pEJEq E (12.77)

which provides nine equations on elements of E.
In fact, these equations also imply |E| “ 0. Consider that Equation 12.77 implies

`

2 E EJ ´ trace pEJEq I
˘

E “ 0 (12.78)

For Equation 12.78 to hold true, either E can’t have the full rank, i.e. |E| “ 0, or 2 E EJ ´
trace pEJEq I “ 0. The latter case gives

0 “ trace p2 E EJ ´ trace pEJEq Iq “ 2 trace pE EJq ´ 3 trace pEJEq (12.79)

Let us check the relationship between trace pEJEq and trace pE EJq now. We write

trace pEJEq “ pE211 ` E221 ` E231q ` pE212 ` E222 ` E232q ` pE213 ` E223 ` E233q
“ pE211 ` E212 ` E213q ` pE221 ` E222 ` E223q ` pE231 ` E232 ` E233q
“ trace pE EJq (12.80)

Substituting the above into Equation 12.79 gets us

0 “ 2 trace pE EJq ´ 3 trace pEJEq “ ´trace pEJEq (12.81)

Equation 2 E EJ ´ trace pEJEq I “ 0 also implies

2 E EJ “ trace pEJEq I (12.82)

|2 E EJ| “ |trace pEJEq I| (12.83)

23|E|2 “ ptrace pEJEqq3 (12.84)

23|E|2 “ 0 (12.85)

|E| “ 0 (12.86)
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Therefore, Equation 12.77 implies |E| “ 0.
Let us now look at constraints on matrix G “ τ E, for some non-zero real τ . We can multiply

Equation 12.78 by τ3 to get

τ3
`

2 E EJ ´ trace pEJEq I
˘

E “ 0 (12.87)
`

2 pτ Eq pτ EJq ´ trace ppτ EJq pτ Eqq I
˘

pτ Eq “ 0 (12.88)
`

2 G GJ ´ trace pGJGq I
˘

G “ 0 (12.89)

Clearly, rank pGq “ rank pτ Eq “ rank pEq “ 2.
We conclude that constraints on E and G are the same.

12.5.2 Geometrical interpretation of Equation 12.77

~y

~C

~C ˆ ~y

~C ˆ p~C ˆ ~yq
~C ˆ p~C ˆ p~C ˆ ~yqq

Figure 12.3: Identity ~Cǫ1 ˆ p~Cǫ1 ˆ p~Cǫ1 ˆ ~yqq “ ´}~Cǫ1}2p~Cǫ1 ˆ ~yq.

Let us provide a geometrical interpretation of Equation 12.77. We will mutiply both sides of
Equation 12.77 by a vector ~y P R3 and write

2 E EJE ~y “ trace pEJEq E ~y (12.90)

2 R
”

~Cǫ1

ı

ˆ

”

~Cǫ1

ıJ

ˆ

”

~Cǫ1

ı

ˆ
~y “ 2 }~Cǫ1}2 R

”

~Cǫ1

ı

ˆ
~y (12.91)

´R
”

~Cǫ1

ı

ˆ

”

~Cǫ1

ı

ˆ

”

~Cǫ1

ı

ˆ
~y “ R }~Cǫ1}2

”

~Cǫ1

ı

ˆ
~y (12.92)

”

~Cǫ1

ı

ˆ

”

~Cǫ1

ı

ˆ

”

~Cǫ1

ı

ˆ
~y “ ´}~Cǫ1}2

”

~Cǫ1

ı

ˆ
~y (12.93)

Now, we use that for every two vectors ~x, ~y P R3 there holds r~xsˆ ~y “ ~xˆ ~y true to get

~Cǫ1 ˆ p~Cǫ1 ˆ p~Cǫ1 ˆ ~yqq “ ´}~Cǫ1}2p~Cǫ1 ˆ ~yq (12.94)

which is a familiar identity of the vector pruduct in R3, Figure 12.3.
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12.5.3 Characterization of E

Let us next see that a non-zero 3 ˆ 3 real matrix satisfying Equation 12.77 has rank two and
can be written in the form of Equation 12.73 for some rotation R and some vector Cǫ1 .
Consider a real 3ˆ 3 matrix E such that Equation 12.77 holds true. We will make here use of

the SVD decomposition [5, p. 411] of real matrices. We can write

E “ U

»

–

a

b

c

fi

fl VJ (12.95)

for some real non-negative a, b, c and some orthogonal real 3ˆ3 matrices U, V, such that UJ U “ I,
and VJ V “ I [5, p. 411]. One can see that UJ U “ I, and VJ V “ I implies |U| “ ˘1, |V| “ ˘1.
Using Equation 12.95 we get

E EJ “ U

»

–

a2

b2

c2

fi

fl UJ, EJE “ V

»

–

a2

b2

c2

fi

fl VJ (12.96)

and trace pEJEq “ trace pV D2VJq “ trace pV D2V´1q “ trace pD2q since matrices D2 and E EJ are
similar and hence their traces, which are the sums of their eigenvalues, are equal. Now, we can
rewrite Equation 12.77 as

¨

˝2 U

»

–

a2

b2

c2

fi

fl UJ ´ pa2 ` b2 ` c2q I

˛

‚U

»

–

a

b

c

fi

fl VJ “ 0 (12.97)

2 U

»

–

a3

b3

c3

fi

fl VJ ´ pa2 ` b2 ` c2q U

»

–

a

b

c

fi

fl VJ “ 0 (12.98)

Matrices U, V are regular and thus we get

2

»

–

a3

b3

c3

fi

fl ´ pa2 ` b2 ` c2q

»

–

a

b

c

fi

fl “ 0 (12.99)

which finally leads to the following three equations

a3 ´ a b2 ´ a c2 “ a pa2 ´ b2 ´ c2q “ 0 (12.100)

b3 ´ b a2 ´ b c2 “ b pb2 ´ c2 ´ a2q “ 0 (12.101)

c3 ´ c a2 ´ c b2 “ c pc2 ´ a2 ´ b2q “ 0 (12.102)

We see that there are the following two exclusive cases:

1. If any two of a, b, c are zero, then the third one is zero too. For instance, if a “ b “ 0, then
Equation 12.102 gives c3 “ 0. This can’t happen for a non-zero E.

2. If any two of a, b, c are non-zero, then the two non-zero are equal and the third is zero.
For instance, if a ‰ 0 and b ‰ 0, then Equations 12.100, 12.101 imply c2 “ 0 and thus
a2 “ b2, which gives a “ b since a, b are non-negative, i.e. rank pEq “ 2.
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We thus conclude that E can be written as

E “ U

»

–

a

a

0

fi

fl VJ “ U

»

–

0 1 0
´1 0 0
0 0 1

fi

fl

»

–

0 ´a 0
a 0 0
0 0 0

fi

fl VJ (12.103)

“ W

»

–

»

–

0
0
a

fi

fl

fi

fl

ˆ

VJ “ W

»

–VJV

»

–

0
0
a

fi

fl

fi

fl

ˆ

VJ “ W
pVJq´J

|pVJq´J|

»

–V

»

–

0
0
a

fi

fl

fi

fl

ˆ

(12.104)

“ psign p|W|qq2 W VJ sign p
ˇ

ˇVJˇ
ˇq ra v3sˆ (12.105)

“ sign p|W|q W VJ sign p
ˇ

ˇVJˇ
ˇq rsign p|W|q a v3sˆ (12.106)

“ R rsign p|U|q a v3sˆ (12.107)

for some non-negative a and the third column v3 of V. Parameter a is zero for E “ 0 and positive
for rank two matrices E. We introduced a new matrix W in Equation 12.104, which is the product
of U and a rotation round the z axis. We also used VJV “ I, and finally Equation 2.51. In Equa-
tion 12.105 we used psign p|W|qq2 “ 1, V´J “ V for VJV “ I. Matrix R “ sign p|pWq|q W VJ sign p

ˇ

ˇVJˇ
ˇq

in Equation 12.107 is a rotation since sign p|pWq|q W as well as VJ sign p
ˇ

ˇVJˇ
ˇq are both rotations.

Finally, we see that sign p|W|q “ sign p|U|q.

12.5.4 Computing a non-zero multiple of E

Let us now disscuss how to compute a non-zero multiple of matrix E from image matches.

12.5.4.1 Selecting equations

Every pair of image matches p~x1γ1 , ~x2γ2q provides a linear constratint on elements of E in the form
of Equation 12.71 and matricial Equation 12.77 gives nine polynomial constraints for elements
of E.
We have already seen in Paragraph 12.2 that a non-zero multiple of E can be obtained from

seven absolutely accurate point correspondences using the constraint |E| “ 0. The solution was
obtained by solving a set of polynomial equations out of which seven were linear and the eighth
one was a third order polynomial.
Let us now see how to exploit Equation 12.77 in order to compute a non-zero multiple of E

from as few image matches as possible.
An idea might be to use Equations 12.77 instead of |E| “ 0. It would be motivated by the

fact that Equations 12.77 imply equation |E| “ 0 for real 3 ˆ 3 matrices E. Unfortunately, this
implication does not hold true when we allow complex numbers in E1, which we have to do if we

1Equation |E| “ 0 can’t be generated from Equations 12.77 as their algebraic combination, i.e. |E| “ 0 is not
in the ideal [2] generated by Equations 12.77. It means that there might be some matrices E satisfying
Equations 12.77 which do not satisfy |E| “ 0. We know that such matrices can’t be real. The proof of the
above claim can be obtained by the following program in Maple [18]

>with(LinearAlgebra):

>with(Groebner):

>E:=<<e11|e12|e13>,<e21|e22|e23>,<e31|e32|e33>>:

>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:

>eq:=expand(convert(convert(eM,Vector),list)):

>v:=indets(eq):
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want to obtain E as a solution to a polynomial system without using any additional constraints.
We have to therefore use |E| “ 0 as well.
The next question is whether we have to use all nine Equations 12.77. It can be shown similarly

as above that indeed none of the equations 12.77 is in the ideal [2] generated by the others2.
Therefore, we have to use all Equations 12.77 as well as |E| “ 0. Hence we have altogether ten
polynomial equations of order higher than one.
We have more equations than unknowns but they still do not fully determine E. We have to

add some more equations from image matches. To see how many equations we have to add, we
evaluate the Hilbert dimension [2] of the ideal generated by Equations 12.77 and |E| “ 0. We
know [2] that a system of polynomial equations has a finite number of solutions if and only if
the Hilbert dimension of the ideal generated by the system is zero.
The Hilbert dimension of the ideal generated by Equations 12.77 and |E| “ 0 is equal to

>mo:=tdeg(op(v)):

>G:=Basis(eq,mo):

>Reduce(Determinant(E),G,mo);

e11 e22 e33 - e11 e23 e32 + e21 e32 e13 - e21 e12 e33 + e31 e12 e23 - e31 e22 e13

which computes the Groebner basis G of the ideal generated by Equations 12.77 and verifies that the remainder
on division of |E| by G is non-zero [2].

2To show that none of the equations 12.77 is in the ideal generated by the others, we run the following test in
Maple.

>with(LinearAlgebra):

>with(Groebner):

>E:=<<e11|e12|e13>,<e21|e22|e23>,<e31|e32|e33>>:

>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:

>eq:=expand(convert(convert(eM,Vector),list)):

>

>ReduceEqByEqn:=proc(eq,eqn)

local mo,G;

mo:=tdeg(op(indets(eqn)));

G:=Basis(eqn,mo);

Reduce(eq,G,mo);

end proc:

>

>for i from 1 to 9 do

ReduceEqByEqn(eq[i],eq[[op({$1..9} minus {i})]]);
end;

e113 `e11 e122 `e11 e132 `e11 e212 `2 e21 e12 e22`2 e21 e13 e23`e11 e312 `2 e31 e12 e32`2 e31 e13 e33´e11 e222 ´e11 e322 ´e11 e232 ´
e11 e332

e112 e21`2 e11 e12 e22`2 e11 e13 e23`e213 `e21 e222 `e21 e232 `e21 e312 `2 e31 e22 e32`2 e31 e23 e33´e21 e122 ´e21 e322 ´e21 e132 ´
e21 e332

e112 e31`2 e11 e12 e32`2 e11 e13 e33`e212 e31`2 e21 e22 e32`2 e21 e23 e33`e313 `e31 e322 `e31 e332 ´e31 e122 ´e31 e222 ´e31 e132 ´
e31 e232

e12 e112 `e123 `e12 e132 `2 e22 e11 e21`e12 e222 `2 e22 e13 e23`2 e32 e11 e31`e12 e322 `2 e32 e13 e33´e12 e212 ´e12 e312 ´e12 e232 ´
e12 e332

2 e12 e11 e21`e122 e22`2 e12 e13 e23`e22 e212 `e223 `e22 e232 `2 e32 e21 e31`e22 e322 `2 e32 e23 e33´e22 e112 ´e22 e312 ´e22 e132 ´
e22 e332

2 e12 e11 e31`e122 e32`2 e12 e13 e33`2 e22 e21 e31`e222 e32`2 e22 e23 e33`e32 e312 `e323 `e32 e332 ´e32 e112 ´e32 e212 ´e32 e132 ´
e32 e232

e13 e112 `e13 e122 `e133 `2 e23 e11 e21`2 e23 e12 e22`e13 e232 `2 e33 e11 e31`2 e33 e12 e32`e13 e332 ´e13 e212 ´e13 e312 ´e13 e222 ´
e13 e322

2 e13 e11 e21`2 e13 e12 e22`e132 e23`e23 e212 `e23 e222 `e233 `2 e33 e21 e31`2 e33 e22 e32`e23 e332 ´e23 e112 ´e23 e312 ´e23 e122 ´
e23 e322

2 e13 e11 e31`2 e13 e12 e32`e132 e33`2 e23 e21 e31`2 e23 e22 e32`e232 e33`e33 e312 `e33 e322 `e333 ´e33 e112 ´e33 e212 ´e33 e122 ´

e33 e222
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six3. An extra linear equation reduces the Hilbert dimension by one [2]. Hence, five additional
(independent) linear equations from image matches will reduce the Hilbert dimension of the
system to one.
Since all equations 12.71, 12.77 and |E| “ 0 are homogeneous, we can’t reduce the Hibert

dimension below one by adding more equations 12.77 from image matches. This reflects the fact
that E is fixed by image measurements only up to a non-zero scale.
To conclude, five independent linear equations 12.71 plus Equations 12.77 and |E| “ 0 fix E

up to a non-zero scale.
The scale of E has to be fixed in a different way. For instance, one often knows that some of the

elements of E can be set to one. By doing so, an extra independent linear equation is obtained
and the Hilbert dimension is reduced to zero. Alternatively, one can ask for }E}2 “ 1, which
adds a second order equation. That also reduces the Hilbert dimension to zero but doubles the
number of solutions for E.

12.5.4.2 Solving the equations

We will next describe one way how to solve equations

~xJ
i,2γ2

E ~xi,1γ1 “ 0,
`

2 E EJ ´ trace pEJEq I
˘

E “ 0, |E| “ 0, i “ 1, . . . , 5 (12.108)

We will present a solution based on [19], which is somewhat less efficient than [20, 21] but
requires only eigenvalue computation.
First, using Equation 2.90 from Paragraph 2.5, we can write

»

—

—

—

—

—

—

–

~xJ
1,1γ1

b ~xJ
1,2γ2

~xJ
2,1γ1

b ~xJ
2,2γ2

~xJ
3,1γ1

b ~xJ
3,2γ2

~xJ
4,1γ1

b ~xJ
4,2γ2

~xJ
5,1γ1

b ~xJ
5,2γ2

~aJ

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

vpEq “

»

—

—

—

—

—

—

–

0
0
0
0
0
1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(12.109)

to obtain a 6ˆ9 matrix of a system of linear equations on vpEq. Row ~aJ can be chosen randomly
to fix the scale of vpEq. There is only a negligible chance that it will be chosen in the orthogonal
complement of the span of the solutions to force the solutions be trivial. If so, it can be detected
and a new ~aJ generated.
Assuming that the rows of the matrix of the system are linearly independent, we obtain a

3-dimensional affine space of solutions. After rearranging the particular solution, resp. the basis
of the solution of the associated homogeneous system, back to 3ˆ 3 matrices G0, resp. G1, G2, G3,
we will get all solutions compatible with Equation 12.109 in the form

G “ G0 ` x G1 ` y G2 ` z G3 (12.110)

3The Hilber Dimension of the ideal is computed in Maple as follows

>with(LinearAlgebra):

>E:=<<e11|e12|e13>,<e21|e22|e23>,<e31|e32|e33>>:

>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:

>eq:=expand(convert(convert(eM,Vector),list)):

>with(PolynomialIdeals):

>HilbertDimension(<op(eq),Determinant(E)>);

6
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for x, y, z P R.
Now, we can substitute G for E into the two remaining equations in 12.108. We get ten

trird-order polynomial equations in three unknowns and with 20 monomials. We can write it as

M m “ 0 (12.111)

where M is a constant 10 ˆ 20 matrix4 and

mJ “ rx3, y x2, y2x, y3, z x2, z y x, z y2, z2x, z2y, z3, x2, y x, y2, z x, z y, z2, x, y, z, 1s (12.112)

is a vector of 20 monomials.
Next, we rewrite the system 12.112 as

pz3C3 ` z2C2 ` z C1 ` C0q c “ 0 (12.113)

with

C “ z3C3 ` z2C2 ` z C1 ` C0 (12.114)

containing 10 monomials. Matrices C0, . . . , C4 are constant 10 ˆ 10 matrices

C0 “
“

m1 m2 m3 m4 m11 m12 m13 m17 m18 m20
‰

(12.115)

C1 “
“

0 0 0 0 m5 m6 m7 m14 m15 m19
‰

(12.116)

C2 “
“

0 0 0 0 0 0 0 m8 m9 m16
‰

(12.117)

C3 “
“

0 0 0 0 0 0 0 0 0 m10
‰

(12.118)

where mi are columns of M.
Since m contains all monomials in x, y, z up to degree three, we could have written similar

equations as Equation 12.113 with x and y.
Equation 12.113 is known as a Polynomial Eigenvealue Problem (PEP) [22] of degree three.

The strandard solution to such a problem is to relax it into a generelized eigenvalue problem of
a larger size as follows.

4Matrix M can be obtained by the following Maple [18] program

>with(LinearAlgebra):

>G0:=<<g011|g012|g013>,<g021|g022|g023>,<g031|g032|g033>>:

>G1:=<<g111|g112|g113>,<g121|g122|g123>,<g131|g132|g133>>:

>G2:=<<g211|g212|g213>,<g221|g222|g223>,<g231|g232|g233>>:

>G3:=<<g311|g312|g313>,<g321|g322|g323>,<g331|g332|g333>>:

>trc:=E->simplify((2*E.Transpose(E)-Trace(Transpose(E).E)*IdentityMatrix(3,3)).E):

>eq:=[op(convert(trc(G),listlist)),Determinant(G)]:

>mo:=tdeg(x,y,z);

>m:=PolyVarMonomials(eq,mo);

m :“ rx3, y x2, y2x, y3, z x2, z y x, z y2, z2x, z2y, z3, x2, y x, y2, z x, z y, z2, x, y, z, 1s

>M:=PolyCoeffMatrix(eq,m,mo):

>M[1,1];

2 g122 g112 g121 ` 2 g133 g113 g131 ´ g1232 g111 ´ g1222 g111 ` 2 g132 g112 g131 ´ g1322 g111 ` g1312 g111 ` g1122 g111 ` g1113 `

2 g123 g113 g121 ´ g1332 g111 ` g1212 g111 ` g1132 g111

128



T. Pajdla. Elements of Geometry for Computer Vision 2020-2-17 (pajdla@cvut.cz)

We can write z2c “ z pzcq and zc “ z pcq altogether with Equation 12.113 in a matrix form
as

»

–

0 I 0

0 0 I

´C0 ´C1 ´C2

fi

fl

»

–

c

zc

z2c

fi

fl “ z

»

–

I 0 0

0 I 0

0 0 C3

fi

fl

»

–

c

zc

z2c

fi

fl (12.119)

A v “ z B v (12.120)

This is a Generelized Eigenvalue Problem (GEP) [22] of size 30 ˆ 30, which can be solved for
z and v. Values of x, y can be recovered from v as x “ c8{c10 and x “ c9{c10. It provides 30
solutions in general.
When C0 is regular, we can pass to a standard eigenvalue problem for a non-zero z by inverting

A and using w “ 1{z
»

–

´C´1

0
C1 ´C´1

0
C2 ´C´1

0
C3

I O 0

0 I 0

fi

fl

»

–

w2c

wc

c

fi

fl “ w

»

–

w2c

wc

c

fi

fl (12.121)
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rns, 5
determinat, 5
sign, 5
determinant, 6
inversion, 5
monotonic, 6
permutation, 5

affine coordinate system, 23
affine function, 15
affine space, 21
axioms of linear space, 18
axioms of affine space, 22

basis, 18
bound vector, 17

camera pose, 42
camera calibration matrix, 42
camera cartesian coordinate system, 42
camera calibration, 42
camera coordinate system, 34
camera projection matrix, 46
coordinate linear space, 2
coordinates, 19
cross product, 6

dual basis, 9
dual space, 9

epipolar plane, 113
epipolar geometry, 113
epipolar line, 113
epipole, 113
essential matrix, 114

focal length, 42
free vector, 20
Frobenius norm, 119
fundamental matrix, 114

geometric scalars, 16
geometric vector, 17

homogeneous coordinates, 93
homogeneous coordinates of a line, 93
homogeneous coordinates of a point, 93
homography, 60
horizon, 99

ideal line, 92
ideal plane, 102
image calibration matrix, 46
image plane, 34
image projection matrix, 37

join, 95

Kronecker product, 12

line at infinity, 92
linear function, 15
linear space, 18

marked ruler, 15
meet, 95

omnidirectional image, 73
origin of affine coordinate system, 23

panoramic image, 73
partition, 19
perspective camera, 34
point at infinity, 89
position vector, 23
principal plane, 34
principal point, 45
projection center, 34
projective space, 88

real projective plane
affine point, 88, 90
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algebraic model, 89
geometrical model, 88
ideal point, 89, 90
line, 90
point, 88

spherical image, 73
standard basis, 2

three-dimensional real projective space, 101

vanishing point, 98
vanishing line, 99
vector product, 6
vector product, 7

world coordinate system, 34
world unit length, 50

zero bound vector, 17
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