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K -Nearest neighbors classification

For a query ~x :

I Find K nearest ~x from the tranining (labeled) data.

I Classify to the class with the most exemplars in the set above.
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Notes

Some properties:

• A nonparametric method – does not assume anything about the distribution (that it is Gaussian etc.)

• Can be used for classification or regression. Here: classification.

• Training: Only store feature vectors and their labels.

• Very simple and suboptimal. With unlimited nr. prototypes, error never worse than twice the Bayes rate
(optimum).

• instance-based or lazy learning – function only approximated locally; computation only during inference.

• Limitations

– Curse of dimensionality - for every additional dimension, one needs exponentially more points
to cover the space.

– Comp. complexity - has to look through all the samples all the time. Some speed-up is
possible. E.g., storing data in a K-d tree.

– Noise. Missclassified examples will remain in the database....



K− Nearest Neighbor and Bayes j∗ = argmaxj P(sj |~x)
Assume data:

I N points ~x in total.
I Nj points in sj class. Hence,

∑
j Nj = N.

We want classify ~x . We draw a sphere centered at ~x containing K points irrespective of class.
V is the volume of this sphere. P(sj |~x) =?

P(sj |~x) =
P(~x |sj)P(sj)
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Nj

N
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K
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Notes
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A K−NN classifier can be understood as a non-parametric density estimator. (Figure from [1])
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NN classification example
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Notes



NN classification example
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Notes
Fast on “learning”, very slow on decision.

There are ways for speeding it up, search for NN editing - making training data sparser, keeping only representative

points.



What is nearest? Metrics for NN classification . . .
A function D which is: nonnegative,
reflexive, symmetrical, satisfying trian-
gle inequality:
D(~a,~b) ≥ 0
D(~a,~b) = 0 iff ~a = ~b
D(~a,~b) = D(~b,~a)
D(~a,~b) + D(~b,~c) ≥ D(~a,~c)
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FIGURE 4.20. The uncritical use of Euclidean metric cannot address the problem of
translation invariance. Pattern x′ represents a handwritten 5, and x′(s = 3) represents the
same shape but shifted three pixels to the right. The Euclidean distance D(x′, x′(s = 3))

is much larger than D(x′, x8), where x8 represents the handwritten 8. Nearest-neighbor
classification based on the Euclidean distance in this way leads to very large errors.
Instead, we seek a distance measure that would be insensitive to such translations, or
indeed other known invariances, such as scale or rotation. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright c⃝ 2001 by John Wiley &
Sons, Inc.

Invariance to geometrical transformations? (figure from [2])
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Notes
When taking ~x as all the intenties, “5” shifted 3 pixels left is farther from its etalon thant to etalon of “8”. One
could consider preprocessing:

1. shift query image to all possible positions and compute min distances

2. take the min(min(distance))

3. perform NN classification

Costly . . .
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Etalon based classification
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Notes



Separate etalons

s∗ = arg min
s∈S

‖~x − ~es‖2
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Notes



What etalons?

If N (~x |~µ,Σ); all classes same covariance matri-
ces, then

~es
def
= ~µs =

1

|X s |
∑
i∈X s

~x si

and separating hyperplanes halve distances be-
tween pairs.
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Notes

N (~x |~µ,Σ) =
1

(2π)D/2

1

|Σ|1/2
exp{−1

2
(~x − ~µ)>Σ−1(~x − ~µ)}



Etalon based classification, ~es = ~µs
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Notes

Some wrongly classified samples. We like the simple idea. Are there better etalons? How to find them?



Digit recognition - etalons ~es = ~µs

etalon for 0 etalon for 1 etalon for 2 etalon for 3 etalon for 4 etalon for 5 etalon for 6 etalon for 7 etalon for 8 etalon for 9

Figures from [5]
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Notes



Better etalons – Fischer linear discriminant
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Figures from [1]
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Notes
Searching for a projection of the data to minimize intra-class variance and maximize inter-class variance.
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Notes
Searching for a projection of the data to minimize intra-class variance and maximize inter-class variance.



Better etalons?
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Notes

This is just to show that there is an etalon classifier that make no mistake on the data. But how to find the best

etalons?



Etalon classifier – Linear classifier

s∗ = arg min
s∈S
‖~x − ~es‖2 = arg min

s∈S
(~x>~x − 2~e>s ~x + ~e>s ~es) =

= arg min
s∈S

(
~x>~x − 2

(
~e>s ~x −

1

2
(~e>s ~es)

))
=

= arg min
s∈S

(
~x>~x − 2 (~e>s ~x + bs)

)
=

= arg max
s∈S

(~e>s ~x + bs) = arg max
s∈S

gs(~x). bs = −1

2
~e>s ~es

Linear function (plus offset)

gs(x) = w>s x + ws0
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Notes
The result is a linear discriminant function – hence etalon classifier is a linear classifier.
We classify into the class with highest value of the discriminant function.
ws is a generalized etalon. How do we find it? Such that it is better than just the mean of the class members in
the training set.



Learning and decision

Learning stage - learning models/function/parameters from data.

Decision stage - decide about a query ~x .
What to learn?

I Generative model : Learn P(~x , s). Decide by computing P(s|~x).

I Discriminative model : Learn P(s|~x)

I Discriminant function : Learn g(~x) which maps ~x directly into class labels.

15 / 34

Notes
Generative models because by sampling from them it is possible to generate synthetic data points ~x .
For the discriminative model one can consider, e.g. logistic function:

f (x) =
1

1 + e−k(x−x0)



(1) Linear discriminant function - two class case

g(x) = w>x + w0

Decide s1 if g(x) > 0 and s2 if g(x) < 0

x0 =1

x1

. . .
w2

w0

w1

wd

g(x)

x2 xd
. . .

bias unit

input units

output unit

FIGURE 5.1. A simple linear classifier having d input units, each corresponding to the
values of the components of an input vector. Each input feature value xi is multiplied
by its corresponding weight wi; the effective input at the output unit is the sum all these
products,

∑
wixi. We show in each unit its effective input-output function. Thus each of

the d input units is linear, emitting exactly the value of its corresponding feature value.
The single bias unit unit always emits the constant value 1.0. The single output unit
emits a +1 if wtx + w0 > 0 or a −1 otherwise. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c⃝ 2001 by John Wiley & Sons,
Inc.

Figure from [2] 16 / 34

Notes
g(x) = 0 is the separating hyperplane. Its dimension is one less that that of the input space – for 2D space, it is
a line. (This is a bit counterintuitive - “hyper” normally means above, more...)

What is the geometric meaning of the weight vector w?
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Notes
g(x) = 0 is the separating hyperplane. Its dimension is one less that that of the input space – for 2D space, it is
a line. (This is a bit counterintuitive - “hyper” normally means above, more...)

What is the geometric meaning of the weight vector w?



Separating hyperplane

w>x1 + w0 = w>x2 + w0

w>(x1 − x2) = 0

g(x) gives an algebraic measure of the
distance from x to the hyperplane.

x = xp + r
w

‖w‖

as g(xp) = 0,
and g(x) = w>x + w0, then:

g(x) = r‖w‖

x

g(x) = 0w

x1

x2

x3

w0  /||w
||

r

H

xp

R1

R2

FIGURE 5.2. The linear decision boundary H, where g(x) = wtx+w0 = 0, separates the
feature space into two half-spaces R1 (where g(x) > 0) and R2 (where g(x) < 0). From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c⃝ 2001 by John Wiley & Sons, Inc.

Figure from [2]
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Notes
(any) vector (x1 − x2) lies on the separating hyperplane, w is perpendicular to it
Summary: A linear discriminant function divides the feature space by a hyperplane decision surface.

• The orientation of the surface is detemined by the normal vector w.

• The location of the surface is determined by the bias term w0.
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Separating hyperplane from g1 and g2

g1(~x) = ~µ>1 ~x −
1

2
~µ>1 ~µ1

g2(~x) = ~µ>2 ~x −
1

2
~µ>2 ~µ2

Separating hyperplane:

g1(~x) = g2(~x)

(~µ1 − ~µ2)>~x =
1

2
(~µ>1 ~µ1 − ~µ>2 ~µ2)
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Notes

Think about case where ‖~µ1‖ = ‖~µ2‖ and reason about simplified equation of the separating hyperplane.



Two classes set-up

|S | = 2, i.e. two states (typically also classes)

g(x) =

 s = 1 , if w>x + w0 > 0 ,

s = −1 , if w>x + w0 < 0 .

x′j = sj

[
1
xj

]
, w′ =

[
w0

w

]

for all x′

w′
>
x′ > 0

drop the dashes to avoid notation clutter.

19 / 34

Notes
There are two steps here:

1. Transformation to homogenous notation with augmented feature vector and augmented weight vector.

2. “Normalization” that simplifies treatment of the two-class case: labels can be ignored. Just look for a
weight vector w such that w>x > 0

It means, the sign of x depends on the class it belongs to! Keep in mind.
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Solution (graphically)
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FIGURE 5.8. Four training samples (black for ω1, red for ω2) and the solution region in
feature space. The figure on the left shows the raw data; the solution vectors leads to a
plane that separates the patterns from the two categories. In the figure on the right, the
red points have been “normalized”—that is, changed in sign. Now the solution vector
leads to a plane that places all “normalized” points on the same side. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c⃝ 2001 by
John Wiley & Sons, Inc.

w w

x
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x

Four
training samples. Left: orginal, Right: sign corrected

Figure from [2] (notation changed)
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Notes
Four training samples (black for class/category w1, red for w2). Left: Raw data Right: “Normalized data”. Class
w2 member replaced by their negatives... Simplifies the situation: labels can be ignored. Just look for a weight
vector w such that w>x > 0
Before: defining the linear discriminant function.
Now: How can we obtain it from (labeled) data?



Learning w, gradient descent

A criterion to be minimized J(w); assume to be known

Initialize w, threshold θ, learning rate α
k ← 0
repeat

k ← k + 1
w← w − α(k)∇J(w)

until |α(k)∇J(w)| < θ
return w

21 / 34

Notes
This is a general scheme, we do not know J(w), yet.
We’re looking into error-based classification methods: missclassified examples are used to tune the classifier...

We already discussed (stochastic) Gradient descent when talking about Q−function learning



Learning w - Perceptron criterion
Goal: Find a weight vector w ∈ <D+1 (original feature space dimensionality is D) such that:

w>xj > 0 (∀j ∈ {1, 2, ...,m})
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plane that separates the patterns from the two categories. In the figure on the right, the
red points have been “normalized”—that is, changed in sign. Now the solution vector
leads to a plane that places all “normalized” points on the same side. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c⃝ 2001 by
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Notes
What are the possible choices for J(w)? First choice: number of missclassified examples. Problem: this function
is piecewise constant.
Better choice: perceptron criterion function.
Mind that w>xj ≤ 0 for x ∈ X
Geometrically: J(w) ∝ sum of the distance of the missclassified samples to the decision boundary.

What is ∇J(w) equal to?
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(Batch) Perceptron algorithm

Initialize w, threshold θ, learning rate α
k ← 0
repeat

k ← k + 1
w← w + α(k)

∑
x∈X (k) x

until |α(k)
∑

x∈X (k) x| < θ
return w

23 / 34

Notes

Next weight vector ∼ adding some multiple of the sum of the missclassified samples to the present weight vector.



Fixed-increment single-sample Perceptron

n patterns/samples, we are looping over all patterns repeatedly

Initialize w
k ← 0
repeat

k ← (k + 1) mod n
if xk missclassified, then w← w + xk

until all x correctly classified
return w

24 / 34

Notes

As we are looping over all patterns repeatedly, it is not an on-line algorithm



Perceptron iterations/loops
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(Dark) Blue is w after update step. Reds are +, Greens −.

n patterns/samples, we are loop-
ing over all patterns repeatedly:

Initialize w
k ← 0
repeat

k ← (k + 1) mod n
if xk missclassified, then

w← w + xk

until all x correctly classified
return w
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Notes
Keep in mind the ± normalization of x.

g(x) =

 s = 1 , if w>x + w0 > 0 ,

s = −1 , if w>x + w0 < 0 .

x′j = sj

[
1
xj

]
,w′ =

[
w0

w

]
(as discussed few slides ago)
Red x are +, green are −
Track the iteration steps. After each update x, draw a separating line for the next and verify.
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Etalons: means vs. found by perceptron
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Figures from [5]
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Digit recognition - etalons means vs. perceptron
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Figures from [5]
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Notes

“Prototypes” resulting from the perceptron algorithm are harder to interpret because they are not means –

instead, they are optimized for separating the classes.



What if not lin separable?
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Dimension lifting

x = [x , x2]>
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Dimension lifting, x = [x , x2]>
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Performance comparison, parameters fixed
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Notes

Why there some errors in perceptron results? We said zero error on training set.



Accuracy vs precision

https://commons.wikimedia.org/wiki/File:Precision versus accuracy.svg
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Notes
Accuracy: how close (is your model) to the truth. Precision: how consistent/stable
In German:

• Accuracy: Richtigkeit

• Precision: Präzision

• Both together: Genauigkeit

In Czech:

• Accuracy: Věrnost, p̌resnost.

• Precition: Rozptyl,

https://commons.wikimedia.org/wiki/File:Precision_versus_accuracy.svg


Accuracy vs precision

https://en.wikipedia.org/wiki/Accuracy and precision
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Notes
Accuracy: how close (is your model) to the truth. Precision: how consistent/stable.
Think about terms bias and error. I

https://en.wikipedia.org/wiki/Accuracy_and_precision
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