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K-Nearest neighbors classification

For a query X:
» Find K nearest X from the tranining (labeled) data.

» Classify to the class with the most exemplars in the set above.

1-nearest neighbour classifier
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Notes

Some properties:
e A nonparametric method — does not assume anything about the distribution (that it is Gaussian etc.)
e Can be used for classification or regression. Here: classification.
e Training: Only store feature vectors and their labels.

e Very simple and suboptimal. With unlimited nr. prototypes, error never worse than twice the Bayes rate
(optimum).
e instance-based or lazy learning — function only approximated locally; computation only during inference.

e Limitations

— Curse of dimensionality - for every additional dimension, one needs exponentially more points
to cover the space.

— Comp. complexity - has to look through all the samples all the time. Some speed-up is
possible. E.g., storing data in a K-d tree.

— Noise. Missclassified examples will remain in the database....



K — Nearest Neighbor and Bayes j* = argmax; P(s;|X)

Assume data:
» N points X in total.

> Nj points in s; class. Hence, >_; Nj = N.

We want classify X. We draw a sphere centered at X containing K points irrespective of class.

V' is the volume of this sphere. P(sj|X) =7

P(s) = 2 g

Notes

0 05 1

A K—NN classifier can be understood as a non-parametric density estimator. (Figure from [1])
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NN classification example
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Notes
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NN classification example

.5 Pentagon data 1-nearest neighbour classifier
e
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Notes
Fast on “learning”, very slow on decision.

There are ways for speeding it up, search for NN editing - making training data sparser, keeping only representative

points.



What is nearest? Metrics for NN classification ...

A function D which is: nonnegative,
reflexive, symmetrical, satisfying trian-
gle inequality:

D(3,b) >0
D(3,b)=0iff3=0b
D(3,b) = D(b, 3)

D(3,b) + D(b,2) > D(3,?)

Notes

When taking X as all the intenties, “5" shifted 3 pixels left is farther from its etalon thant to etalon of “8”. One
could consider preprocessing:

1.

shift query image to all possible positions and compute min distances
2. take the min(min(distance))

3. perform NN classification

Costly ...
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Etalon based classification

Pentagon data minimum distance from etalons
15
1.5
1 . 1h
X X * gk ok
XX sk X
L X
0s A JE 05 *
x

-1 -1+
_15 i i i i i i _15 L i L i
-15 -1 -0.5 0 0.5 1 15 -1.5 -1 -0.5 0 0.5
X X

1 1

Represent X by etalon , € per each class s € S

Notes



Separate etalons

minimum distance from etalons

s* = argmin||X — &||?

seS

Notes




What etalons?

If N(X|ii, X); all classes same covariance matri-
ces, then

minimum distance from etalons

odef L P
€s = Hs |XS|Z

ieXxs

and separating hyperplanes halve distances be-
tween pairs. ~

Notes
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Etalon based classification, €5 = ji.

s Pentagon data minimum distance from etalons
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Notes
Some wrongly classified samples. We like the simple idea. Are there better etalons? How to find them?




Digit recognition - etalons € = ji,

etalon for 0 etalon for 1 etalon for 2 etalon for 3 etalon for 4 etalon for 5 etalon for 6 etalon for 7 etalon for 8 etalon for 9

D123456789

Figures from [5]
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Better etalons — Fischer linear discriminant

4.

o

12 /34

Notes
Searching for a projection of the data to minimize intra-class variance and maximize inter-class variance.




Better etalons — Fischer linear discriminant
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» Dimensionality reduction
» Maximize distance between means, ...

» ...and minimize within class variance. (minimize overlap)
Figures from [1]
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Notes
Searching for a projection of the data to minimize intra-class variance and maximize inter-class variance.



Better etalons?

minimum distance from etalons perceptron

Figures from [5]

13 /34
Notes

This is just to show that there is an etalon classifier that make no mistake on the data. But how to find the best
etalons?



Etalon classifier — Linear classifier

s* = argmin ||X — &> = argmin(X X — 28] X + &) &) =
seS seS

1
= arg min(i’TS(’ -2 (é’I)‘(’ — E(EIES))> =

seS
. T
= argrsnelg(x X—2(8 X+ bs)) =
T o 1 1.
=|arg Tea_g((esTx + bs)| = arg Teasxgs(x). bs = —EesTes

Linear function (plus offset)

gs(x) = w) x + wyo

14 /34

Notes
The result is a linear discriminant function — hence etalon classifier is a linear classifier.
We classify into the class with highest value of the discriminant function.
w; is a generalized etalon. How do we find it? Such that it is better than just the mean of the class members in
the training set.



Learning and decision

Learning stage - learning models/function/parameters from data.

Decision stage - decide about a query X.
What to learn?

» Generative model : Learn P(X,s). Decide by computing P(s|X).
» Discriminative model : Learn P(s|X)

—

» Discriminant function : Learn g(X) which maps X directly into class labels.

15 /34

Notes
Generative models because by sampling from them it is possible to generate synthetic data points X.
For the discriminative model one can consider, e.g. logistic function:

1

f(x) = [ppre=—)



(1) Linear discriminant function - two class case

g(x) =w'x+ wp

Decide s; if g(x) > 0 and s, if g(x) <0

Figure from [2] -

Notes
g(x) = 0 is the separating hyperplane. Its dimension is one less that that of the input space — for 2D space, it is
a line. (This is a bit counterintuitive - “hyper” normally means above, more...)

What is the geometric meaning of the weight vector w?



(1) Linear discriminant function - two class case

g(x) =w'x+ wp
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Notes
g(x) = 0 is the separating hyperplane. Its dimension is one less that that of the input space — for 2D space, it is
a line. (This is a bit counterintuitive - “hyper” normally means above, more...)

What is the geometric meaning of the weight vector w?



Separating hyperplane

WTX1 + wp = WTX2 + wo

WT(

X1—X2):0

17 /34

Notes

(any) vector (x1 — x2) lies on the separating hyperplane, w is perpendicular to it
Summary: A linear discriminant function divides the feature space by a hyperplane decision surface.

e The orientation of the surface is detemined by the normal vector w.

e The location of the surface is determined by the bias term wy.



Separating hyperplane

WTX1 + wp = WTX2 + wo

w'(x; —x)=0

g(x) gives an algebraic measure of the
distance from x to the hyperplane.

LW
X=X+ r—-
P wll
as g(xp) =0,

and g(x) = w'x + wp, then:

g(x) = rllw]]

Figure from [2] i

Notes

(any) vector (x1 — x2) lies on the separating hyperplane, w is perpendicular to it
Summary: A linear discriminant function divides the feature space by a hyperplane decision surface.

e The orientation of the surface is detemined by the normal vector w.

e The location of the surface is determined by the bias term wy.



Separating hyperplane from g; and g

1

. ST o ST 5

gl(X) = M1 X— 5#1 H1
. . 1 1.

&%) = fi X = iz fiy

Separating hyperplane:
81(X) = g2(x)

1, .+
1

(fiy — i2) T X = 5 iz [i2)

fiy — fip fip

18 /34

Notes

Think about case where ||fi;|| = ||[i,]| and reason about simplified equation of the separating hyperplane.




Two classes set-up

|S| = 2, i.e. two states (typically also classes)

s=1, if wx+w >0,
g(x) =
s=-1, if wx+w<0.

19 /34
Notes

There are two steps here:

1. Transformation to homogenous notation with augmented feature vector and augmented weight vector.

2. “Normalization” that simplifies treatment of the two-class case: labels can be ignored. Just look for a

weight vector w such that w'x > 0

It means, the sign of x depends on the class it belongs to! Keep in mind.
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Two classes set-up

|S| = 2, i.e. two states (typically also classes)

s=1, if wx+w >0,

g(x) =
s=-1, if wx+w<0.
1 W
Xj w
for all x’
w x>0
drop the dashes to avoid notation clutter.
19/34
Notes

There are two steps here:

1. Transformation to homogenous notation with augmented feature vector and augmented weight vector.

2. “Normalization” that simplifies treatment of the two-class case: labels can be ignored. Just look for a

weight vector w such that w'x > 0

It means, the sign of x depends on the class it belongs to! Keep in mind.



Solution (graphically)

solution solution
region X2 region X2

X! X1
N
Fou
training samples. Left: orginal, Right: sign corrected
Figure from [2] (notation changed)
20 /34

Notes
Four training samples (black for class/category wi, red for w»). Left: Raw data Right: “Normalized data”. Class
w2 member replaced by their negatives... Simplifies the situation: labels can be ignored. Just look for a weight
vector w such that w'x > 0

Before: defining the linear discriminant function.
Now: How can we obtain it from (labeled) data?




Learning w, gradient descent

A criterion to be minimized J(w); assume to be known

Initialize w, threshold @, learning rate «
k+0
repeat
k+—k+1
w < w — a(k)VJ(w)
until |a(k)VJ(w)| < 6
return w

21/34
Notes

This is a general scheme, we do not know J(w), yet.
We're looking into error-based classification methods: missclassified examples are used to tune the classifier...

We already discussed (stochastic) Gradient descent when talking about Q—function learning



Learning w - Perceptron criterion

Goal: Find a weight vector w € R0+ (original feature space dimensionality is D) such that:

w'x; >0 (Vje{1,2,...,m})

solution
region X2

solution
region X2

solution
region X2 22/34

Notes
What are the possible choices for J(w)? First choice: number of missclassi
is piecewise constant.
Better choice: perceptron criterion function.
Mind that w'x; < 0 for x € X

his function

What is VJ(w) equal to?




Learning w - Perceptron criterion

Goal: Find a weight vector w € RP*1 (original feature space dimensionality is D) such that:

w'x; >0 (Vje{1,2,...,m})

(Perceptron) Criterion to be minimized: solution
region X2

J(w) = Z —w'x

xeX

where X is a set of missclassified x.

VI(w) =) —x

xEX

22 /34
Notes

What are the possible choices for J(w)? First choice: number of missclassified examples. Problem: this function
is piecewise constant.

Better choice: perceptron criterion function.

Mind that w'x; < 0 for x € X

Geometrically: J(w) o sum of the distance of the missclassified samples to the decision boundary.
What is VJ(w) equal to?




(Batch) Perceptron algorithm

Initialize w, threshold @, learning rate «
k+0
repeat
k+—k+1
w =W+ ak) Do r ) X
until [o(k) > ye ) X < 0
return w

23/34
Notes
Next weight vector ~ adding some multiple of the sum of the missclassified samples to the present weight vector.




Fixed-increment single-sample Perceptron

n patterns/samples, we are looping over all patterns repeatedly
Initialize w
k<0
repeat
k < (k+1) mod n
if x* missclassified, then w < w + x*
until all x correctly classified
return w

24 /34
Notes

As we are looping over all patterns repeatedly, it is not an on-line algorithm




Perceptron iterations/loops

n patterns/samples, we are loop-
2 ing over all patterns repeatedly:
0000000000
00000000 Initialize w
1 k<0
00000 repeat
0 000000000
000000000 k t (k+ 1) mOd n
if x* missclassified, then
_1 L
0 w 1 w < w + xK
until all x correctly classified
-2 .?1/
%0 return w
2 0 1 2 0 tor 10
10—
£0.5
0.0 oo
0 2 4 6 8 10

iter

(Dark) Blue is w after update step. Reds are +, Greens —.
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Notes
Keep in mind the £+ normalization of x.

s=1, |if WTX+W0>O,

g(x) =
s=-1, |if WTX+W0<0.

Xi=s ! w=|"
7 X; ) - w

Track the iteration steps. After each update x, draw a separating line for the next and verify.

(as discussed few slides ago)
Red x are +, green are —



Perceptron iterations/loops
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Notes

n patterns/samples, we are loop-
ing over all patterns repeatedly:

Initialize w
k<0
repeat
k < (k+1) mod n
if xX missclassified, then
W — w + xk
until all x correctly classified
return w

25 /34

Keep in mind the £+ normalization of x.
s=1, if wx+w >0,

g(x) =
s=-1, |if WTX+W0<0.

Xi=s ! w=|"
7 X; ) - w

Track the iteration steps. After each update x, draw a separating line for th

(as discussed few slides ago)
Red x are +, green are —

e next and verify.



Perceptron iterations/loops
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Notes
Keep in mind the £+ normalization of x.
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i =5 ! w=|"
7 X; ) - w

Track the iteration steps. After each update x, draw a separating line for the next and verify.

(as discussed few slides ago)
Red x are +, green are —



Perceptron iterations/loops
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Perceptron iterations/loops

n patterns/samples, we are loop-
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Perceptron iterations/loops
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Perceptron iterations/loops

n patterns/samples, we are loop-
2 5 : )
06060600000 ing over all patterns repeatedly:
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Notes

Keep in mind the £+ normalization of x.
s=1, if wx+w >0,

g(x) =
s=-1, |if WTX+W0<0.

i =5 ! w=|"
7 X; ) - w

Track the iteration steps. After each update x, draw a separating line for the next and verify.

(as discussed few slides ago)
Red x are +, green are —



Etalons: means vs. found by perceptron

1.2

0.8

0.4

minimum distance from etalons

Etalons and separating hyperplanes found by perceptron

15F 7 T T T T T T

10

-5

-10

Figures from [5]

Notes

26 /34




Digit recognition - etalons means vs. perceptron

etalon for 0 etalon for 1 etalon for 2 etalon for 3 etalon for 4 etalon for 5 etalon for 6 etalon for 7 etalon for 8 etalon for 9

D723456789

etalon for 0 etalon for 1 etalon for 2 etalon for 3 etalon for 4 etalon for 5 etalon for 6 etalon for 7 etalon for 8 etalon for 9

Figures from [5]

Notes

27 /34

“Prototypes”’ resulting from the perceptron algorithm are harder to interpret because they are not means —

instead, they are optimized for separating the classes.



What if not lin separable?

-10 -05 00 05 10 15 20

Dimension lifting

x = [x,x*]"

28 /34
Notes




Dimension lifting, x = [x, x?]"
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Notes



Performance comparison, parameters fixed

Matching table for test set

Matching table for test set
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Notes

Why there some errors in perceptron results? We said zero error on training set.



Accuracy vs precision

(b)

https://commons.wikimedia.org/wiki/File:Precision_versus_accuracy.svg

Notes

31/34

Accuracy: how close (is your model) to the truth. Precision: how consistent/stable
In German:

e Accuracy: Richtigkeit

e Precision: Prazision

e Both together: Genauigkeit
In Czech:

e Accuracy: Vé&rnost, pfesnost.

e Precition: Rozptyl,


https://commons.wikimedia.org/wiki/File:Precision_versus_accuracy.svg

Accuracy vs precision

Reference value

Probability Accuracy
density N g

>

< — > Value
Precision

https://en.wikipedia.org/wiki/Accuracy_and_precision
Notes

Accuracy: how close (is your model) to the truth. Precision: how consistent/stable.
Think about terms bias and error. |
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https://en.wikipedia.org/wiki/Accuracy_and_precision
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